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Abstract: We present a computationally efficient framework to solve a multi-stage optimal
water flow (OWF) problem with stochastic water demands. The proposed framework explicitly
considers the feedback control policies and adjustable water flow with forecast errors over a
planning horizon. The objective is to find an optimal operation schedule of controllable devices
(e.g., pumps and valves) to trade off operational performance, such as economic efficiency,
safety, and smoothness, and risk of constraint violations. We compute feedback policies that
are robust to forecast errors in order to accommodate the fluctuating water demands. Given a
probabilistic description of forecast errors, our formulations provide two broad approaches based
on Conditional Value-at-Risk (CVaR) and distributionally robust optimization (DRO) that
offer alternatives to the existing stochastic OWF formulations based on chance-constrained and
robust optimization. Numerical case studies on a three-tank water network demonstrate that the
proposed framework achieves effective and explicitly adjustable trade offs between operational
efficiency and constraint violation risk.

Keywords: optimal water flow, flow regulation, water flow control-oriented model, stochastic
optimization, water networks, risk management

1. INTRODUCTION

Due to a broad range of future energy and environmental
issues Lavelle and Grose (2013), water distribution network
operators are seeking improved strategies to deliver energy-
efficient, reliable, and high quality service to consumers
Ocampo-Martinez et al. (2013). However, the increasing
complexity (e.g., due to high dimensionality, nonlinearities,
operation constraints, and uncertainties) in municipal
water supply network operation is challenging the current
management and control strategies and may threaten the
security of this vital infrastructure. Future urban water
supply systems will require more sophisticated methods
to function robustly and efficiently in the presence of this
increasing complexity.

The flexibility of water flow manipulators (pumps and
valves) in water networks has been utilized to optimize
various objectives, including production and transportation
costs, water quality, safe storage, smoothness of control
actions, etc. Fooladivanda and Taylor (2018); D’Ambrosio
et al. (2015); Jowitt and Germanopoulos (1992); Yu et al.
(1994); Verleye and Aghezzaf (2013); Cohen et al. (2000);
Montalvo et al. (2008); Zessler and Shamir (1989). However,
most optimal water flow control methods use deterministic
point forecasts of exogenous water demands, which neglects
their inherent stochasticity. In practice, the variation of
water demands in real water distribution networks is
high and difficult to predict Goryashko and Nemirovski
(2014). Further, as complexity of network topology increases
Archibald and Marshall (2018), small perturbations can
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cause significant performance decrease and even infeasibility
of optimal water flow problems Goryashko and Nemirovski
(2014).

Recent research on optimal water network operation has
been shifting from deterministic to stochastic models, since
uncertainties (e.g., human usage, unexpected component
failures, climate change) are increasingly key factors in
many sectors of water resource management Archibald
and Marshall (2018); Brentan et al. (2018); Goryashko
and Nemirovski (2014); Watkins Jr and McKinney (1997);
Sampathirao et al. (2018); Grosso et al. (2014b); Ocampo-
Martinez et al. (2013); Grosso et al. (2014a); Wang et al.
(2016); Castelletti et al. (2012); Sankar et al. (2015);
Wang et al. (2020). Most stochastic formulations assume
that the uncertain water demands follow a prescribed
distribution (e.g, Gaussian Wang et al. (2016); Grosso
et al. (2014a)), or enforce constraint for all possible
water demand realization by assuming only knowledge
of bounds on uncertainties Goryashko and Nemirovski
(2014); Castelletti et al. (2012), and then utilize robust
optimization. Sampling-based stochastic optimization has
also been applied to water flow manipulation problem
Sampathirao et al. (2018) to quantify the probability of
constraint violation based on an assumed data generating
mechanism. However, the underlying assumptions in these
approaches can be too strong or overly conservative, which
can lead to underestimation or overestimation of the actual
risks and therefore to ineffective operation. The methods
based on chance-constraints effectively only measure the
frequency of constraint violations not the severity, which
can underestimate risk. The robust methods can enforce
constraints for extreme and highly unlikely uncertainty
realizations, effectively overestimating risk. Furthermore,



some sampling-based methods give a heavy computational
burden due to their requirement of a large numbers of
samples. In practice, forecasts of water demand are never
perfect, and their distributions must be estimated from
finite data sets.

In this paper, we investigate a stochastic optimal water
flow (OWF) problem using a simple but widely used model,
called the control-oriented water flow model, Sampathirao
et al. (2018); Wang et al. (2016); Grosso et al. (2014a,b);
Ocampo-Martinez et al. (2013). We propose two stochas-
tic formulations that use particular risk quantifications,
namely, conditional value-at-risk (CVaR), Rockafellar and
Uryasev (2000)) and distributionally robust optimization
(DRO), Calafiore and El Ghaoui (2006); Delage and Ye
(2010); Goh and Sim (2010), to explicitly balance tradeoffs
between performance and constraint violation risk in the
presence of uncertainty about water demands. To our
best knowledge, these two popular stochastic optimization
approaches have not been studied in the context of water
resource management. The main contributions of this paper
are summarized as follows

1) We present an approach to solve a multi-stage stochas-
tic optimal water flow (OWF) problem based on
convex reformulation of chance constraints. We take
a perspective of a water utility to manage the op-
erational risk across the network, where we prob-
abilistically constrain the water flow through the
network manipulators (e.g., pumps and valves) and
the available volume in water storage tanks).

2) Two convex approximations are used to handle the
uncertainty in stochastic OWF problems, which ef-
fectively interpolate between chance-constrained and
robust optimization methods. In the first approach,
CVaR OWF penalizes both frequency and severity
of constraint violations and uses sample average ap-
proximation for computation. In the second approach,
DRO OWF ensures robustness to worst-case forecast
error distributions within an ambiguity set specified
by moment constraints, and uses exact second-order
cone formulations. Both CVaR OWF and DRO OWF
utilize affine disturbance policies to obtain closed-loop
feedback control policies, by planning reactions to
forecast error realizations.

3) We demonstrate the effectiveness of our formulation
on a model of part of the Barcelona water distribution
system Grosso et al. (2014b). The numerical case
studies demonstrate, analyze, and discuss the tradeoffs
between the network performance and operational
risks. Our proposed approaches offer complementary
alternatives to existing stochastic optimal water flow
frameworks.

The rest of paper is organized as follows: Section II describes
the water flow control model and the general multi-stage
stochastic OWF problem. Section III presents the convex
reformulations of chance constraints and proposes two
tractable stochastic OWF formulations based on condi-
tional value-at-risk (CVaR) and distributionally robust
optimization (DRO). Section IV presents the simulation
results and compares the proposed approaches with existing
stochastic formulations. Section V concludes the paper.

2. PROBLEM STATEMENT

In this section, we pose a general stochastic optimal water
flow problem and then discuss a convex reformulation in
the following sections. Although there are many complex
models for water flow, we utilize a simple but widely
used water flow oriented-control model to maintain com-
putational tractability in the presence of uncertainties
Ocampo-Martinez et al. (2013); Wang et al. (2016); Grosso
et al. (2014b); Goryashko and Nemirovski (2014). Internal
dynamics of actuators, head pressure dynamics of pumps,
and nonlinearities of pipes and valves and not considered
in our model.

2.1 Network Modelling

Consider a water network modeled by an undirected graph
G(V, E), with Nv vertices representing a set of Ns water
sources, Nj junction nodes, Nt water tanks and Nd sinks
(i.e., demands). These components are connected by a
set of edges E that represent a set of pipes with Nc flow
control actuators (pumps and valves) that deliver the
water flow from sources to sinks. We define the water
volume in the storage tanks as the state vector xk ∈ RNt .
The water passing through the control actuators can be
regarded as a control input uk ∈ RNc . For simplicity,
we assume that the inputs directly manipulate the rate
of flow through the corresponding pipes (measured in
m3/s or gallon per minute (GPM)). The water demand at
sinks is denoted by dk ∈ RNd . A set of system matrices
Ā ∈ RNt×Nt , B̄ ∈ RNt×Nc , B̄d ∈ RNt×Nd , Ēu ∈ RNj×Nc

and Ēd ∈ RNj×Nd describe the network topology and
discrete-time dynamics that reflect simple mass balance
relationships between nodes and edges, resulting in the
model:

xk+1 = Āxk + B̄uk + B̄ddk, (1a)

0 = Ēuuk + Ēddk, (1b)

where (1a) captures storage tank level dynamics and (1b)
describes mass balance at each junction node. We consider
management of tank levels and flows over a planning
time horizon T from initial tank levels x0. For compact
notation, we concatenate the states, inputs and demands
over the planning horizon as x = [(x1)ᵀ, . . . , (xT )ᵀ]ᵀ ∈
RNtT , u = [(u0)ᵀ, . . . , (uT−1)ᵀ]ᵀ ∈ RNcT and d =
[(d0)ᵀ, . . . , (dT−1)ᵀ]ᵀ ∈ RNdT , yielding

x = Ax0 +Bu +Bdd, (2a)

0 = Euu + Edd, (2b)

where
Eu = IT ⊗ Ēu, Ed = IT ⊗ Ēd,

A =


Ā
Ā2

...
ĀT

 , Bd =


B̄d 0 · · · 0

ĀB̄d B̄d
. . . 0

...
. . .

. . .
...

ĀT−1B̄d · · · ĀB̄d B̄d

 ,

B =


B̄ 0 · · · 0

ĀB̄ B̄
. . . 0

...
. . .

. . .
...

ĀT−1B̄ · · · ĀB̄ B̄

 .



Note that IT indicates a T -dimension identity matrix and
⊗ denotes Kronecker product.
This control-oriented model for water resource management
in water networks has been widely studied Sampathirao
et al. (2018); Sun et al. (2016); Grosso et al. (2014b) and
allows for real-time computational efficiency. Although
this simplified model neglects factors such as energy
loss, hydraulic dynamics, and pressure constraints, it still
captures the main network response of hydraulic variables
of network to control actions Ocampo-Martinez et al.
(2013). Our ongoing follow-up work is considering nonlinear
dynamics and stochastic pressure management, in addition
to water flow control.

2.2 Cost Functions and Constraints

The operational cost for the water network is assumed to
be convex quadratic in states and inputs in the form

J(x,u) = fᵀxx +
1

2
xᵀHxx + fᵀuu +

1

2
uᵀHuu, (3)

where Hx and Hu are positive semidefinite matrices. The
parameters fx, fu, Hx and Hu can be selected to capture
various performance criteria, such as electricity cost for
pumping, water production and transportation costs, safe
storage levels, and control effort Ocampo-Martinez et al.
(2013).

We incorporate state and input constraints on the tank
volume and flow control inputs

umin ≤ u ≤ umax, (4a)

xmin ≤ x ≤ xmax. (4b)

Here, xmin and xmax denote the minimum and maximum
admissible water volume of tanks, respectively. The lower
storage limitation xmin can be zero to represent an empty
tank, or can be set to a nonzero value to leave water
availability for emergencies. The lower and upper physical
limits of actuators are umin and umax, respectively.

2.3 Stochastic Optimal Water Flow

In a deterministic optimal water flow control problem,
water demand uncertainty is not explicitly considered. Since
actual water demands can exhibit large variations and
unpredictability Brentan et al. (2018), we model demand
stochastically as d = d̄ + ξ, with a nominal predicted
value d̄ ∈ RNdT and a zero-mean forecast error ξ =
[ξᵀ0 , . . . , ξ

ᵀ
T−1]ᵀ ∈ RNdT from a probability space (Ω,F ,Pξ).

We assume that information about the joint probability
distribution of ξ is known. The distribution captures
spatiotemporal variations and dependencies among the
demands. In particular, we will assume knowledge of certain
moments such as the mean and variance, or a model of ξ
from which we can draw samples.

To explicitly account for this stochasticity of water de-
mands, we formulate the following general stochastic op-
timal water flow problem to find an optimal strategy for
responding to forecast errors via an optimal control policy
for the flow actuators u = π(ξ),where π : RNdT → RNcT

is a function from a set Πc of causal policies. Specifically,
we consider

minimize
π∈Πc

Eξ
[
J(Ax0 +Bπ(ξ) +Bdd, π(ξ)

]
, (5a)

subject to 0 = Euπ(ξ) + Edd, ∀ξ (5b)

R
(
umin − π(ξ)

)
≤ 0, (5c)

R
(
π(ξ)− umax

)
≤ 0, (5d)

R
(
xmin − x

)
≤ 0, (5e)

R
(
x− xmax

)
≤ 0, (5f)

where R donates a transformation of the inequality con-
straint functions into a risk metric, which will be described
in more detail shortly. Note that this transformation can
be different in general for each constraint. In general, some
of these constraints on real device cannot be physically
violated. Here, we consider non-physical upper and lower
boundaries of states and inputs from a pre-specified safe
operation zone, which can be violated probabilistically but
results in safety or operational risks Grosso et al. (2017).
We will introduce two popular risk metrics for (5c)-(5f) in
the next section.

Since optimizing over general policies makes problem (5)
infinite dimensional, we optimize instead over a set of affine
control policies

u = Dξ + e,

where

D =


[D](0,0) 0 · · · 0

[D](1,0) [D](1,1)

. . .
...

...
. . .

. . . 0
[D](T−1,0) · · · [D](T−1.T−2) [D](T−1,T−1)

 .
Here, e ∈ RNcT represents a nominal plan for actuators,
and [D](i,i) ∈ RNc×Nd can be understood as a feedback
control matrix, which reacts to forecast errors as they
are revealed in time. The block lower-triangular matrix
D ∈ RNcT×NdT ensures that the controller is causal.

Substituting the affine control policies into (5), the objec-
tive function (5a) becomes convex quadratic in D and e
and depends on the first and second moments information
of ξ. Since the policy is affine, the robust equality constraint
(5b) is equivalent to

EuD + Ed = 0, Eue+ Edd̄ = 0. (6)

With affine policies, (5c)-(5f) become

R
(

[D]iξ + e(i)− umax(i)
)
≤ 0, (7a)

R
(
umin(i)− [D]iξ − e(i)

)
≤ 0, (7b)

R
(

[BD]jξ + [Ax0 +Be+Bdd]j − xmax(j)
)
≤ 0, (7c)

R
(
xmin(j)− [BD]jξ − [Ax0 +Be+Bdd]j

)
≤ 0, (7d)

i = 1, . . . , NcT, j = 1, . . . , NtT.

where the operator [·]i denotes the i-th row of a matrix or
the i-th element of a vector. We collect all above constraints
(7a)-(7d) into a set V of NtT +NcT constraints, and the
expressions inside the brackets can be written in a general
linear form ai(D)ᵀξ+bi(e),∀i ∈ V . Additionally, we denote
φj(e) := [Ax0 +Be+Bdd]j , j = 1, . . . , NtT in the rest of
this paper for notational convenience.



3. CONVEX APPROXIMATION OF STOCHASTIC
OPTIMAL WATER FLOW

Following our proposed formulation above, we begin this
section by introducing chance constraints and propose two
convex reformulations of the stochastic optimal water flow
problem based on conditional value-at-risk and distribu-
tionally robust optimization.

3.1 Chance Constraints

Consider the stochastic OWF problem as a chance-
constrained optimization problem

minimize
D,e

J(x,u), (8a)

subject to Pξ (ai(D)ᵀξ + bi(e) ≤ 0) ≥ 1− αi, (8b)

and (6), ∀i ∈ V,
where αi ∈ R is the prescribed safety parameter or “risk
budget” for i-th linear constraint within set V. If ξ is
normally distributed, then it is known that the chance
constraint can be written as a second-order cone constraint
Delage and Ye (2010); Calafiore and El Ghaoui (2006),

ai(D)ᵀµ+ bi(e) + Φ−1(1− αi)‖Σ
1
2 ai(D)‖2 ≤ 0, (9)

where E[ξ] = µ, E[ξξᵀ] = Σ are the first and second mo-
ments of ξ and Φ−1 denotes the Gaussian quantile function.
This group of constraints (9) is closely related to value-
at-risk (VaR), a well known risk quantification in finance
applications. However, the Gaussian chance constraints
(9) only restrict the frequency of constraint violations, not
the severity. Since distributions in practice may not be
Gaussian, this approach can lead to underestimation of
actual risks. In this paper, we leverage CVaR function to
penalize both frequency and severity of constraint violation
and use moment-based distributionally robust optimization
to make decisions less sensitive to assumptions about the
distribution of ξ.

3.2 Stochastic OWF with Conditional Value-at-Risk (CVaR)

To strengthen the chance constraint (9), we leverage CVaR
to limit both frequency and expected severity of constraint
violation Rockafellar and Uryasev (2000), which is arguably
more appropriate for many types of constraints in stochastic
optimal water flow problems to manage constraints on tanks
(5e)-(5f) and actuators (e.g., pumps and valves (5c))-(5d).
Using a CVaR metric, the constraints (7a)-(7d) can be
expressed as Rockafellar and Uryasev (2000)

Eξ
[
[D]iξ + e(i)− umax(i) + t̄i

]
+
≤ t̄iαi,

Eξ
[
umin(i)− [D]iξ − e(i) + ti

]
+
≤ tiαi,

Eξ [[BD]jξ + φj(e)− xmax(j) + t̄j ]+ ≤ t̄jαj ,
Eξ
[
xmin(j)− [BD]jξ − φj(e) + tj

]
+
≤ tjαj ,

i = 1, . . . , NcT, j = 1, . . . , NtT,

where t̄i, ti, t̄j and tj are auxiliary optimization variables
and [·]+ = max{0, ·}. Since an exact evaluation of the
expectation is difficult due to the piece-wise linearity
of [·]+, we approximate these constraints using sample
average approximation methods based on a finite set

of scenario data ξ̂s ∈ Ξ̂, which is a widely used and
highly effective approach for handling CVaR constraints in
practice Bertsimas et al. (2018).

Using the CVaR risk metric, we come to the following
stochastic optimal water flow problem

minimize
D,e,t

Eξ
[
Ĵ(Ax0 +B(Dξ + e) +Bdd, Dξ + e

]
,

(11a)

subject to EuD + Ed = 0, Eue+ Edd̄ = 0,

1

N

N∑
s=1

[
[D]iξ̂s + e(i)− umax(i) + t̄i

]
+
− t̄iαi ≤ 0,

1

N

N∑
s=1

[
umin(i)− [D]iξ̂s − e(i) + ti

]
+
− tiαi ≤ 0,

1

N

N∑
s=1

[
[BD]j ξ̂s + φj(e)− xmax(j) + t̄j

]
+
− t̄jαj ≤ 0,

1

N

N∑
s=1

[
xmin(j)− [BD]j ξ̂s − φj(e) + tj

]
+
− tjαj ≤ 0,

i = 1, . . . , NcT, j = 1, . . . , NtT, ∀s ∈ Ξ̂, (CVaR OWF)

where Ξ̂ contains sample data of water demand forecast
errors. Since the objective function J is quadratic, the
expectation can be explicitly evaluated using first and
second moment information, which can be estimated from
the finite sampling data set Ξ̂. Note that the superscript
·̂ is reserved for the objects depend on the training data
set Ξ̂. Note also that we treat all chance constraints in
set V independently. It is also interesting to discuss how a
group of chance constraints can be considered jointly by
appropriately selecting the “risk budgets” αi, which we
leave as future work.

3.3 Distributionally Robust Stochastic OWF

As another significant strengthening of the chance con-
straints (8b), we propose an alternative using moment-
based distributionally robust constraints. In particular, we
suppose that the actual distribution Pξ of ξ is unknown
and assumed to lie in an ambiguity set P, and enforce the
constraints for all possible distributions within this set:

Pξ (ai(D)ᵀξ + bi(e) ≤ 0) ≥ 1−αi, ∀i ∈ V, ∀Pξ ∈ P, (12)

We utilize moment-based ambiguity sets, which contain all
possible distributions that share first and second moment
information

P :=
{
Pξ | EPξ [ξ] = µ,EPξ [ξξᵀ] = Σ

}
.

It can be shown Calafiore and El Ghaoui (2006) that (12)
can also be exactly reformulated as a second-order cone
constraint

ai(D)ᵀµ+ bi(e) +

√
1− αi
αi
‖Σ 1

2 ai(D)‖2 ≤ 0, (13)

which only depends on the mean µ and covariance Σ of ξ.
Note that (13) is similar to (9) but tighter, and leads to
more conservative but more robust decisions.

Using a distributionally robust risk metric, we obtain the
distributionally robust stochastic OWF problem

minimize
D,e

Eξ
[
Ĵ(Ax0 +B(Dξ + e) +Bdd, Dξ + e

]
,

(14a)

subject to EuD + Ed = 0, Eue+ Edd̄ = 0,



[D]iµ+ e(i)− umax(i) +

√
1− αi
αi
‖Σ 1

2 [D]ᵀi ‖2 ≤ 0,

umin(i)− [D]iµ− e(i) +

√
1− αi
αi
‖Σ 1

2 [D]ᵀi ‖2 ≤ 0,

[BD]jµ+ φj(e)− xmax(j) +

√
1− αj
αj

‖Σ 1
2 [BD]ᵀj ‖2 ≤ 0,

xmin(j)− [BD]jµ− φj(e) +

√
1− αj
αj

‖Σ 1
2 [BD]ᵀj ‖2 ≤ 0,

i = 1, . . . , NcT, j = 1, . . . , NtT. (DRO OWF)

The advantages of this reformulation are that it is straight-
forward to estimate moments from historical data and that
the last two second-order cone constraints do not require
any other sampling of ξ. However, since the decisions
are robust to the corresponding worst case distribution
within the ambiguity set P, DRO OWF will result in
more conservative decisions than CVaR OWF. To reduce
conservatism, additional assumptions (such as unimodality
or knowledge of higher moments) can be made to reduce
the size of the ambiguity sets.

In general, two chance constraint convex reformulations,
CVaR OWF and DRO OWF, make different assumptions
on the underlying uncertainty, and make control decisions
robust to this uncertainty.

• CVaR OWF: Conditional Value-at-Risk quantifies the
expected severity of constraint violations above a
certain quantile. Without a prescribed distribution
assumption, the decisions from CVaR OWF will be
robust to the empirical distribution supported on the
dataset Ξ̂.
• DRO OWF: the distributionally robust formulation

make the schedules robust to a set of distributions with
specified moment information (mean and covariance),
which can be estimated directly from data. This
approach leads to more conservativeness and tractably
incorporates statistical knowledge of water demand
variations.

Overall, these two stochastic OWF formulations allow
the water distribution operators to account for stochastic
water demand from the forecasting dataset Ξ̂ or statistical
information derived from forecasting and data analysis
methods, respectively.

3.4 Stochastic Model Predictive Control Implementation

Our proposed stochastic optimal water flow formulations
(CVaR OWF and DRO OWF) can be regarded as a
component of a multi-stage closed-loop stochastic model
predictive control (MPC) framework. The stochastic MPC
control strategy explicitly incorporates information about
uncertainty into the feedback controller, and allows the un-
certainty description to be updated as more data becomes
available over time, Camacho and Alba (2013); Grosso et al.
(2014b); Wang et al. (2016). An MPC controller computes
optimal open-loop control decisions at the current timestep
considering the future system trajectories over a finite time
horizon Hk. Here, the proposed stochastic optimal water
flow problems can be utilized as a block for a MPC-based
closed-loop control strategy, which includes the current and

future water network states based on the forecasts of the
water consumption and the water availability in tanks. The
MPC-based control strategy comprises the following steps:

• At current timestep k, we forecast the water demand
consumption across the water network over the horizon
Hk, and generate a set of forecast errors samples for
CVaR OWF or the moment estimates for DRO OWF.

• Solve (11) or (14) over horizon Hk.
• Implement the reserve policies and nominal flow

manipulation for each actuator at current time step
k.

• Move to the next time step k + 1, and repeat.

For simplicity, our case studies focus on solving (11) or (14)
at one particular time instance; Monte Carlo simulations of
the closed-loop stochastic MPC strategies will be performed
in future work.

4. CASE STUDIES

To illustrate the proposed framework, we use a portion
the Barcelona drinking water network (DWN) Grosso
et al. (2014b) to demonstrate its effectiveness for DWN
optimization and control. There are 4 demands, 6 water
flow control actuators, 2 water sources, 3 tanks and 2
intersection nodes in this portion of DWN, in Fig. 1.

Fig. 1. A three tank drinking water network, Grosso et al.
(2014b).

The system parameters from (1) are

Ā =

[
1 0 0
0 1 0
0 0 1

]
, B̄ =

[
0 0 0 1 1 0
0 0 0 0 0 1
0 0 1 0 0 0

]
∆t,

B̄d =

[−1 0 0 0
0 0 −1 0
0 0 0 −1

]
∆t,

Ēu =

[
1 −1 −1 0 0 −1
0 1 0 0 −1 0

]
, Ēd =

[
0 0 0 0
0 −1 0 0

]
,

xmin = [400 300 400]
ᵀ
, xmax = [3100 1500 3100]

ᵀ
,

umin = [0 0 0 0 0 0]
ᵀ
,

umax = [1.297 0.050 0.120 0.035 0.031 0.040]
ᵀ
,

where the sampling time ∆t is 3600s. The water demand
pattern is derived from EPANET Rossman et al. (2000)
(a standard software package for analysis of drinking
water distribution systems). The four nominal exogenous
water demands are shown in Fig. 2. For illustrative



purposes, the water demand forecast errors are drawn
from a Gaussian probability distribution with zero mean
and a standard deviation of 40% of the nominal water
demand forecast d̄. In this case study, we only restrict the
upper level constraints on three tanks with distributionally
robust or CVaR for a clear visulization and demonstration
on the tradeoff between efficiency and operation risks.
Other constraints including the lower level constraints
on tanks are handled by sample average approximation
(SAA), Bertsimas et al. (2018). It is straightforward to
reformulate these with distributional robustness or CVaR.
The simulation takes 60 seconds or less to solve CVaR OWF
and DRO OWF with T = 24 hours using MOSEK Solver
(2017) via the MATLAB interface with CVX (2012) on a
laptop with 16GM of memory and a 2.8GHz Intel Core i7.
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Fig. 2. The nominal water demand forecast.
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Fig. 3. Optimal operational cost vs. the constraint vi-
olation budget α under various stochastic reformu-
lations of the tank volume constraints (including
chance-constrained Grosso et al. (2014a), robust op-
timization Goryashko and Nemirovski (2014)). All
cases start from a non-optimal initial state x0 =
[1700.44, 646.23, 633.89]ᵀ in m3.

Fig. 3 visualizes the tradeoffs between the operational
performance and constraint violation budget α under
various stochastic constraint reformulation of maximum

water tank levels: a chance constraint assuming that
the uncertainty follow Gaussian distributions (9) Grosso
et al. (2014a), CVaR OWF (11), DRO OWF (14), robust
optimization Goryashko and Nemirovski (2014) with an
assumed support of ξ ∈ Θ := [−θd̄ ≤ ξ ≤ θd̄, θ = 0.2],
and two deterministic cases with and without reserve
control policies. The chance-constrained method with
Gaussian assumption is always less conservative than
other three stochastic approaches (viz., DRO, CVaR
and Robust). CVaR OWF is more conservative than
chance constraints since it penalizes both frequency and
severity of constraint violation. DRO OWF results in
more conservative performance and can even be more
conservative than the robust approach for small values
of α since we do not explicitly bound the uncertainty in
this case. However, the CVaR and DRO approaches will
result in fewer out-of-sample constraint violations when
uncertainties are not Gaussian.
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Fig. 4. Optimal state trajectories of tank #2 for varying
risk budgets α under three stochastic constraint re-
formulations.

Fig. 4 illustrates the optimal state trajectories from DRO
OWF, CVaR OWF and the chance-constrained method
with Gaussian assumption under various risk budgets
α. The dashed and solid black indicate the lower and
upper volume boundaries of water tank 2, respectively.
As expected, the Gaussian chance-constrained approach
arrives at less conservative state trajectories, whereas DRO
OWF offers tanks levels that are more robust to upper
violations.

Note that each stochastic constraint reformulation has
different performance and robustness properties based on
differing assumptions about the uncertainty. The most
appropriate formulation depends on many practical factors
and operator risk aversion. It is possible to mix different
constraint reformulations in one multi-stage stochastic
OWF problem.

5. CONCLUSIONS

In this paper, we proposed two convex reformulations of
the stochastic optimal water flow problem to trade off
operational efficiency and constraint violation risk. The



CVaR OWF offers improved robustness compared to exist-
ing chance-constrained OWF, but requires sample average
approximation. The DRO OWF utilizes exact second-
order conic constraint reformulations based on moment-
based ambiguity sets, which simplifies computation but
gives increased conservatism. Ongoing work includes the
numerical experiments on larger networks and adapting the
proposed framework to handle constraints on head pressure
at pumps, valves, and pipes.
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