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Abstract— We propose a distributionally robust incremen-
tal sampling-based method for kinodynamic motion planning
under uncertainty, which we call distributionally robust RRT
(DR-RRT). In contrast to many approaches that assume Gaus-
sian distributions for uncertain parameters, here we consider
moment-based ambiguity sets of distributions with given mean
and covariance. Chance constraints for obstacle avoidance and
internal state bounds are then enforced under the worst-
case distribution in the ambiguity set, which gives a coherent
assessment of constraint violation risks. The method generates
risk-bounded trajectories and feedback control laws for robots
operating in dynamic, cluttered, and uncertain environments,
explicitly incorporating localization error, stochastic process
disturbances, unpredictable obstacle motion, and uncertain
obstacle location. We show that the algorithm is probabilisti-
cally complete under mild assumptions. Numerical experiments
illustrate the effectiveness of the algorithm.

I. INTRODUCTION

With robots operating in increasingly dynamic and un-
certain environments, more sophisticated motion planning
and control algorithms are needed for ensuring safe and
efficient autonomous behavior. Many important advances in
motion planning have been made in deterministic settings
[1]–[7], and recently several extensions have been developed
to explicitly incorporate various types of uncertainty into
motion planning and control algorithms [8]–[23].

Research on motion planning under uncertainty can be
categorized according to how the uncertainty is parame-
terized and the approach for searching the state space for
feasible trajectories and feedback controllers. Two broad
approaches to uncertainty parameterization use probabilis-
tic and robust quantifications. In probabilistic approaches,
uncertain quantities are modeled as random variables that
have given probability distributions, and typically chance
constraints are enforced so that nominal constraints hold with
prescribed probability [9]–[20]. In robust approaches, only
the support of the distribution is assumed to be known, and
constraints are enforced for the worst-case disturbances in the
support set [21], [22]. Two broad approaches to searching
for feasible trajectories are sampling-based [9]–[18] and
optimization-based methods [19], [20], [24], and both types
have been developed to explicitly incorporate uncertainty.
Other approaches handle uncertainty implicitly by designing
feedback controllers based on deterministic models [23].

Although Gaussian assumptions and chance constraints are
commonly made to ensure computational tractability, such
assumptions are rarely justifiable based on actual data from
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nonlinear robotic systems. This can cause significant mis-
calculations of risk, and the underlying risk metrics do not
necessarily possess desirable properties such as coherence
[25]. However, recent results from the emerging area of
distributionally robust optimization have shown that a much
more sophisticated treatment of stochastic uncertainty is
possible without sacrificing computational tractability [26]–
[32]. These approaches consider ambiguity sets of distri-
butions based on data or estimated quantities, rather than
making strong assumptions about the form of the distribution.
However, to the author’s best knowledge, this framework has
not been utilized within robotic motion planning and control
algorithms. More sophisticated and nuanced approaches for
quantifying risks can enable robots to operate successfully
in increasingly complex, real-world environments.

We propose a distributionally robust incremental
sampling-based method for kinodynamic motion planning
under uncertainty, which we call distributionally robust RRT
(DR-RRT). In contrast to many approaches that assume
Gaussian distributions for uncertain parameters, here we
consider moment-based ambiguity sets of distributions with
given mean and covariance. Chance constraints for obstacle
avoidance and internal state bounds are then enforced under
the worst-case distribution in the ambiguity set, which gives
a coherent assessment of constraint violation risks. The
method generates risk-bounded trajectories and feedback
control laws for robots operating in dynamic, cluttered, and
uncertain environments, explicitly incorporating localization
error, stochastic process disturbances, unpredictable obstacle
motion, and uncertain obstacle location. This approach
may be particularly effective for nonlinear systems,
where moments are only approximations of non-Gaussian
distributions. We show that the algorithm is probabilistically
complete under mild assumptions. Numerical experiments
illustrate the effectiveness of the algorithm.

The rest of the paper is organized as follows. Section II
formulates the model and distributionally robust motion plan-
ning problem. Section III presents our incremental sampling-
based algorithm for generating distributionally robust trajec-
tories and feedback control policies and provides analysis of
probabilistic completeness. Section IV presents illustrative
numerical experiments. Section V concludes and summarizes
ongoing and future research.

II. PROBLEM FORMULATION

We begin by formulating a distributionally robust motion
planning under uncertainty problem. The formulation fol-
lows an analogous approach for chance-constrained motions
planning with Gaussian distributions [11].



A. Model

The robot dynamics are modeled by the stochastic
discrete-time linear time invariant system

xt+1 = Axt +But + wt, (1)

where xt ∈ Rn is the system state at time t, ut ∈ Rm

is the input at time t, A is the dynamics matrix, B is
the input matrix, and wt ∈ Rn is a zero-mean random
vector independent and identically distributed across time.
The distribution Pw of wt is unknown (and not necessarily
Gaussian) and will be assumed to belong to an ambiguity
set Pw of distributions, which will be discussed in detail
shortly. The initial condition x0 may be known exactly or
subject to a similar uncertainty model, with the distribution
of x0 belonging to an ambiguity set, Px0 ∈ Px.

The system is nominally subject to constraints on the state
and input of the form

xt ∈ Xt = X\X1t\ · · · \Xnot, ut ∈ U , (2)

where X ,X1t, · · · ,Xnot ⊂ Rn, U ⊂ Rm are assumed to be
convex polytopes, and the operator \ denotes set subtraction.
The sets X and U represent state and input constraints
on the robot, and Xit represent a set of no obstacles in
the environment to be avoided. We assume the shape and
orientation of obstacles to be known, but that their placement
and motion is subject to uncertainty:

Xit = X 0
i + ĉit + cit, i = 1, ..., no, (3)

where + here denotes set translation. In particular, X 0
i ⊂ Rn

represents the known shape of obstacle i, ĉit ∈ Rn represents
a known nominal translation, and cit ∈ Rn is a random
vector that represents an unknown location or unpredictable
obstacle motion, with unknown distribution P cit ∈ Pcit.

Since constraint and obstacle sets are assumed polytopic,
they can be represented by finite sets of linear inequalities

U = {ut | Auut ≤ bu}
X = {xt | A0xt ≤ b0}, Xit = {xt | Aixt ≤ bit},

(4)

where bu ∈ Rnu , b0 ∈ RnE , bit ∈ Rni , and Au, A0,
and Ai are matrices of appropriate dimension. The non-
convex obstacle avoidance constraints can be expressed as
the disjunction

¬(Aixt ≤ bit), ∀i = 1, ..., no

⇔ ∨ni
j=1 (aTijxt ≥ aTijcijt),

(5)

where ∨ denotes disjunction and cijt = ĉijt + cit is a point
nominally on the jth constraint of the ith obstacle whose
covariance is the same as that of cit.

The model incorporates three distinct types of uncertainty:
internal predictive and localization uncertainty from the
process noise wt and the initial state x0, and external envi-
ronmental uncertainty from the unknown obstacle locations.

B. A Distributionally Robust Motion Planning Problem
The goal of the motion planning problem is to find a

feedback control policy π = [π0, ..., πT−1] with ut = πt(xt)
that yields a feasible and minimum cost trajectory and from
the initial state x0 to a goal set Xgoal ⊂ Rn. Accordingly,
we seek to (approximately) solve the distributionally robust
constrained stochastic optimal control problem

minimize
π∈Π

T−1∑
t=0

`t(Ext,Xgoal, ut) + `T (ExT ,Xgoal)

subject to xt+1 = Axt +But + wt

x0 ∼ Px0
∈ Px, wt ∼ Pw ∈ Pw

ut ∈ U
inf

Pxt∈P
Pxt

(xt ∈ Xt) ≥ 1− α

Xt = X\X1t\ · · · \Xnot

Xit = X 0
i + ĉit + cit, i = 1, ..., no

cit ∼ P cit ∈ Pcit, t = 0, ..., T − 1,
(6)

where P is an ambiguity set of marginal state distributions
and α ∈ (0, 0.5] is a user-prescribed risk parameter. The
stage cost functions `t(·) quantify the robot’s distance to
the goal set and actuator effort, and are assumed to be
expressed in terms of the state mean Ext, so that all
stochasticity appears in the constraints. A key distinction of
the present work is that the state constraints are expressed as
distributionally robust chance constraints. Standard chance
constraints require the nominal state constraints xt ∈ Xt
to be satisfied with probability 1 − α. In contrast, here
we enforce distributionally robust chance constraints, which
require the nominal state constraints xt ∈ Xt to be satisfied
with the same probability, but under the worst case probabil-
ity distribution in the ambiguity set1. In the next section, we
present a probabilistically complete sampling-based motion
planning algorithm for generating coherent distributionally
robust risk constrained trajectories and feedback control
laws in the presence of both internal and environmental
uncertainties.

C. Ambiguity Sets and Distributionally Robust Optimization
Most motion planning algorithm do not explicitly in-

corporate uncertainty, and even the ones that do almost
always assume a functional form (often Gaussian) for prob-
ability distributions of uncertain quantities. Assumptions of
Gaussianity are rarely justifiable based on actual data from
nonlinear robotic systems, but are made in the name of
computational tractability. However, recent results from the
emerging area of distributionally robust optimization have
shown that a much more sophisticated treatment of stochastic
uncertainty is possible without sacrificing computational
tractability [26]–[32].

Distributionally robust optimization approaches can be
categorized based on the form of the ambiguity set. There

1It is straightforward to extend our approach to handle pathwise state
constraints of the form infPxt∈P Pxt (∧t(xt ∈ Xt)) ≥ 1 − αp, but we
restrict attention to stage wise constraints to simplify the exposition.



are several different parameterizations, including those based
on moments, support, directional derivatives [26], [27], f -
divergences [28], [31], and Wasserstein balls [30]. For exam-
ple, a moment-based ambiguity set includes all distributions
with a fixed moments up to some order (e.g., fixed first
and second moments), and Wasserstein-based ambiguity sets
include a ball of distributions within a given Wasserstein
distance from some base distribution (such as an empirical
distribution on a training dataset). We will focus here on
moment-based ambiguity sets, though other parameteriza-
tions are interesting and relevant for robotic motion planning
and will be pursued in future work.

Suppose the feedback control policy is a fixed affine
function ut = Ktxt + kt and that the second moments
of the initial state and disturbance are denoted by Σx0

=
E(x0 − x̂0)(x0 − x̂0)T and W = Ewtw

T
t and known (or

estimated based on historical data). Then the state mean
x̂t = Ext and covariance matrix Σxt

= E(xt−x̂t)(xt−x̂t)T
evolve according to

x̂t+1 = (A+BKt)x̂t +Bkt

Σxt+1
= (A+BKt)Σxt

(A+BKt)
T +W.

(7)

Since the primitive distributions Px0
and Pw are not assumed

to be Gaussian, then neither are the marginal state distri-
butions Pxt

. In contrast to previous work with Gaussianity
assumptions where the moment dynamics (7) completely
characterize the marginals, e.g., [11], here we consider the
moment-based ambiguity set

P = {Pxt
| Ext = x̂t, E(xt − x̂t)(xt − x̂t)T = Σxt

}. (8)

Furthermore, suppose that Ecijt = ĉijt and E(cijt −
ĉijt)(cijt − ĉijt)

T = Σcjt, which defines a corresponding
moment-based ambiguity set for obstacle motion.

Under the moment-based ambiguity set (8), a constraint
on the worst-case probability of violating the jth constraint
of obstacle i

sup
Pxt∈P

Pxt(a
T
ijxt ≥ aTijcijt) ≤ αi (9)

is equivalent (see, e.g., [26]) to the linear constraint on the
state mean x̂t

aTij x̂t ≥ aTij ĉijt +

√
1− αi
αi
‖(Σt + Σcjt)aij‖2. (10)

This represents a deterministic tightening of the nominal
constraint constraint to enforce the corresponding distribu-
tionally robust constraint. This tightening has the general
same form as the one involving Gaussian distributions, but
the scaling constant

√
1−αij

αij
is larger than the Gaussian

one, leading to a stronger tightening that reflects the weaker
assumptions about the uncertainty distributions.

Since the robot collides with the obstacle if any one of
these constraints is violated, then supPxt∈P

Pxt
(xt ∈ Xit) ≤

αi is equivalent to

∨nj

j=1

(
aTij x̂t ≥ aTij ĉijt +

√
1− αi
αi
‖(Σt + Σcjt)aij‖2

)
.

(11)

Similarly, a constraint on the worst-case probabil-
ity of violating jth state constraint defining X , viz.
supPxt∈P

Pxt(a
T
0jxt ≥ aT0jc0j) ≤ α0j is equivalent to

aT0j x̂t ≤ aT0jc0j −

√
1− α0j

α0j
‖Σta0j‖2, (12)

where c0j is a point on the jth state constraint.
Putting all of this together gives the following result.
Theorem 1: Consider a trajectory (x̂0,Σx0), ..., (x̂T ,ΣxT

)
of the first and second moments of the state distribution
given by (7). Suppose the state means satisfy the constraints
(11) and (12) for each time step, each obstacle, and each
environmental constraint, and that the constraint satisfaction
parameters are chosen such that

∑nE

i=1 α0i +
∑no

i=1 αj = α.
Then the trajectory satisfies the distributionally robust state
constraints

inf
Pxt∈P

Pxt
(xt ∈ Xt) ≥ 1− α (13)

Proof: The distributionally robust state constraint (13)
can equivalently be written in terms of a probabilistic upper
bound on constraint violation: supPxt∈P

Pxt
(xt /∈ Xt) ≤ α.

Since the constraint sets are polytopic, Boole’s inequality
and (11) and (12) can be used to obtain the bound

sup
Pxt∈P

Pxt
(xt /∈ Xt)

≤ sup
Pxt∈P

Pxt
(xt /∈ X ) +

no∑
i=1

sup
Pxt∈P

Pxt
(xt ∈ Xit)

≤
nE∑
j=1

sup
Pxt∈P

Pxt(a
T
0jxt ≥ aT0jc0j) +

no∑
i=1

sup
Pxt∈P

Pxt(xt ∈ Xit)

≤
nE∑
i=1

α0i +

no∑
i=1

αj = α.

In the next section, we will present a sampling-based
motion planning algorithm that incrementally generates state
trajectories and feedback control laws that satisfy the dis-
tributionally robust constraints. It is possible to reduce con-
servatism associated with applying Boole’s inequality by ex-
ploiting the trajectory-wise incremental constraint checking
of sampling-based motion planning algorithms to dynami-
cally allocate risk amongst the various constraints as in [11];
this will be pursued in future work.

III. DISTRIBUTIONALLY ROBUST RRT (DR-RRT)

This section describes Distributionally Robust RRT, an
incremental sampling-based method for kinodynamic motion
planning under uncertainty. The algorithm grow trees of state
distributions, rather than trees of states, and incorporates
distributionally robust probabilistic constraints to certify fea-
sibility of nominal state mean trajectories.

A. Algorithm

Tree Expansion. Pseudocode for distributionally robust
RRT tree expansion is shown in Algorithm 1. In the first
step, a random sample is taken from the feasible state set.



Algorithm 1 DR-RRT: Tree Expansion
Inputs: current tree T and timestep t
xs = sample(Xt)
(x̂nearest,Σnearest) = nearestMnodes(xs, T )
for i ∈ {1, ...,M} do

(x̂traj ,Σtraj) = steer(x̂nearest,Σnearest, xs)
while DRCollisionCheck(x̂traj ,Σtraj) do
T .AddNodes(x̂traj ,Σtraj)
T .AddEdges(xnearest, x̂traj)

Then a set of M ≥ 1 tree nodes nearest to the sample
are selected according to some appropriate distance metric
and returned in ascending order. It is typically advantageous
to use a dynamic control-based distance metric, such as an
optimal cost-to-go function, instead of a purely geometric
distance, in order to efficiently explore the reachable set of
the dynamics and increase likelihood of generating collision-
free trajectories [6]. Attempts are then made to steer the
robot from the nearest tree nodes to the random sample.
For this step, we use an unconstrained optimal feedback
control policy obtained via a finite horizon linear quadratic
dynamic programming algorithm. This policy is then used
to propagate the state mean and covariance matrix, and the
entire trajectory is returned by the steer function. However,
many different control design methods may be used; in future
work we will explore more sophisticated steering methods
that also explicitly incorporate some of the nearby obstacle
constraints. Each state distribution in the trajectory is then
checked for distributionally robust probabilistic constraint
satisfaction, and feasible portions of the trajectory are added
to the tree. This expansion is then repeated until a node
from the goal set is added to the tree. At that point, a
distributionally robust feasible trajectory is obtained from the
tree root to the goal set.

Dynamic execution. For dynamic and stochastic environ-
ments, the tree expansion can be updated dynamically as the
robot moves and new information about the environment is
obtained. The minimum cost feasible path currently available
in the tree can be executed, and then new tree branches can
be grown from the new state estimate and infeasible branches
can be pruned.

B. Analysis

Assumption 1: We assume the following:

(i) There exists a sequence of feasible control inputs
u0, ..., uT−1 (possibly generated by a control policy
π = [π0, ..., πT−1] with ut = πt(xt)) such that all
constraints in (6) are satisfied by the state distribution
trajectory (x̂0,Σx0

), ..., (x̂T ,ΣxT
) obtained via (7).

(ii) Each node added during tree expansion is separated
from its parent node by a distance of at least ε > 0.

(iii) When attempting to connect a random sample from the
feasible set to the tree by the steering function, inputs
are randomly selected from a finite set, which contains
all inputs in the feasible sequence from (i).

In practice, inputs are not chosen randomly as in (iii), and
the exploration will be most effective when advanced control
methods are used to steer the robot toward random samples.
We have the following result, which follows along the lines
of the analogous result for chance constrained RRT in [11].

Theorem 2: Under Assumption 1, the proposed distribu-
tionally robust RRT algorithm (DR-RRT) in Algorithm 1 is
probabilistically complete, i.e., it returns a feasible solution
with probability approaching 1 as the number of samples
tends to infinity.

Proof: By induction. Suppose that the tree contains the
feasible state distribution (xt,Σxt) generated by applying the
feasible control input sequence u0, ..., ut−1 from Assumption
1(i). Since all tree nodes have a non-empty Voronoi region
due to Assumption 1(ii), there is a strictly positive probability
that the node corresponding to (xt,Σxt

) will be selected for
expansion. By Assumption 1(iii) there is a strictly positive
probability that the steering input ut is selected and results
in the feasible state distribution (xt+1,Σxt+1

) being added
to the tree and connected to (xt,Σxt

). Thus, as the number
of samples tends to infinity, the probability of generating the
feasible sequence approaches 1. Basing the tree at the initial
node (x0,Σx0) completes the proof by induction.

C. Variations

Here we list several variations of the basic DR-RRT
algorithm that are being pursued in future research, some
of which are straightforward to implement.

Asymptotic Optimality. It is known that the standard
RRT algorithm is not asymptotically optimal, i.e., the feasible
solution will not in general minimize the cost function as the
number of samples tends to infinity. The recently proposed
RRT* algorithm achieves asymptotic optimality by rewiring
the tree for lower cost paths around a set of nodes near the
sample [7]. A similar approach can be taken here to obtain
a distributionally robust RRT* algorithm (DR-RRT*) that is
both probabilistically complete and asymptotically optimal.

Nonlinear Dynamics. The DR-RRT algorithm can be ap-
plied to systems with nonlinear dynamics by linearizing the
system and propagating first and second order moments. In
this case, the distributionally robust framework is particularly
compelling, since the first and second moments are only
approximations of the true state distribution, even when the
primitive distributions are Gaussian.

Higher Order Moment Propagation. Higher order mo-
ments beyond first and second order can be propagated,
in order to sharpen risk estimates. This can be especially
effective for nonlinear systems. For example, third and fourth
order moments can capture skewness and heaviness of tails
and lead to far less conservative trajectories than those
obtained by only using first and second moments.

Output feedback with recursive filtering. In many
robotic systems, the state must be estimated based on noisy
sensor data. A state estimator can be used to propagate a
joint distribution of the true state and state estimate based
on the dynamic model and sensor data. For example, the
Kalman filter and its many variations can be used, and the



distributionally robust approach may be an effective way to
handle risks associated with state estimation, particularly for
extended Kalman filters for nonlinear systems.

Alternative ambiguity sets. As mentioned previously,
other DR-RRT variations can be obtained using different
parameterizations of the ambiguity set. For example, Wasser-
stein balls centered on empirical data-based distributions
offer a natural way to incorporate knowledge about distribu-
tions that come from observed finite training datasets. Such
an approach may be effective for particle simulations and
particle filters of nonlinear systems. Furthermore, a combi-
nation of moment- and data-based distribution parameteriza-
tions could be used to combine their relative advantages.

IV. NUMERICAL EXPERIMENTS

We now present numerical experiments to illustrate the
proposed distributionally robust RRT algorithm (DR-RRT).

A. Double Integrator in Cluttered Environment

We consider a unit mass robot with discrete-time stochas-
tic double integrator dynamics moving in a bounded and
cluttered two-dimensional environment [0, 1]2. The system
dynamics matrices are

A =

 1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 , B =


dt2

2
0

0 dt2

2
dt 0
0 dt

 , (14)

where dt = 0.1s and the states are the two dimensional
position and velocity with two dimensional force inputs. The
initial position is [0.5, 0], the initial velocity is zero, and the
initial state and disturbance covariance matrices are

Σ0 = 10−3

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , W = 10−3

 0 0 0 0
0 0 0 0
0 0 2 1
0 0 1 2

 .

(15)
The environment contains randomly located and sized rect-

angular obstacles, which are static and treated by the robot as
deterministic, so that all uncertainty in this example comes
from the unknown initial state and process disturbance. The
robot is treated as a point mass (without loss of generality,
since a known geometry can be easily handled by a fixed
tightening of the state constraints), and the environmental
boundaries are not treated probabilistically.

To steer the robot from a tree node state xt to a random
feasible sample xs, we solve a discrete time linear quadratic
optimal control problem to compute the affine state feedback
policy that minimizes the cost function

E

T−1∑
t=0

(xt−xs)TQ(xt−xs)+uTt Rut+(xT−xs)TQ(xT−xs)

(16)

with T = 10, Q =

[
40I 0
0 0.1I

]
, and R = 0.2I . The

distributionally robust state constraints are enforced with
probabilistic satisfaction parameter α = 0.1. The quadratic
optimal cost-to-go function is also used as the distance metric
to select tree nodes closest to the sample.
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Fig. 1. Illustration of Distributionally Robust RRT (DR-RRT) for the
stochastic double integrator robot. The thick lines represent trajectories
distributionally robust trajectories of the state mean x̂t, and the ellipses
show one standard deviation uncertainty regions of the state position derived
from the position block of the covariance matrix Σt at sampled positions.
The DR-RRT algorithm generates more conservative trajectories around the
obstacles, explicitly incorporating the uncertainty in the state due to the
initial localization and system dynamics uncertainties.
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Fig. 2. RRT for the stochastic double integrator robot without the distri-
butionally robust constraint tighetening. Since uncertainty is not explicitly
incorporated into collision checking, trajectories with high risk of collision
are generated.

B. Results and Discussion

Figures 1 and 2 show RRTs with and without the distri-
butionally robust constraint tightening, respectively. It can
be easily seen that the DR-RRT generates more conservative
trajectories around the obstacles, explicitly incorporating the
uncertainty in the state due to the initial localization and
system dynamics uncertainties. Due to the use of closed-
loop feedback control policies in the steering function, the
size of the uncertainty ellipses remains bounded as the tree
is constructed. The feasible set remains effectively explored
with DR-RRT, although certain regions may be deemed to
risky to reach, such as the top left corner that can only
be reached through narrow gaps between obstacles and the
environment boundary. The algorithm can also be used for
higher order dynamics and state distributions propagated
from linearized dynamics of nonlinear systems. Computation
times are the same as chance-constrained RRT [11], since the



problems have the same form.
The sizes of the uncertainty ellipses depend strongly

on the steering control method. In the current algorithm,
the probabilistic constraint checking is decoupled from the
steering control design; the robot is steered from the tree
toward random samples, and then the trajectory is check
for probabilistic feasibility. Much more effective exploration
of the space and generation of collision free trajectories
could be obtained by coupling the local trajectory generation
and control design with the constraints. For example, affine
disturbance feedback with stochastic model predictive con-
trol could compute steering feedback policies that explicitly
account for a subset of nearby obstacle constraints [33]. This
will be pursued in future work.

V. CONCLUSIONS

We have proposed a distributionally robust incremental
sampling-based algorithm for kinodynamic motion planning
under uncertainty, DR-RRT. It effectively generates risk-
bounded trajectories for robots operating in uncertain and dy-
namic environments. The distributionally robust framework
for explicitly incorporating stochastic uncertainty handles
risk in a more sophisticated way then state-of-the-art methods
by considering a (moment-based) ambiguity set of distribu-
tions for uncertain parameters, rather than making strong
assumptions about the specific form of the distributions.
The algorithm is shown to be probabilistically complete
under mild assumptions. Numerical experiments illustrate the
effectiveness of the algorithm.

In ongoing and future work, we are exploring several vari-
ations mentioned above, including an asymptotically optimal
version DR-RRT*, distribution propagation for nonlinear
systems and with higher order moments, output feedback
with recursive filtering to incorporate sensing uncertainty,
and alternative ambiguity sets, and more sophisticated steer-
ing laws that couple feedback steering controller design with
probabilistic collisions obstacle avoidance more tightly.
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