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Abstract—We present a computational tool for solving semidef-
inite relaxations of multi-period AC optimal power flow (OPF)
problems. Chordal conversion techniques are used to exploit
problem sparsity. Three features set it apart from similar
implementations: First, a new, concise real-valued model exploits
the problem structure and avoids introducing redundant con-
straints. Second, a dynamic choice of constraint type improves
computation time for grids with extensive radial subgraphs.
Third, a modular software design enables the easy integration
of additional models for photovoltaic inverters, optimal storage
placement, etc.

Benchmark results indicate that our computational improve-
ments significantly enhance performance compared to a standard
implementation. This holds in particular for large-scale networks
and power grids with large radial subgraphs. Finally, a case study
showcases the potential of our modular OPF software design.

Index Terms—Convex Optimization, Optimal Power Flow,
Smart Grids

I. INTRODUCTION

Government incentive programs in various countries are
leading to a massive expansion of renewable energy sources.
However, large amounts of intermittent power infeed at the
distribution level are known to jeopardize grid stability. Fur-
thermore, the non-controllable nature of this infeed makes it
difficult to balance supply and demand.

Various methods have been proposed and studied to address
these challenges. In this paper we advocate the use of nonlinear
optimal power flow (OPF) simulations to assess the potential
of these mitigation strategies. In order to efficiently solve
OPF problems in a multi-period setting with non-linear flow
equations we use convex relaxation techniques studied in [8]
and recently summarized in [9].

These convex relaxations of AC OPF problems, first pro-
posed in [2], have recently attracted attention because of their
potential to provide globally optimal solutions to non-linear
OPF problems in polynomial time.

In this paper we present a software framework for solving
AC OPF problems in the context of distribution grids. Our
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implementation introduces two modifications that improve per-
formance and a modular design that can accommodate various
power systems components and optimization objectives.

The model underlying our OPF formulation ignores uncer-
tainties, assumes steady-state conditions and full information
on load and PV generation profiles. We further consider only
balanced loads and work with single-phase equivalent circuits.
These assumptions do not always hold in practice, but OPF
simulations can provide upper bounds on the effectiveness by
giving an optimal solution under ideal conditions.

In Section II we introduce the concept on convex relaxations
applied to OPF problems. Then, we summarize the chordal
conversion techniques used for exploiting sparsity and in-
troduce performance-enhancing modifications to the standard
formulations. Section IV introduces the modular software
design and Sections V and VI present benchmark results and
a case study on optimal storage placement.

II. COMPLEX & REAL BUS INJECTION RELAXATIONS

Consider a power network consisting of a set of nodes N
of size N . Node 0 denotes the slack node which serves as the
phase angle reference. In the following we further assume that
this node represents the (unique) substation which connects the
feeder to higher grid levels. Every node n ∈ N has a voltage
phasor Vn for the line-to-ground voltage and power injection
Sj ∈ C. Let V and S denote the respective vectors.

Let L denote the set of undirected lines. We use the notation
m ∼ n to denote a line between nodes m and n.

We define the feasible set defined by the bus injection model
of the AC power flow equations as

W :=

S, V
∣∣∣∣∣∣Sj =

∑
k:j∼k

y∗jkVj
(
V ∗j − V ∗k

)
∀j ∈ N


where (·)∗ is the complex conjugate and yjk denotes the
admittance value for the line j ∼ k.

The admittance matrix of the network is given as Y ∈
CN×N with {Y}jk = −yjk if j ∼ k and {Y}jj =∑

k:j∼k yjk and 0 otherwise. It can be used the reformulate



the feasible set more compactly as

W =
{
S, V

∣∣Sj = tr {YjV V
H} ∀j ∈ N

}
where Yj := YHeje

T
j and ej is the canonical unit vector in

direction j.
By defining Uj := |Vj |2 and W := V V H we can

equivalently write

Y:={S,U |U = diagW,

Sj = tr {YjW} ∀j ∈ N ,
W � 0, rankW = 1}

The common convex relaxation first applied in [2] consists
in dropping the non-convex rank constraint in order to get a
convex feasible set

V:={S,U |U = diagW, (1)
Sj = tr {YjW} ∀j ∈ N , (2)
W � 0}. (3)

These equations can consequently be used in a complex-
valued convex optimization problem. This requires a solver hat
can handle complex numbers, in particular complex semidef-
inite cones (such as SeDuMi1). Alternatively, a real-valued
relaxation can be formulated. For this, we define W̃ := XTX
where X =

[
ReV T ImV T

]T
. We further introduce

ỸR
j :=

1

2

[
ReYj − ImYj

ImYj ReYj

]
ỸI

j :=
1

2

[
ImYj −ReYj

ReYj ImYj

]
M̃j :=

[
Mj 0
0 Mj

]
.

where Mj ∈ RN×N is defined as {Mj}jj := 1 and 0
otherwise.

Hence, a real-valued analog to Ṽ can be defined as

Ṽ:={P,Q,U |Uj = tr (M̃jW̃ ),

Pj = tr (ỸR
j W̃ ) ∀j ∈ N ,

Qj = tr (ỸI
j W̃ ) ∀j ∈ N ,

W̃ � 0}.

Note that we have dimW = N2 while dim W̃ = 2N2−N .
This alludes to the fact that the real formulation is in general
computationally more expensive to use in a OPF problem than
the complex formulation.

Finally, note that in order to be able to reconstruct a voltage
vector V from either W or W̃ the rank of the respective matrix
has to be 1. In practice, we evaluate the ratio of the two largest
eigenvalues to check whether the matrix is close to being rank-
1. We will not further investigate this issue in the following.
Instead we simply note that reconstructability has not been a
problem in the case study conducted for this paper.

1www.sedumi.ie.lehigh.edu

III. SPARSE SEMIDEFINITE PROGRAMMING FOR AC OPF

The computational burden of the convex relaxation grows
quadratically with the number of buses. It is however possible
to exploit the sparsity of the network structure by applying a
theorem about semidefinite matrix completion. This idea has
been extensively described in [5] and first applied to OPF
problems in [7]. Further investigations into sparse semidefinite
programming for OPF have been presented in [10] and [1].
The following graph-theoretic notions help to understand the
subsequent exposition:

By clique we refer to a fully connected subset of nodes in
an undirected graph. A maximal clique is a clique that cannot
be extended by including any other node. A graph is chordal if
every cycle of size equal or greater to 4 has a chord (an edge
joining two non-consecutive nodes in the cycle). A chordal
graph can easily be decomposed into its maximal cliques (us-
ing the existence of a perfect elimination ordering; see [5] and
references therein). Graphs of power grids are in general not
chordal. For this reason it is necessary to add (virtual) edges in
order to obtain a chordal extension of the network graph. The
common way to obtain a chordal extension of a non-chordal
graph is by performing a symbolic Cholesky decomposition
on the sparsity pattern. This in general implies the application
of heuristic ordering to minimize fill-in, such as approximate
minimum degree ordering (see [1] and references therein). In
the scope of this paper the software package CHOMPACK2

has been used to generate chordal extensions and perform
maximal clique decompositions of network graphs.

Inspired by [1], we further introduce two matrix operators:
Let Λc(W ) := Wc;c denote the principal submatrix of W ∈
Cn×n defined by the index set c (for instance a clique). Hence,
Λc(W ) ∈ C|c|×|c|. In addition, let Λc(W ) return the matrix of
size n × n with all zero components except for the principal
submatrix associated with the index set c.

A. Matrix Completion and Sparse Semidefinite Programming

Let G be a chordal graph with associated partial matrix M
(i.e. not all entries of M are known). Further let CG denote
the set maximal cliques of G.

The central theorem first stated in [6] is given as follows: M
has a positive semidefinite completion if and only if Λc(M) �
0 ∀c ∈ C. In other words, if the principal submatrices Λc(M)
associated with the cliques c ∈ C are positive semidefinite,
then the remaining unknown components can be chosen such
that M is positive semidefinite.

Consider the set V. We define an aggregate sparsity pattern
M given by {M}ij = 1 if {Yn}ij 6= 0. Due to the definition of
the trace-operator the sparsity pattern M applies also to W and
we can think of W as a partial matrix. The application of the
above results is immediate. Let CM denote the set of maximal
cliques of the chordal extension of M. Then we replace W �
0 with

Λc(W ) � 0 ∀c ∈ CM (4)

2http://chompack.readthedocs.org



After replacing Equation (4) for (3) in V, the resulting set
cannot be directly incorporated in a standard form semidefinite
program (SDP) since various components of W are shared
between multiple submatrices Λc(W ). In [5] a conversion
method is therefore introduced that is later applied in [1], [7],
[10] to recover a standard form SDP.

The fact that most off-the-shelf solvers cannot directly
exploit sparsity of positive semidefinite (psd) cones makes
it necessary to apply this conversion. The downside is that
it introduces additional constraints and thus increases the
problem size. For this standard form conversion the principal
submatrices are defined as separate psd-matrix variables, that
is Wc := Λc(W ). However, linking constraints between
components of Wc have to be introduced to account for the
shared elements of the submatrices Λc(W ). These can be
expressed as

Λc1∩c2(Λc1(Wc1)− Λc2(Wc2)) = 0 ∀c1, c2 ∈ CM
In general it is not necessary to establish linking constraints

between every possible tuple of cliques since not all of them
share elements with each other. The cliques that share elements
are easily identified in the clique tree that results from the
maximum clique decomposition of a chordal graph.

We define the feasible set M as result of the conversion
technique applied to the set V, that is

M:={S,U |Uj =
∑
c∈CM

tr (Mj;cWc) ∀j ∈ N (5a)

Sj =
∑
c∈CM

tr (Yj;cWc) ∀j ∈ N , (5b)

Λc1∩c2(Λc1(Wc1)− Λc2(Wc2)) = 0

∀c1, c2 ∈ CM, (5c)
Wc � 0 ∀c ∈ CM}. (5d)

where the the matrices Yj;c have to satisfy

Yk =
∑
c∈CM

Λc(Yj;c) ∀j ∈ N .

The analogous holds for Mj;c. We further define M̃ as the set
obtained by applying the conversion method to Ṽ.

B. Reduction of Linking Constraints

It has been argued in [1] that the use of the real formulation
M̃ should be discouraged since it introduces more than twice
as many equality linking constraints between cliques than the
complex formulation. However, most available solvers cannot
deal with complex variables.

Therefore, we propose a pseudo-complex formulation that
can be expressed in purely real variables. It exploits the
particular structure of the problem and does not require more
equality linking constraints than the complex model.

For this, consider

Lemma 1. Define the surjective mapping Φ : R2N×2N →
CN×N with

Φ(W̃ ) := W̃ 11 + W̃ 22 + i(W̃ 12 − W̃ 21) (6)

where W̃ 11, W̃ 12, W̃ 21, W̃ 22 ∈ CN×N are such that

W̃ =

[
W̃ 11 W̃ 12

W̃ 21 W̃ 22

]
.

Then it holds that

W̃ � 0 ⇒ Φ(W̃ ) � 0.

Proof: see Appendix A
By applying Lemma 1 we can avoid forming an explicit

real-valued problem. For this consider the general decomposed
SDP problem (5). Instead of requiring that Wc � 0 ∀c ∈
CM, which is a complex psd-constraint, we introduce new real
matrix variables W̃c ∀c ∈ CM and use Lemma 1 to formulate
the new pseudo-complex problem given by

M∗:={S,U |Uj =
∑
c∈CM

tr (Mj;cWc) ∀j ∈ N (7a)

Sj =
∑
c∈CM

tr (Yj;cWc) ∀j ∈ N , (7b)

Λc1∩c2(Λc1(Wc1)− Λc2(Wc2)) = 0

∀c1, c2 ∈ CM, (7c)
Wc = W̃ 11

c + W̃ 22
c + i(W̃ 12

c − W̃ 21
c )

∀c ∈ CM (7d)
W̃c � 0 ∀c ∈ CM}. (7e)

where W̃c are real-valued psd matrices of twice the size/order
of Wc. This makes it possible to use the above problem in a
solver that can only handle real psd-cones.

The potential speed up from using the formulation of M∗
instead of M̃ results from the fact that Equation (7c) introduces
less than half as many equality constraints as in M̃ where the
corresponding constraints take the form

Λc̃1∩c̃2

(
Λc̃1(W̃c̃1)− Λc̃2(W̃c̃2)

)
= 0 ∀c̃1, c̃2 ∈ C̃M

where C̃M denotes the set of extended cliques that result from
applying a chordal extension and decomposition to a real-
valued model.

C. Dynamic Choice of Constraint Type
Applying a chordal extension and maximum clique decom-

position to a radial grid topology results in cliques of size 2
exclusively. Consequently all of the matrices Wc are of size
2× 2. In this case, the psd-constraints can be reformulated as
second-order cone constraints, that is[
Wmm Wmn

Wnm Wnn

]
� 0 ⇔

∥∥∥∥∥∥
Wmm −Wnn

2 ReWnm

2 ImWnm

∥∥∥∥∥∥ ≤Wmm +Wnn

A reformulation of psd-constraints makes sense since soc-
constraints are in general computationally advantageous.

This conversion can also be partly applied to meshed
grids with significant radial subgraphs. This results in an
optimization problem that contains both soc- as well as psd-
constraints where the type of constraint is dynamically chosen
based on the size of the corresponding clique (i.e. the size of
the associated submatrix).



IV. MODULAR OPF DESIGN

To obtain an extensible implementation we isolate and
encapsulate non-essential components of the OPF problem in
the sense that we group optimization variables, constraints and
individual terms into OPF elements.

In this context we consider multi-period problems and
introduce time indices t ∈ T := {0, . . . , T} to relevant
quantities.

A OPF element e is given as a set of variables Ve, con-
straints Fe, complex power injection terms St

e and an objective
function term Fe. Together, all OPF elements form a set E of
size E. The resulting optimization problem takes the form

minimize
∑
e∈E

fe({St}t∈T , {U t}t∈T ,Ve)

subject to (St, U t) ∈ P ∀ t ∈ T
St
j =

∑
e∈E

St
e;j ∀ t ∈ T⋃

e∈E
Fe

where P ∈ {V, Ṽ,M, M̃, . . .} is any of the previously de-
scribed formulations of the relaxed power flow equations.

This encapsulation offers flexibility by allowing to choose
the network model and individual optional elements indepen-
dently.

A. Selected OPF Elements

We describe four OPF elements that we use for the bench-
mark scenarios and the case study. This list is not exhaustive.

1) Fixed Loads (FL): Fixed loads are given by power
injection terms given as St

FL,j := −stL;j ∀j ∈ NFL, t ∈ T
where stL;j is the complex-valued load at node j at time t.

No cost function term (fFL := 0) is defined for fixed loads.
Neither are any additional variables or constraints (VFL := {},
FFL := {}).

2) Voltage Band (VB): To enforce a permissible voltage
interval [v, v] at a subset NVB ⊆ N of nodes we define a set
of constraints

FVB := {v2 ≤ U t
j ≤ v2 ∀j ∈ NVB, t ∈ T }.

together with fVB := 0, VVB := {} and St
VB,j := 0 ∀j ∈

NVB, t ∈ T .
3) ‘Box’-Generation with Linear Cost (BG): Given a subset

of nodes NBG ⊆ N with generation units we can define

VBG:={P t
BG;j , Q

t
BG;j ∈ R ∀j ∈ NBG, t ∈ T }

FBG:={p
j
≤ P t

j;BG ≤ pj ,

q
j
≤ Qt

j;BG ≤ qj ∀j ∈ NBG, t ∈ T }

St
BG;j := P t

BG;j + iQt
BG;j ∀j ∈ NBG, t ∈ T

fBG:=
∑
t∈T

∑
j∈NBG

αjP
t
BG;j + βj

where p
j
, pj , qj , qj are generation limits for active and reactive

power and αj , βj ∈ R are cost coefficients of the generator at
node j.

4) Optimal PV-Inverter Dispatch (OID): Inverters of
rooftop PV installations connected to distribution grids can
be modeled in a OPF problem [4] in order to analyze the
need for reactive power control and active power curtailment.
For this we model PV inverters in terms of their rated power
output, minimum power factor constraints and a maximum
power output depending on the current solar irradiation. The
OPF element is defined as

VOID:={P t
OID;j , Q

t
OID;j ∈ R ∀j ∈ NOID, t ∈ T }

FOID:={|Qt
OID;j | ≤ γjP t

OID;j ∀j ∈ NOID, t ∈ T ,∥∥∥∥P t
OID;j

qtOID;j

∥∥∥∥
2

≤ sj ∀j ∈ NOID, t ∈ T ,

0 ≤ P t
OID;j ≤ ptj ∀j ∈ NOID, t ∈ T }

St
OID;j := P t

OID;j + iQt
OID;j ∀j ∈ NOID, t ∈ T

where γj defines the minimum power factor at node j and
sj is the rated power of the inverter. Further, ptj is maximum
available active power depending on the solar irradiation at
time t. Since PV installations do not incur fuel costs we set
fOID := 0.

5) Optimal Storage Placement (OSP): We consider a sim-
ple storage placement scheme that optimally allocates a fixed
amount of storage capacity C tot to a subset NOSP of nodes and
optimizes its dispatch [3]. Storage units can only absorb/inject
active power. For this we define a separate OPF element as

VOSP:={P t
OSP;j , C

t
OSP;j ∈ R ∀j ∈ NOSP, t ∈ T ,

COSP;j ∈ R ∀j ∈ NOSP}
FOSP:={Ct

OSP;j ≤ COSP;j ∀j ∈ NOSP, t ∈ T ,
|P t

OSP;j | ≤ ωCOSP;j ∀j ∈ NOSP, t ∈ T ,

P t
OSP:j = C

(t+1 modT )
OSP;j − Ct

OSP;j

∀j ∈ NOSP, t ∈ T ,∑
j∈NOSP

COSP;j = C tot}

St
OSP;j := P t

OSP;j ∀j ∈ NOSP, t ∈ T

and fOSP := 0. Here P t
OSP;j denotes the active power injection

of the storage unit, Ct
OSP;j is the storage state and C

t

OSP;j its
capacity. The coefficient ωOSP limits the injection/absorption
to a value proportional to the allocated storage capacity at each
node.

V. BENCHMARKS

Our implementation of the above concepts is written in
Python 2.73 with MOSEK 7.14 as the optimization backend.
The benchmark scenarios in this section are based on the
benchmark cases included in the MATPOWER [11] software
package and two real-world Swiss distribution grids (one radial
grid with 109 buses and one meshed grid with 99 buses). The
experiments were realized on a laptop with 8 GB RAM and
a Intel Core i7 dual-core 2.9 GHz CPU.

3www.python.org
4www.mosek.com



TABLE I
PROBLEM DIMENSIONS OF TEST CASES

Case N C C2 #Lnk M̃ #Lnk M∗
IEEE-118 118 109 9 1,662 682
IEEE-300 300 276 88 4,826 1,956
2383wp 2,383 2,310 650 53,165 22,749
3012sp 3,012 2,920 711 68,266 29,270
3120sp 3,120 3,247 865 76,653 21,834
CH-109rad 109 108 108 1,491 497
CH-99mesh 99 96 70 901 321

TABLE II
COMPUTATION TIMES [S]

Case Ṽ M̃ M∗ M∗
dyn

IEEE-118 2.62 0.35 0.26 0.24
IEEE-300 49.87 1.96 1.21 1.09
2383wp - 303.59 73.98 61.29
3012sp - 447.42 84.71 87.36
3375sp - 433.95 88.16 88.01
CH-109rad 3.47 0.38 0.33 0.03
CH-99mesh 3.32 0.41 0.27 0.16

Where necessary multiple generation units at the same
node have been aggregated and as in [1] and [8] a small
resistance value of 10−5 has been added to line impedances
with otherwise zero resistance. The experiments compare the
performance of the different relaxations and formulations in
a single-period setting. Fixed load, voltage band and box-
generation elements are the only optional problem compo-
nents. Line limits are not enforced.

We compare the four real formulations, i.e. the full relax-
ation (i.e. Ṽ), the directly decomposed formulation (M̃), the
pseudo-complex formulation (M∗) and the pseudo-complex
formulation with dynamic constraint types (M∗dyn).

The full relaxation without decomposition could only be
solved for grids with up to 300 buses.

Table I summarizes the problem dimensions. The column
C denotes the number cliques and C2 specifies the number
of cliques of size 2. Furthermore, the number of linking
constraints represented in the last two columns “#Lnk M̃” and
“#Lnk M∗dyn” illustrate that the pseudo-complex formulation
requires significantly less linking constraints than the full
real conversion. Figure 1 and Table II show that this affects
computation time particularly for large meshed problems.

From Table II we further realize that the dynamic choice of
constraint type is most effective for the real-world distribution
grids “CH-109rad” and “CH-99mes”, the latter being almost
radial since 70 of its 96 cliques are of size 2.

VI. CASE STUDY EXAMPLE

In order to illustrate the extensibility of our implementation
we consider the optimal allocation of storage in a distribution
grid based a real-world meshed network topology with 99
buses.

We investigate how optimal storage placements change
when large amounts of distributed PV generation (using OID)
are added the grid.
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Fig. 1. Computation times for MATPOWER test cases

For this we consider typical load and solar irradiation
profiles of a single day with 96 steps (see Figure 2). Realistic
simulations would require an optimization over multiple sets
of profiles in order to account for meteorological and seasonal
variations.

We define a base problem which uses the M∗dyn formulation
and contains a fixed load element and a voltage band element.
Furthermore, a single generation element at the slack node (i.e.
the substation) incurs a linear cost on active power generation.
Its reactive power generation is unconstrained, active power
generation is non-negative. This avoids backfeed of excess PV
generation with the goal of maximizing self-sufficiency.

We extend the base problem by adding additional compo-
nents: A first case applies OSP in the absence of PV generation
and a second case considers OSP in the context of high PV
penetration. A third scenario considers OID without placing
any storage.

Loads are sized according to real consumption data and PV
installations are randomly placed in the grid. Their installation
size is sampled from a set of typical PV unit dimensions
attached to the low-voltage distribution grid.

Table III summarizes the results. In all three cases a voltage
vector can be reconstructed from the relaxed optimization
problem since the ratio of the largest eigenvalues is close to
zero.. As expected, the combined use of PV generation and
distributed storage results in the lowest objective value (i.e. the
injected active power at the substation) and hence the highest
degree of self-sufficiency.

Figure 3 illustrates the allocation of a fixed amount of
storage capacity. The storage placement is sparse in the pres-
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ence of optimally dispatched PV infeed. More elaborate OSP-
models could more generally promote sparsity. The allocation
itself varies as expected with the presence of PV infeed with
PV locations mostly coinciding with storage locations.
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Fig. 3. OPF scenarios in meshed 109-bus distribution grid

TABLE III
OPTIMAL STORAGE PLACEMENT & INVERTER DISPATCH SCENARIOS

Case Obj Val Eig Ratio

OSP, no PV 16,417.7 0.000
PV, no OSP 8,610.8 0.000
OSP & PV 6,228.1 0.001

VII. CONCLUSION

We have developed a computational tool for solving convex
relaxations of AC OPF problems. We use chordal conversion
methods to exploit problem sparsity. The implementation uses
a concise, real-valued problem formulation that avoids intro-
ducing redundant constraints. Benchmark experiments show
that this feature is particularly effective for the computation
of large-scale networks with several thousand buses. Further-
more, the dynamic replacement of 2-by-2 semidefiniteness
constraints by second-order cone constraints enables speed-ups
by a factor of 10 for radial grids without affecting the tightness
of the relaxation or resorting to a different type of problem
formulation. Lastly, our software framework uses a modular
design that makes it easy to switch between different power
flow relaxations and add optional components to the OPF
problem in order to compare and evaluate different scenarios.

APPENDIX

A. Proof of Lemma 1

We prove Hermitian symmetry and positive semidefinitness
separately. Both W̃ 11 and W̃ 22 are symmetric by definition.
Furthermore, the imaginary part W̃ 12−W̃ 21 is antisymmetric
since W̃ 12 = (W̃ 21)T . Hence, W is Hermitian. Positive
semidefiniteness of a complex matrix is defined as zHWz ≥
0 ∀z ∈ CN . In particular, note that zHWz has to be real-
valued. We write

zHWz = zH
(
W̃ 11 + W̃ 22 + i(W̃ 12 − W̃ 21)

)
z

= (<z)T
(
W̃ 11 + W̃ 22

)
<z

+(=z)T
(
W̃ 11 + W̃ 22

)
=z

+ i(<z)T
(
W̃ 12 − W̃ 21

)
<z

+i(=z)T
(
W̃ 12 − W̃ 21

)
=z

= (<z)T
(
W̃ 11 + W̃ 22

)
<z

+(=z)T
(
W̃ 11 + W̃ 22

)
=z

where the last line follows from the fact that for any antisym-
metric real matrix S we have xTSx = 0 for all x. Since both
W̃ 11 and W̃ 22 are psd by Sylvester’s criterion we conclude
that W � 0.
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