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Abstract

One of the most fundamental problems in Markov decision processes is analysis and
control synthesis for safety and reachability specifications. We consider the stochastic
reach-avoid problem, in which the objective is to synthesize a control policy to maximize
the probability of reaching a target set at a given time, while staying in a safe set at all prior
times. We characterize the solution to this problem through an infinite dimensional linear
program. We then develop a tractable approximation to the infinite dimensional linear
program through finite dimensional approximations of the decision space and constraints.
For a large class of Markov decision processes modeled by Gaussian mixtures kernels we
show that through a proper selection of the finite dimensional space, one can further reduce
the computational complexity of the resulting linear program. We validate the proposed
method and analyze its potential with a series of numerical case studies.

1. Introduction

A wide range of controlled physical systems can be modeled using the framework of Markov
decision processes (MDPs) [1, 2]. Depending on the problem at hand, several objectives can
be formulated for an MDP. These include maximization of a reward function or satisfaction
of a specification defined by a formal language. Safety and reachability are two of the most
fundamental specifications for a dynamical system. In a reach-avoid problem for an MDP,
the objective is to maximize the probability of reaching a target set in a given time horizon
while staying in a safe set [3]. The stochastic reach-avoid framework has been applied to
various problems including aircraft conflict detection [4, 5], camera networks [6] and building
evacuation strategies under randomly evolving hazards [7].
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The dynamic programming (DP) principle characterizes the solution to the stochastic
reach-avoid problem with uncountable state and action spaces [8]. However, it is intractable
to find the reach-avoid value function through the DP equations. One can approximate the
DP equations on a finite grid defined over the MDP state and action spaces. Gridding
techniques are theoretically attractive since they can provide explicit error bounds for the
approximation of the value function under general Lipschitz continuity assumptions [9, 10].
In practice, the complexity of gridding based techniques suffers from the infamous Curse
of Dimensionality. Thus, such approaches are only applicable to relatively low dimensional
problems. For general stochastic reach-avoid problems, the sum of state and control space
dimensions that can be addressed with existing tools is at most five. An important problem
is therefore to explore alternative approximation techniques to push this limit further.

Several researchers have developed approximate dynamic programming (ADP) tech-
niques for various classes of stochastic control problems [11, 12]. Most of the existing work
has focused on problems where the state and control spaces are finite but too large to di-
rectly solve DP recursions. Our work is motivated by the technique discussed in [13] where
the authors develop an ADP method for optimal control of an MDP with finite state and
action spaces and an infinite horizon additive stage cost. In this approach, the value func-
tion of the stochastic control problem is characterized as the solution to a linear program
(LP). For optimal control of MDPs with uncountable state and action spaces and an addi-
tive stage cost, an infinite dimensional linear program has been developed to characterize
the value function [14]. The LP approach to stochastic reachability problem for MDPs over
uncountable state and action spaces and an infinite horizon was first proposed in [15], how-
ever, no computational approach to this problem was provided. In general, LP approaches
to ADP are desirable since several commercially available software packages can handle LP
problems with large numbers of decision variables and constraints.

We develop a method to approximate the optimal value function and policy of a stochas-
tic reach-avoid problem over uncountable state and action spaces. Our contributions are
as follows: First, we derive an infinite dimensional LP formulated over the space of Borel
measurable functions and prove its equivalence to the standard DP-based solution approach
for the stochastic reach-avoid problem. Second, we prove that through restricting the in-
finite dimensional decision space to a finite dimensional subspace spanned by a collection
of basis functions, we obtain an upper bound on the stochastic reach-avoid value function.
Third, we use randomized optimization to obtain a tractable finite dimensional LP with
probabilistic feasibility guarantees. Fourth, we focus on numerical validation of the LP
approach to stochastic reach-avoid problems. As such, we propose a class of basis functions
for reach-avoid problems on MDPs with Gaussian mixture kernels. We then develop several
benchmark problems to test the scalability and accuracy of the method.

The rest of the paper is organized as follows. In Section 2 we introduce the stochastic
reach-avoid problem for MDPs and formulate an infinite dimensional LP that character-
izes its solution. In Section 3 we derive an approach to approximate the solution to the
infinite LP through restricting the decision space to a finite dimensional subspace using
basis functions and reducing the infinite constraints to finite constraints through random-
ized sampling. Section 4 proposes Gaussian radial basis functions to analytically compute
operations arising in the LP for MDPs with Gaussian mixture kernels. In Section 5 we
validate the accuracy and scalability of the solution approach with three case studies.
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2. Stochastic reach-avoid problem

We consider a discrete-time controlled stochastic process xt+1 ∼ Q(dx|xt, ut), (xt, ut) ∈
X ×U . Here, Q : B(X )× X ×U → [0, 1] is a transition kernel and B(X ) denotes the Borel
σ-algebra of X . Given a state control pair (xt, ut) ∈ X × U , Q(A|xt, ut) measures the
probability of xt+1 belonging to the set A ∈ B(X ). The transition kernel Q is a Borel-
measurable stochastic kernel, that is, Q(A|·) is a Borel-measurable function on X × U for
each A ∈ B(X ) and Q(·|x, u) is a probability measure on X for each (x, u). For the rest
of the paper all measurability conditions refer to Borel measurability. We allow the state
space X to be any subset of Rn and assume that the control space U ⊆ Rm is compact.

We consider a safe set K ′ ∈ B(X ) and a target set K ⊆ K ′. We define an admissible
T -step control policy to be a sequence of measurable functions µ = {µ0, . . . , µT−1} where
µi : X → U for each i ∈ {0, . . . , T−1}. The reach-avoid problem over a finite time horizon T
is to find an admissible T -step control policy that maximizes the probability of xt reaching
the set K at some time j ≤ T while staying in K ′ for all 0 ≤ t ≤ j. For any initial state
x0, we denote the reach-avoid probability associated with a given µ as

rµx0(K,K ′) = Pµx0{∃j ∈ [0, T ] : xj ∈ K ∧ ∀i ∈ [0, j − 1], xi ∈ K ′ \K}.
In the above, it is assumed that [0,−1] = ∅, which implies that the requirement on i is
automatically satisfied when x0 ∈ K.

2.1 Dynamic programming approach

The reach-avoid probability rµx0(K,K ′) can be equivalently formulated as an expected value
objective function. In contrast to an optimal control problem with additive stage cost,
rµx0(K,K ′) is a history dependent sum-multiplicative cost function [16]:

rµx0(K,K ′) = Eµx0

 T∑
j=0

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

 , (1)

where we use the notation of
∏j
i=k(·) = 1 if k > j. Above, 1A(x) denotes the indicator

function of a set A ∈ B(X ). Our objective is to find supµ r
µ
x0(K,K ′) and the optimal policy

achieving the supremum. The sets K and K ′ can be time-varying or stochastic [17] but for
simplicity we assume here that they are constant. We denote the difference between the
safe and target sets by X̄ := K ′ \K to simplify the presentation of our results.

Similar to the dynamic programming approach to an optimal control problem with
additive stage cost, the solution to the reach-avoid problem is characterized by a recursion
[16] as follows: Define the value functions V ∗k : X → [0, 1] for k = T − 1, . . . , 0 as

V ∗T (x) = 1K(x),

V ∗k (x) = sup
u∈U

{
1K(x) + 1X̄ (x)

∫
X
V ∗k+1(y)Q(dy|x, u)

}
.

(2)

It can be shown that V ∗0 (x0) = supµ r
µ
x0(K,K ′) [16]. Past work has focused on approximat-

ing V ∗k recursively on a discretized grid of X̄ and U [8, 9, 16]. Next, we will establish the
measurability and continuity properties of the reach-avoid value functions to enable the use
of a linear program to approximate these functions.
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Assumption 1 For every x ∈ X , A ∈ B(X) the mapping u 7→ Q(A|x, u) is continuous.

Proposition 1 Under Assumption (1), at every step k, the supremum in (2) is attained
by a measurable function µ∗k : X → U and the resulting V ∗k : X → [0, 1] is measurable.

Proof 1 By induction. First, note that the indicator function V ∗T (x) = 1K(x) is measur-
able. Assuming that V ∗k+1 is measurable we will show that V ∗k is also measurable. Define
F (x, u) =

∫
X V

∗
k+1(y)Q(dy|x, u). Due to continuity of the map u 7→ Q(A|x, u) by Assump-

tion 1, the map u 7→ F (x, u) is continuous for every x ([18, Fact 3.9]). Since U is compact,
there exists a measurable function µ∗k(x) that achieves the supremum [19, Corollary 1]. Fur-
thermore, by [20, Proposition 7.29], the mapping (x, u) 7→ F (x, u) is measurable. It follows
that F (x, µ∗k(x)), and hence V ∗k , is measurable as it is composition of measurable functions.

Proposition 1 allows one to compute an optimal feedback policy at each stage k through

µ∗k(x) = arg max
u∈U

{
1K(x) + 1X̄ (x)

∫
X
V ∗k+1(y)Q(dy|x, u)

}
= arg max

u∈U

{∫
X
V ∗k+1(y)Q(dy|x, u)

}
. (3)

For functions f, g : X → R, we use f ≤ g to denote f(x) ≤ g(x), ∀x ∈ X. It is easy
to verify by induction that 0 ≤ V ∗k ≤ 1, for k = T, T − 1, . . . , 0. Furthermore, due to the
indicator functions in (2), V ∗k (x) are defined on disjoint regions of X as:

V ∗k (x) =


1, x ∈ K
maxu∈U

∫
X V

∗
k+1(y)Q(dy|x, u), x ∈ X̄

0, x ∈ X \K ′
(4)

Hence, it suffices to compute V ∗k and the optimizing policy on X̄ . We show that with an
additional assumption on kernel Q, V ∗k is continuous on X̄ . The continuity is a desired
property for approximating V ∗k on X̄ using basis functions.

Assumption 2 For every A ∈ B(X ) the mapping (x, u) 7→ Q(A|x, u) is continuous.

Proposition 2 Under Assumption (2), V ∗k (x) is piecewise continuous on X .

Proof 2 From continuity of (x, u) 7→ Q(A|x, u) we conclude that the mapping (x, u) 7→
F (x, u) is continuous ([18, Fact 3.9]). From the Maximum Theorem [21], it follows that
F (x, u∗(x)) and thus each V ∗k (x), is continuous on X̄ . The result follows by (4).

2.2 Linear programming approach

Let F := {f : X → R, f is measurable}. For V ∈ F define two operators Tu, T : F → F

Tu[V ](x) =

∫
X
V (y)Q(dy|x, u), (5)

T [V ](x) = max
u∈U
Tu[V ](x). (6)

Let ν be a non-negative measure supported on X̄ , referred to as state-relevance measure.

4



The Linear Programming Approach to Reach-Avoid Problems for Markov Decision Processes

Theorem 1 Suppose Assumption 1 holds. For k ∈ {0, . . . , T − 1}, let V ∗k+1 be the value
function at step k + 1 defined in (2). Consider the infinite dimensional linear program:

inf
V (·)∈F

∫
X̄
V (x)ν(dx) (Inf-LP)

subject to V (x) ≥ Tu[V ∗k+1](x), ∀(x, u) ∈ X̄ × U . (7)

(a) Any feasible solution of (Inf-LP) is an upper bound on the optimal reach-avoid value
function V ∗k ; (b) V ∗k is a solution to this optimization problem and any other solution to
(Inf-LP) is equal to V ∗k , ν-almost everywhere on X̄ .

First, note that the decision variable above lives in F , an infinite dimensional space. The
objectives and constraints are linear in the decision variable. There are infinitely many
constraints since X̄ and U are continuous spaces. This class of problems is referred to in
literature as an infinite dimensional linear program [22, 23].

Proof 3 Let J∗ ∈ R denote the optimal value of the objective function in (Inf-LP). From
Proposition 1, V ∗k ∈ F and is equal to the supremum over u ∈ U of the right hand side of
the constraint (7). Hence, for any feasible V ∈ F , we have V (x) ≥ V ∗k (x) for all x ∈ X̄ and
part (a) is shown. By non-negativity of ν it follows that for any feasible V ,

∫
X̄ V (x)ν(dx) ≥∫

X̄ V
∗
k (x)ν(dx), which implies J∗ ≥

∫
X̄ V

∗
k (x)ν(dx). On the other hand, J∗ ≤

∫
X̄ V

∗
k (x)ν(dx)

since it is the least cost among the set of feasible functions. Hence, J∗ =
∫
X̄ V

∗
k (x)ν(dx)

and V ∗k is an optimal solution. To show that any other solution to (Inf-LP) is equal to V ∗k
ν-almost everywhere on X̄ , assume there exists a function V ∗, optimal for (Inf-LP) that
is strictly greater than V ∗k on a set Am ∈ B(X ) of non-zero ν-measure. Since V ∗ and V ∗k
are both optimal, we have that

∫
X̄ V

∗(x)ν(dx) =
∫
X̄ V

∗
k (x)ν(dx) = J∗. We can then reduce

V ∗ to the value of V ∗k on Am, while ensuring feasibility of V ∗. This reduces the value of∫
X̄ V

∗(x)ν(dx) below J∗, contradicting that V ∗ is optimal and part (b) is shown.

As shown in Theorem 1, the sequence of value functions of the stochastic reach-avoid prob-
lem derived in (2) are equivalently characterized as solutions of a sequence of infinite di-
mensional linear programs. Thus, instead of the classical space gridding approaches to solve
(2), we focus on approximating V ∗k by approximating the solutions to (Inf-LP).

3. Approximation with a finite linear program

An infinite dimensional LP is in general NP-hard [22, 23]. We approximate the solution to
(Inf-LP) by deriving a finite LP through two steps. First, we restrict the decision space to
an finite dimensional subspace FM ⊂ F . Second, we replace the infinite constraints in (7)
with a sufficiently large finite number of randomly sampled constraints.

3.1 Restriction to a finite dimensional function class

Let FM be a finite dimensional subspace of F spanned by M basis elements denoted by
{φi}Mi=1. For a fixed function f ∈ F , consider the following semi-infinite linear program
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defined over functions
∑M

i=1wiφi(x) ∈ FM with decision variable w ∈ RM :

min
w1,...,wM

M∑
i=1

wi

∫
X̄
φi(x)ν(dx) (Semi-LP)

subject to

M∑
i=1

wiφi(x) ≥ Tu[f ](x), ∀(x, u) ∈ X̄ × U . (8)

The above linear program has finitely many decision variables and infinitely many con-
straints. It is referred to as a semi-infinite linear program.

We assume that problem (Semi-LP) is feasible. Note that for a bounded f , this can
always be guaranteed by including φ(x) = 1 in the basis functions. Consider the following
semi-norm on F induced by the state-relevance measure ν, ‖V ‖1,ν :=

∫
X̄ |V (x)|ν(dx). In

the infinite dimensional linear program (Inf-LP) the choice of ν does not affect the optimal
solution, as seen in Theorem (1). For finite dimensional approximations, as will be shown
in the next Lemma, ν influences approximation accuracy in different regions of X̄ .

Let V̂f =
∑M

i=1 ŵiφi be a solution to (Semi-LP) and V ∗f ∈ F be a solution to the same
problem but in the original infinite dimensional decision space F .

Lemma 1 V̂f achieves the minimum of
∥∥V − V ∗f ∥∥1,ν

, over the set {V ∈ FM , V ≥ V ∗f }.

Proof 4 It follows from the proof of Theorem (1) that V ∗f = supu Tu[f ], ν-almost every-

where. Now, a function V̂ ∈ FM is an upper bound on V ∗f = supu Tu[f ] if and only if it

satisfies constraint (8). To show that V̂f minimizes the ν-norm distance to V ∗f , notice that

for any V (x) =
∑M

i=1wiφi(x) satisfying (8) we have that

‖V − V ∗f ‖1,ν =

∫
X̄
|V (x)− V ∗f (x)|ν(dx) =

∫
X̄
V (x)ν(dx)−

∫
X̄
V ∗f (x)ν(dx),

where the second equality is due to the fact that V is an upper bound of V ∗f . Since V ∗f is a
fixed constant in the norm optimization of the lemma above, the result follows.

The semi-infinite problem (Semi-LP) can be used to recursively approximate V ∗k using
a weighted sum of basis functions. The next proposition formalizes this result.

Proposition 3 For every k ∈ {0, . . . , T − 1}, let FMk denote the span of a fixed set of Mk

basis elements {φki }Mk
i=1. Start with the known value function V ∗T and recursively construct

V̂k(x) =
∑Mk

i=1 ŵ
k
i φ

k
i (x) where ŵki is the solution to (Semi-LP) obtained by substituting

f = V̂k+1 in (Semi-LP). Then, (a) Each V̂k is also a solution to the problem:

min
V (·)∈FMk

∥∥V − V ∗k ∥∥1,ν
(9)

subject to V (x) ≥ Tu[V̂k+1](x), ∀(x, u) ∈ X̄ × U . (10)

(b) V̂k(x) ≥ V ∗k (x) for all x ∈ X̄ and k = 0, . . . , T − 1.
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Proof 5 By induction. Note that at step T−1 the results above hold as a direct consequence
of Lemma (1). Now, suppose at time step k, V̂k(x) ≥ V ∗k (x). From monotinicity of the

operator Tu [16], it follows that Tu[V̂k](x) ≥ Tu[V ∗k ](x). By constraint (10), it follows that

V̂k−1(x) ≥ Tu[V̂k](x) ≥ Tu[V ∗k ](x) = V ∗k−1(x), where the last equality is by (4). So, part (b)

is proven. The fact that V̂k−1 solving (Semi-LP) also minimizes
∥∥V − V ∗k ∥∥1,ν

follows from

the same argument as in Lemma (1) and thus, part (a) is proven.

The above proposition shows that by restricting the decision space of the infinite dimensional
linear program, we obtain an upper bound to the reach-avoid value functions V ∗k , at every
step k, which is also the least upper bound in the space spanned by the basis functions
subject to constraint (10).

3.2 Restriction to a finite number of constraints

A semi-infinite linear program, such as (Semi-LP) is in general NP-hard [24, 25, 26] due to
existence of infinitely many constraints, one for each state-action pair (x, u) ∈ X̄ × U . One
way to approximate the solution is to select a finite set of points from X̄ × U to impose
the constraints on. One can then use generalization results from sampled convex programs
[27, 28] to quantify the near-feasibility of the solution obtained from constraint sampling.

Let S := {(xi, ui)}Ni=1 denote a set of N ∈ N elements in X̄ × U . For a fixed function
f ∈ F , consider the following finite LP defined over functions

∑M
i=1wiφi(x) ∈ FM :

min
w1,...,wM

M∑
i=1

wi

∫
X̄
φi(x)ν(dx)

subject to

M∑
i=1

wiφi(x) ≥ Tu[f ](x), ∀(x, u) ∈ S
(Fin-LP)

Since the objective and constraints are linear in the decision variable, the sampling
theorem from [28] applies to obtain the following probabilistic feasibility guarantee.

Lemma 2 Assume that for any S ⊂ X̄ × U , the feasible region of (Fin-LP) is non-empty
and the optimizer is unique. Choose the violation and confidence levels ε, β ∈ (0, 1). Con-
struct a set of samples S by drawing N independent points from X̄ ×U identically distributed
according to a probability measure on X̄ × U denoted by PX̄×U . Choose N such that

N ≥ 2

ε

(
M + ln

(
1

β

))
.

Let w̃S be the sample dependent optimizer in (Fin-LP), and Ṽ S(x) =
∑M

i=1 w̃
S
i φi(x). Then,

PX̄×U (Ṽ S(x) < Tu[f ](x)) ≤ ε (11)

with confidence 1− β, with respect to the product measure (PX̄×U )N .

The probabilistic expression in (11) is referred to as violation of Ṽ S [27, 28]. Note that Ṽ S

is a function of the N sample realizations. As such, it can only be bounded to an ε-level
with a confidence with respect to the product measure (PX̄×U )N .
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We can recursively construct Ṽk =
∑Mk

i=1 w̃
k
i φ

k
i by solving (Fin-LP) using f = Ṽk+1

and a number Nk(εk, βk,Mk), of samples. It follows that with probability greater than
1− βk, the violation of Ṽk is at most εk. Consequently, the approximation functions Ṽk are
probabilistic upper bounds on the value functions V ∗k , in contrast to the guaranteed upper
bounds provided in Proposition (3).

To evaluate the accuracy of Ṽk, ideally, we would like to find bounds on ‖Ṽk − V ∗k ‖1,ν
as a function of ‖V̂k − V ∗k ‖1,ν , where V̂k is computed according to Proposition (3) and then

determine the number of basis functions required to bound ‖V̂k−V ∗k ‖1,ν to a given accuracy.
As for the first problem, unfortunately, for a given accuracy in the objective function of
a sampled convex program, the number of samples grows exponentially in the number of
decision variables [29]. This is reminiscent of the Curse of Dimensionality. As for the
second problem, bounding ‖V̂k − V ∗k ‖ is dependent on the basis function choice. We do not
elaborate on these topics further and refer the interested readers to [30] for similar issues for
MDPs with additive stage average cost. Our focus in the remainder of the paper will be to
evaluate the computational tractability and accuracy of (Fin-LP) in estimating reach-avoid
value functions through case studies for a general class of MDPs.

4. Radial basis functions for MDPs with Gaussian mixture kernels

For a general class of MDPs modeled by Gaussian mixture kernels [31] we propose using
Gaussian radial basis functions (GRBFs) for approximating the reach-avoid value functions.
Through this choice, the constraint in (Fin-LP) involving the integration Tu[f ] can be found
in closed form. Moreover, it is known that radial basis functions are a sufficiently rich
function class to approximate continuous functions [32, 33, 34, 35].

4.1 Basis function choice

To apply GRBFs in the reach-avoid framework, we consider the following problem data:

1. The kernel Q is a Gaussian mixture kernel
∑J

j=1 αjN (µj ,Σj) with diagonal covariance

matrices Σj , means µj and weights αj such that
∑J

j=1 αj = 1 for a finite J ∈ N+.

2. The target and safe sets K and K ′ are unions of disjoint hyper-rectangle sets, i.e.
K =

⋃P
p=1Kp =

⋃P
p=1

(∏n
l=1[apl , b

p
l ]
)

and K ′ =
⋃M
m=1K

′
m =

⋃M
m=1(

∏n
l=1[cml , d

m
l ]) for

finite P,M ∈ N+ with n = dim(X ) and ap, bp, cm, dm ∈ Rn, ∀p,m.

The above restrictions apply to a large class of MDPs. For example, the kernel of general
non-linear systems subject to additive Gaussian mixture noise is a Gaussian mixture kernel.
Moreover, in several problems, the state and input constraints are decoupled in different
dimensions resulting in disjoint hyper-rectangles as constraint sets.

For each time step k, let FMk denote the span of a set of GRBFs {φki }Mk
i=1 : Rn → R:

φki (x) =

n∏
l=1

1√
2πski,l

exp

(
−1

2

(xl − cki,l)2

ski,l

)
, (12)

where {cki,l}nl=1 ∈ R, {ski,l}nl=1 ∈ R+ are the centers and the variances, respectively, of the
GRBF. The class of GRBFs is closed with respect to multiplication [32, Section 2]. In
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particular, let f1 =
∑Mk

i=1w
1
i φ

k
i , f

2 =
∑Mk

j=1w
2
jφ

k
j . Then, f1f2 =

∑Mk
i=1

∑Mk
j=1w

1
iw

2
j φ̃

k
ij ,

where the centers and variances of the bases φ̃kij are explicit functions of those of φki , φ
k
j .

Integrating the proposed GRBFs over a union of hyper-rectangles decomposes into one
dimensional integrals of Gaussian functions. In particular, let Ṽk(x) =

∑Mk
i=1 w̃

k
i φ

k
i (x) denote

the approximate value function at time k and A =
⋃D
d=1

{
[ad1, b

d
1]× · · · × [adn, b

d
n]
}

, a finite

union of hyper-rectangles. The integral of Ṽk over A after some algebra reduces to∫
A
Ṽk(x)ν(dx) =

D∑
d=1

Mk∑
i=1

w̃ki

n∏
l=1

1

2
erf

bdl − cki,l√
2ski,l

− 1

2
erf

adl − cki,l√
2ski,l

, (13)

where ν is assumed to be uniform product measure on each dimension d and erf denotes
the error function defined as erf(x) = 2√

π

∫ x
0 exp

(
−t2
)
dt.

Due to the decomposition of the reach-avoid value functions on the sets K = ∪Pp=1Kp

and X̄ = (K ′ = ∪Mm=1K
′
m) \K as stated in (4), Tu[Ṽk] in (5) is equivalent to∫

X
Ṽk(y)Q(dy|x, u) =

M∑
m=1

Mk∑
i=1

w̃ki

∫
K′m

φki (y)Q(dy|x, u) +

P∑
p=1

∫
Kp

Q(dy|x, u). (14)

Since a Gaussian mixture kernel Q can be written as a GRBF, every term inside the integral
above is a product of GRBFs. Hence, it is a GRBF with known centers and variances. The
integrals over Kp and K ′m can thus be computed using (13) at a sampled point (xs, us).

4.2 Recursive value function and policy approximation

We summarize the method to approximate the reach-avoid value function in Algorithm 1.
The design choices include the number of basis functions, their centers and variances, the
sample violation and confidence bounds in Lemma 2 and the state-relevance weights. The
number of basis functions is problem dependent and in our case studies, we use trial and
error to fix this number. We choose the centers of the GRBFs by sampling them from a
uniform probability measure supported on X̄ . We sample the variances from a uniform
measure supported on a bounded set that depends on problem data. Note that the method
is still applicable if centers and variances are not sampled but set in another way, for example
using neural network training or trial and error. Typically, ε and β are chosen to be close
to 0 to enhance the feasibility guarantees of Lemma 2 at the expense of more constraints
in (Fin-LP). Furthermore, we choose the state-relevance measure ν as a uniform product
measure on the space X̄ to use the analytic integration in (13). This corresponds to equal
weighting on potential errors on different state-space regions.

Given the approximate value functions, we compute the so-called greedy control policy:

µ̃k(x) = arg max
u∈U

∫
X
Ṽk+1(y)Q(dy|x, u). (15)

The optimization problem in (15) is non-convex. However, the cost function is smooth with
respect to u for a fixed x ∈ X̄ , the gradient and Hessian information can be analytically
obtained using the erf function and the decision space U is typically low dimensional (in
most mechanical systems for example, dimU ≤ dimX ). Thus, a locally optimal solution
can be obtained efficiently using off-the-shelf optimization solvers.

9
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Algorithm 1 linear programming based reach-avoid value function approximation

Input Data:

• State and control spaces X̄ × U , reach-avoid time horizon T .

• Target and safe sets K and K ′, written as unions of disjoint hyper-rectangles.

• Centers and variances of the MDP Gaussian mixture kernel Q.

Design parameters:

• Number of basis functions {Mk}T−1
k=0 .

• Violation and confidence levels {εi}T−1
i=0 , {1− βi}T−1

i=0 , probability measure PX̄×U .

• Probability measure of centers and variances for the basis functions {φki }Mk
i=1.

• State-relevance measure ν decomposed as a product measure on the state space.

Initialize ṼT (x)← 1K(x).
for k = T − 1 to k = 0 do

Construct FMk by sampling Mk centers {ci}Mk
i=1 and variances {si}Mk

i=1 according to the
chosen probability measures.
Sample N(εk, βk,Mk) pairs (xs, us) from X̄ × U using the measure PX̄×U .
for all (xs, us) do

Evaluate Tus [Ṽk+1](xs) using (14).
end for
Solve the finite LP in (Fin-LP) to obtain w̃k = (w̃k1 , . . . , w̃

k
Mk

).

Set the approximated value function on X̄ to Ṽk(x) =
∑Mk

i=1 w̃
k
i φ

k
i (x).

end for

5. Numerical case studies

We develop and solve a series of benchmark problems and evaluate our approximate so-
lutions in two ways. First, we compute the closed-loop empirical reach-avoid policy by
applying the approximated control input obtained from (15). Second, we use scalable al-
ternative approaches to approximate the benchmark reach-avoid problems. To this end, we
consider three reach-avoid problems that differ in structure and complexity. The first two
examples are academic and illustrate the scalability and accuracy of the approach. The last
example is a practical problem, where the approach was also implemented on a miniature
race-car testbed. Throughout, we refer to our approach as the ADP approach. All compu-
tations were carried out on an Intel Core i7 Q820 CPU clocked at 1.73 GHz with 16GB of
RAM memory, using IBM’s CPLEX optimization toolkit in its default settings.

5.1 Example 1

We consider linear systems with additive Gaussian noise, xk+1 = xk + uk + ωk, where
xk ∈ X = Rn, uk ∈ U = [−0.1, 0.1]n and ωk is distributed as a Gaussian random variable
ωk ∼ N (0n×1,Σ) with diagonal covariance matrix. We consider a target setK = [−0.1, 0.1]n

centered at the origin and a safe set K ′ = [−1, 1]n (see Figure 1 for a 2D illustration).

10
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Figure 1: 2D depiction of safe and target
sets and sample trajectories.

dim(X × U) 4D 6D 8D

Mk 100 500 1000
Nk 4184 20184 40184
εk 0.05 0.05 0.05
1− βk 0.99 0.99 0.99

‖Ṽ0 − VADP‖ 0.0692 0.104 0.224
Construction (sec) 4 85 450
LP solution (sec) 2 50 520
Memory (MB) 3.2 80 320

Table 1: Parameters and properties of the
value function approximation scheme.

The objective is to reach the target set while staying in the safe set over a horizon of
T = 5 steps. We approximated the value function using Algorithm 1 for a range of system
dimensions dim(X × U) = 4, 6, 8, to analyze scalability and accuracy of the LP-based reach-
avoid solution in a benchmark problem that scales up in a straightforward way.

The transition kernel of the considered linear system is Gaussian xk+1 ∼ N (xk +uk,Σ).
The sets K and K ′ are hyper-rectangles. Thus, the GRBF framework applies. We chose
100, 500 and 1000 GRBF elements for the reach-avoid problems of dim(X × U) = 4, 6, 8,
respectively (Table 1). We used uniform measures supported on X̄ and [0.02, 0.095]n to
sample the GRBFs’ centers and variances, respectively. The violation and confidence levels
for every k ∈ {0, . . . , 4} were set to εk = 0.05, 1−βk = 0.99 and the measure PX̄×U required
to generate samples from X̄ × U is chosen to be uniform. Since there is no reason to favor
some states more than others, we also chose ν as a uniform measure, supported on X̄ .
Following Algorithm 1 we obtain a sequence of approximate value functions {Ṽk}4k=0.

To evaluate the performance of the approximation, we sampled 100 initial conditions x0,
uniformly from X̄ . For each initial condition we generated 100 noise trajectories {ωk}T−1

k=0 .
We computed the policy along the resulting state trajectory using (15). We then counted
the number of trajectories that successfully completed the reach-avoid objective, i.e. reach
K without leaving K ′ in T steps. In Table 1 we denote by ‖Ṽ0 − VADP‖ the mean absolute
difference between the empirical success denoted by VADP, and the predicted performance
Ṽ0, evaluated over the considered initial conditions. The memory and computation times
reported correspond to constructing and solving each LP.

Since the system is linear, the noise is Gaussian and the target and safe sets are symmet-
ric and centered around the origin, we assume that a properly tuned LQG controller will
perform close to optimal for the reach-avoid objective. Thus, we use the known closed-form
LQG solution as a heuristic method to compare the proposed approach.

The LQG problem for a linear stochastic system xk+1 = Axk + Buk + ωk, as the one
considered above, is defined by an expected value quadratic cost function:

min
{uk}T−1

k=0

Eµx0(
T−1∑
k=0

x>k Qxk + u>k Ruk) + x>TQxT .

Above, Q ∈ Sn+ and R ∈ Sm++, where Sn+ and Sm++ denote the cones of n × n positive
semidefinite and m × m positive definite matrices, respectively. Q and R were chosen to
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Figure 2: Example 1 - performance of the algorithm as a function of parameters.

correspond to the largest ellipsoids inscribed in K and U , respectively. Through this choice
the level sets of the LQG cost function proportionally correspond to the size of the target
and control constraint sets. Intuitively, the penalization of states through the quadratic
cost Q drives the state to the origin. The penalization of the input does not guarantee
feasibility of the input constraints. Therefore, we project the LQG control on the feasible
set U . Using the same initial conditions and noise trajectories as those used with the ADP
controller above, we simulated the performance of the LQG controller. We counted the
number of trajectories that reach K without leaving K ′ over the horizon of T = 5 steps.

Figure 2a shows the mean over the initial conditions of the absolute difference between
VLQG and VADP as a function of number of basis functions. We observe a trend of increasing
accuracy with increasing number of basis functions. Figure 2b shows the same metric but
as a function of the total number of sample pairs from X × U for a fixed number of basis
functions. Changing the number of samples N , affects the violation level εk (assuming
constant βk) and the approximation quality seems to improve with increasing N . In Table
2, we observe a trade-off between accuracy and computational time for the 6D problem
varying the number of samples; the result is analogous in the 4D and 8D problems.

N ‖VADP − VLQG‖ Construction (sec) LP solution (sec) Memory (MB)

400 0.283 2.20 3.57 1.60
4000 0.206 17.0 97.0 16.0
40000 0.036 170 162 160

Table 2: Accuracy and computation time as a function of number of sampled points in
dim(X × U) = 6, with Mk = 500 and 1− βk = 0.99.
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Figure 3: Example 2 - 2D depiction
of obstacles and sample trajectories.

dim(X × U) 4D 6D 8D

Mk 100 500 1000
Nk 4184 20184 40184
εk 0.05 0.05 0.05
1− βk 0.99 0.99 0.99

‖Ṽ0 − VADP‖ 0.095 0.118 0.191
Construction (sec) 4.20 130 671
LP solution (sec) 3.2 80 700
Memory (MB) 3.20 80.0 320

Table 3: Parameters and properties of the
value function approximation scheme.

5.2 Example 2

We consider the same linear dynamical system xk+1 = xk + uk + ωk, with target set K as
defined in Section 5.1. In addition, in this example, the avoid set includes obstacles placed
randomly within the state space as depicted in Figure 3. The safe set is (K ′ \ ⋃5

j=1K
j
α),

where K ′ was defined in the previous example, and each Kj
α denotes one of the hyper-

rectangular obstacle sets. The reach-avoid time horizon is T = 7. We use Algorithm 1 to
approximate the optimal reach-avoid value function and compute the optimal policy.

We chose the same basis function numbers, basis parameters, sampling and state-
relevance measures as well as violation and confidence levels as in Section 5.1, shown in
Table 3. We simulated the performance of the ADP controller starting from 100 different
initial conditions, selected such that at least one obstacle blocks the direct path to the
origin. For every initial condition we sample d100 different noise trajectory realizations and
applied the corresponding control policies computed through (15). We then computed the
empirical ADP reach-avoid success probability (denoted by VADP) by counting the total
number of trajectories that reach K while avoiding reaching the obstacles or leaving K ′.

The problem of reaching a target set without passing through any obstacles is an instance
of a path planning problem and has been studied thoroughly for deterministic systems (see
for example, [36, 37, 38]). For a benchmark comparison we use the approach of [37] and
formulate the reach-avoid problem for the noise-free system as a constrained mixed logic
dynamical system (MLD) [39]. This problem can in turn be recast as a mixed integer
quadratic program (MiQP) and solved to optimality using standard branch and bound
techniques. To account for noise in the dynamics ωk, we used a heuristic approach as
follows. We truncated the density function of the random variables ωk at 95% of their total
mass and enlarged each obstacle set Kα by the maximum value of the truncated ωk in each
dimension. This resembles the robust (worst-case) approach to control design.

Starting from the same initial conditions as in the ADP approach, we simulated the
performance of the MiQP-based control policy on the 100 trajectory realizations used in
the ADP controller. We implemented the policy in receding horizon by measuring the
state at each horizon step. The empirical success probability of trajectories that reach K
while staying safe is denoted by VMiQP. The mean difference ‖VADP − VMiQP‖ is presented
in Table 4 and is computed by averaging the corresponding empirical reach-avoid success
probabilities over the initial conditions. As seen in this table, as the number of basis
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Mk ‖VADP − VMiQP‖ Construction (sec) LP solution (sec) Memory (MB)

50 0.214 1.67 0.18 0.784
100 0.168 5.59 2.66 3.20
200 0.084 22.0 4.30 12.8
500 0.070 130 80.0 80.0
1000 0.045 507 1210 320

Table 4: Example 2 - Accuracy and computational requirements for dim(X × U) = 6.

functions increases, ‖VADP−VMiQP‖ decreases. This can indicate that the reach-avoid value
function approximation is increasing in accuracy. Note that for an increasing planning
horizon T , the number of binary variables (and hence the computational complexity) in
MiQP grows exponentially, whereas in the LP-based reach-avoid approach, the computation
effort grows linearly with the horizon.

5.3 Example 3

Consider the problem of driving a race car through a tight corner in the presence of static
obstacles, illustrated in Figure 4. As part of the ORCA project of the Automatic Control
Lab (see http://control.ee.ethz.ch/~racing/), a six state variable nonlinear model
with two control inputs has been identified to describe the movement of 1:43 scale race
cars. The model derivation is discussed in [40] and is based on a unicycle approximation
with parameters identified on the experimental platform of the ORCA project using model
cars manufactured by Kyosho. We denote the state space by X ⊂ R6, the control space by
U ⊂ R2 and the identified dynamics by a function f : X ×U 7→ X . The first two elements
of each state x ∈ X correspond to spatial dimensions, the third to orientation, the fourth
and fifth to body fixed longitudinal and lateral velocities and the sixth to angular velocity.
The two control inputs u ∈ U are the throttle duty cycle and the steering angle.

As typically observed in practice, the state predicted by the identified dynamics and
the state measurements recorded on the experimental platform are different due to process

Figure 4: Example 3 - The set up of the
Race-car cornering problem.
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Figure 5: Example 3 - sample trajectories
based on reach-avoid computation.
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Figure 6: Empirical noise distribution.

Safe region min max variances

K ′1 (m) 0.2 1 [8× 10−4,1.2× 10−3]
K ′2 (m) 0.2 0.6 [8× 10−4,1.2× 10−3]
K ′3 (rad) −π π [5× 10−3,1.5× 10−2]
K ′4 (m/s) 0.3 3.5 [5× 10−3,1.5× 10−2]
K ′5 (m/s) -1.5 1.5 [5× 10−3,1.5× 10−2]
K ′6 (rad/s) -8 8 [2.00,4.00]

Table 5: State constraints and basis functions’
variances used in ADP approximation.

and measurement noise. Analyzing the deviation between predictions and measurements,
we captured the uncertainties in the original model using additive Gaussian noise, g(x, u) =
f(x, u) + ω, ω ∼ N (µ,Σ), µ ∈ R6,Σ ∈ S6

++. The noise mean µ, and diagonal covariance
matrix Σ have been selected such that the probability density function of the Markov
decision process describing the uncertain dynamics resembles the empirical data obtained
via measurements. As an example, Figure 6 illustrates the fit for the angular velocity where
µ6 = −0.26 and Σ(6, 6) = 0.53. It follows that the kernel of the stochastic process is a GRBF
with a single basis function described by the Gaussian distribution N (f(x, u) + µ,Σ).

We cast the problem of driving the race car through a tight corner without reaching
obstacles as a stochastic reach-avoid problem. Despite the highly nonlinear dynamics, the
stochastic reach-avoid set-up can readily be applied to this problem.

We consider a horizon of T = 6 and a sampling time of 0.08 seconds. The safe region
of the spatial dimensions is defined as (K ′1 ×K ′2) \ A where A ⊂ R2 denotes the obstacle,
see Figures 4, 5. The safe set in 6D is thus defined as K ′ = ((K ′1 ×K ′2) \A) × K ′3 ×
K ′4×K ′5×K ′6 where K ′3,K

′
4,K

′
5,K

′
6 describe the physical limitations of the model car (see

Table 5). Similarly, the target set for the spatial dimensions is denoted by K1 × K2 and
corresponds to the end of the turn as shown in Figure 5. The target set in 6D is then
defined as K = K1 ×K2 ×K ′3 ×K ′4 ×K ′5 ×K ′6, which contains all states x ∈ K ′ for which
(x1, x2) ∈ K1 ×K2. The constraint sets are naturally decoupled over the state dimensions.

We used 2000 GRBFs for each approximation step with centers and variances sampled
according to uniform measures supported on X̄ and on the hyper-rectangle defined by
the product of intervals in the rows of Table 5, respectively. We used a uniform state-
relevance measure and a uniform sampling measure to construct each one of the finite linear
programs in Algorithm 1. All violation and confidence levels were chosen to be εk = 0.2
and 1 − βk = 0.99 respectively for k = {0, . . . , 5}. Having fixed all design parameters we
implement the steps of Algorithm 1 and compute a sequence of approximate value functions.

To evaluate the quality of the approximations we initialized the car at two different initial
conditions x1 = (0.33, 0.4,−0.2, 0.5, 0, 0) and x2 = (0.33, 0.4,−0.2, 2, 0, 0). They correspond
to entering the corner at low (x1

4 = 0.5 m/s) and high (x2
4 = 2 m/s) longitudinal velocities.

The approximate value functions evaluate to Ṽ0(x1) = 0.98, Ṽ0(x2) = 1 and indicate success
with high probabilities for both cases. Interestingly, the associated trajectories computed
via the greedy policy defined through (15) vary significantly. In the low velocity case, the car
avoids the obstacle by driving above it while in the high velocity case, by driving below it (see
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Figure 5). Such a behavior is expected since the car can slip if it turns aggressively at high
velocities. We also computed empirical reach-avoid probabilities in simulation by sampling
100 noise trajectories from each initial state and implementing the ADP control policy using
the associated value function approximation. The sample trajectories are plotted in Figure
5 and the values were found to be VADP(x1) = 1 and VADP(x2) = 0.99

The controller was tested on the ORCA setup by running 10 experiments from each
initial condition. We pre-computed the control inputs at the predicted mean trajectory of
the states over the horizon for each experiment. Implementing the feedback policy online
would require solving problem (15) within the sampling time of 0.08 seconds. In theory,
this computation is possible since the control space is only two dimensional but it requires
developing an embedded nonlinear programming solver compatible with the ORCA setup.
Here, we have implemented the open loop controller. We note however that if the open
loop controller performs accurately, the closed loop computation can only improve the
performance by utilizing updated state measurements. As demonstrated by the videos in
(youtube:ETHZurichIfA), the car is successfully driving through the corner even when the
control inputs are applied in an open loop.

6. Conclusions

We developed a numerical approach to compute the value function of the stochastic reach-
avoid problem for Markov decision processes with uncountable state and action spaces.
Since the method relies on solving linear programs we were able to tackle reach-avoid prob-
lems with larger dimensions than established state space gridding methods. The potential
of the approach was analyzed through two benchmark case studies and a trajectory plan-
ning problem for a six dimensional nonlinear system with two inputs. To the best of our
knowledge, this is the first time that stochastic reach-avoid problems up to eight continuous
state and input dimensions have been addressed.

We are currently focusing on the problem of systematically choosing the basis func-
tion parameters by exploiting knowledge about the system dynamics. Furthermore, we are
developing decomposition methods for the large linear programs that arise in our approx-
imation scheme to allow addressing control of MDPs with higher dimensions. Finally, we
are addressing tractable reformulations of the infinite constraints in the semi-infinite linear
programs for stochastic reach-avoid problems to avoid sampling-based methods.
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