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Abstract: We consider the infinite dimensional linear programming (inf-LP) approach for
solving stochastic control problems. The inf-LP corresponding to problems with uncountable
state and input spaces is in general computationally intractable. By focusing on linear systems
with quadratic cost (LQG), we establish a connection between this approach and the well-known
Riccati LMIs. In particular, we show that the semidefinite programs known for the LQG problem
can be derived from the pair of primal and dual inf-LPs. Furthermore, we establish a connection
between multi-objective and chance constraint criteria and the inf-LP formulation.
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1. INTRODUCTION

Optimal control of discrete time stochastic systems can be
addressed via the dynamic programming (DP) (Bellman,
1957) principle of optimality. For an infinite horizon aver-
age or discounted cost problem, the optimal cost function
and control policy can be computed as the fixed point of
the so-called dynamic programming operator. In general,
computing this fixed point is challenging and thus, several
approximate approaches based on the DP principle of
optimality have been developed.

An alternative approach to solving stochastic control
problems is linear programming (LP) (Puterman, 2009;
Hernández-Lerma and Lasserre, 1996). If the control and
input spaces are uncountable, the corresponding LP is
infinite dimensional (inf-LP). In the primal form of this
LP, the optimization variable is the occupation measure,
which measures infinite horizon occupancy of state and
inputs in each Borel subset of the product state input
space. An optimal policy may be derived from the optimal
occupation measure, while the optimal value function is
the optimizer of the dual of this LP.

In addition to providing an elegant alternative formula-
tion of the optimality conditions for a stochastic control
solution, in the LP approach constraints have a natural
interpretation. By properly constraining the occupation
measure, one can ensure probabilistic constraints on the
state trajectory or can ensure bounds on multiple objec-
tives. Such formulations of constrained stochastic control
were considered in (Borkar, 1994; Feinberg and Shwartz,
1996; Altman, 1999; Hernández-Lerma and González-
Hernández, 2000; Hernández-Lerma et al., 2003).
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The inf-LP formulation is in general computationally in-
tractable. For problems with polynomial data, this inf-
LP can be approximated via a sequence of semidefinite
programs (SDPs) (Savorgnan et al., 2009; Summers et al.,
2013). These recent works are among the few that explore
the inf-LP approach for computation of optimal value
function and policies in a stochastic control problem.

The abstract inf-LP work has not attempted to establish
clear connections with the well known, computationally
tractable Linear Matrix Inequality (LMI) formulations
of optimal control. In particular, for a stochastic linear
system with quadratic cost (LQG), one can formulate the
so-called Riccati LMI to find the optimal value function
of the LQG problem (Boyd et al., 1994; Balakrishnan
and Vandenberghe, 2003). Similarly, the well known LMI
formulations have not attempted to show how these results
can be derived from a more general approach to stochastic
optimal control, namely the inf-LP approach.

In this work, we establish the connection between the inf-
LP approach and the well-known Riccati LMIs for LQG
problems. This inf-LP in general, includes infinitely many
constraints on the occupation measure. The relaxation
of these constraints to moments up to order two of the
occupation measure and taking the dual of this problem
results in the well-known Riccati LMI solution approaches.
Since the variables in the relaxation of primal inf-LP
are discounted moments of the state and input, moment
constraints or certain class of chance constraints can be
naturally encoded in the inf-LP formulation.

Our paper is organized as follows. In Section 2 we re-
view the inf-LP approach to discrete-time infinite horizon
discounted stochastic control. In Section 3 we apply the
approach to LQG problems. In Section 4 we provide nu-
merical case studies. In Section 5 we summarize the results.
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2. INF-LP APPROACH TO STOCHASTIC CONTROL

Consider the discrete-time stochastic system

xt+1 ∼ τ(Bx|xt, ut), (1)

where xt ∈ X , ut ∈ U , and τ(.|x, u) is a stochastic kernel.
It assigns a probability distribution to Bx ∈ B(X) given x
and u, where B(X) is the set of Borel subsets of X . The
stochastic control problem is defined by

min
π∈Π

E
π
ν0

∞
∑

t=0

αtc0(xt, ut). (2)

Above, c0 : X×U → R+ is the running cost and α ∈ (0, 1)
is a discount factor, ν0 is an initial state distribution.
We consider randomized policies π ∈ Π, where Π is the
set of probability measures on U given X . That is, for
each x ∈ X , π(x) gives a probability distribution on the
input space U . The expectation E is with respect to the
probability measure induced by ν0, π and τ .

The solution to the stochastic control problem above can
be characterized as the solution of an infinite dimensional
linear program (inf-LP). To present this inf-LP, we first
define the infinite dimensional optimization spaces for the
primal and dual LPs. Define the weight functions

w(x, u) = ϵ+ c0(x, u), w̃(x) = min
u∈U

w(x, u), (3)

where ϵ > 0 so that the weights are bounded away
from zero. Let F(X × U),F(X) denote the space of real
valued measurable functions with bounded w, w̃-norms,
respectively. That is, for f ∈ F(X × U), f̃ ∈ F(X):

sup
(x,u)

|f(x, u)|
w(x, u)

< ∞, sup
x

|f̃(x)|
w̃(x)

< ∞.

Let M(X ×U),M(X) denote the space of measures with
finite w, w̃-variations, respectively. That is, for µ ∈ M(X×
U), µ̃ ∈ M(X):

∫

X×U
wdµ < ∞,

∫

X
w̃dµ̃ < ∞. (4)

Define the linear map T : M(X × U) → M(X) as:

[Tµ](B) = µ̃(B)− α

∫

X×U
τ(B|x, u)µ(dx, du), (5)

where µ̃(B) := µ(B,U) and B ∈ B(X). Analogously,
define the linear map T ∗ : F(X) → F(X × U) as:

[T ∗v] (x, u) = v(x) − α

∫

X
τ(dy|x, u)v(y).

Note that the second term above
∫

X τ(dy|x, u)v(y), is the
expectation of the function v under the stochastic kernel
τ . One can verify that T and T ∗ are adjoint operators:

< T ∗v, µ >X×U =< v, Tµ >X ,

where the bilinear maps are given by:

< c, µ >X×U =

∫

X×U
c(x, u)µ(dx, du),

< v, ν >X =

∫

X
v(x)ν(dx).

In the remainder, for simplicity, we drop the subscript of
< . , . > since the space is clear from the context. To
formulate the inf-LP corresponding to stochastic control,
we need the following standard assumptions (Hernández-
Lerma and Lasserre, 1996).

Assumption 1.

(a) The cost c0 is lower semi-continuous and inf-compact,
that is, for every x ∈ X , r ∈ R, the set {u ∈
U | c0(x, u) ≤ r} is non-empty and compact.

(b) The stochastic kernel τ is weakly continuous.
(c) supX×U

∫

X w̃(y)τ(dy|x, u)/w(x, u) < ∞.
(d) ν0 ∈ M+(X).

Let M+(X × U) ⊂ M(X × U) denote the cone of non-
negative measures. For ν0 ∈ M+(X), the constraint on
µ ∈ M(X × U), denoted by ν0 − Tµ = 0 refers to

ν0(Bx)− [Tµ](Bx) = 0, ∀Bx ∈ B(X). (6)

Theorem 1. The stochastic control problem (1), (2) can be
equivalently formulated as the following inf-LP:

min
µ∈M+(K)

< c0, µ > (P-SC)

s.t. ν0 − Tµ = 0. (7)

We summarize the idea of the proof and refer the readers to
(Hernández-Lerma and Lasserre, 1996) for details. Given
a policy π ∈ Π, one can define µ ∈ M+(X × U) as

µ(Bx, Bu) =
∞
∑

t=0

αt
P
π
ν0{(xt, ut) ∈ (Bx, Bu)}, (8)

where Bx ∈ B(X), Bu ∈ B(U). This measure corresponds
to discounted probability of (xt, ut) being in any Borel
subset of X × U and is referred to as the occupation
measure. It can be verified that the occupation measure
satisfies ν0−Tµ = 0. Furthermore, given any µ ∈ M+(X×
U), there exists a policy ϕ ∈ Π, satisfying

µ(Bx, Bu) =

∫

Bx

ϕ(Bu|x)µ̃(dx), (9)

for all Bx ∈ B(X), Bu ∈ B(U) [Proposition D.8(a) in
(Hernández-Lerma and Lasserre, 1996)]. It can be shown
that the cost (2) corresponding to the policy ϕ is

E
ϕ
ν0

∞
∑

t=0

αtc0(xt, ut) =< c0, µ > . (10)

Putting the above results together, the problem of finding
the optimal policy for (2) can be equivalently formulated
as finding a measure minimizing (10) subject to (7).

Whereas the inf-LP above provides the optimal occupation
measure and the optimal policy for the stochastic control
problem, the dual of this inf-LP can be used to find the
optimal value function. Furthermore, the duality gap is
zero (Hernández-Lerma and Lasserre, 1996).

To define this dual inf-LP, let the constraint on v ∈ F(X),
denoted by c0 − T ∗v ≥ 0 refer to

c0(x, u)− [T ∗v](x, u) ≥ 0, ∀(x, u) ∈ X × U. (11)

The dual inf-LP is given by:

max
v∈F(X)

< v, ν0 > (D-SC)

s.t. c0 − T ∗v ≥ 0. (12)

Remark. Constraint (12) is the Bellman inequality. In
particular, based on the Bellman principle of optimality, a
function v∗ is the optimal value function of the stochastic
control if and only if c0 − T ∗v = 0. Thus, the optimizer of
the above inf-LP satisfies the Bellman equality.



3. INF-LP APPROACH TO LQG PROBLEMS

Consider the linear system as a specialization of (1):
xt+1 = Axt +But + ωt, (13)

where x ∈ Rn, u ∈ Rm, ω ∈ Rn, ωt, are independent
identically distributed Gaussian random variables and
for all t, E{ωt} = 0 and E{ωtωT

t } = W . The initial
state is independent of the stochastic noise and has a
distribution ν0, with mean E{x0} = m0 and covariance
E{x0xT

0 } = Σ0. The discounted linear quadratic Gaussian
(LQG) problem is formulated as:

min
π∈Π

E
π
ν0

∞
∑

t=0

αt(xT
t Q0xt + uT

t R0ut). (14)

We assume the pair (A,B) is controllable and the pair
(A,C) is observable, where Q0 = CTC. Denote by Sn,
Sn
+ and Sn

++ the set of n× n symmetric, symmetric posi-
tive semidefinte and symmetric positive definite matrices,
respectively. We assume Q0 ∈ Sn

+ and R0 ∈ Sm
++.

To apply the inf-LP approach to this problem, first we
verify Assumption (1) as follows. The weight functions (3)
in the LQG problem are w(x, u) = ϵ + xTQ0x + uTR0u,
w̃(x) = ϵ+xTQ0x. Thus, F(X×U) and F(X) are spaces of
functions over X × U = Rn×m, X = Rn respectively, that
do not grow faster than quadratic functions. Furthermore,
by definition (4), M(Rn×m),M(Rn) are sets of measures
that have bounded variance. From Q0 ∈ S+, R0 ∈ S++,
part (a) of Assumptions (1) holds. The stochastic kernel
τ is Gaussian, which is continuous and has finite variance,
satisfying part (b). Part (c) holds since
∫

X
w0(y)τ(dy|x, u) = ϵ + xTATQ0Ax

+ 2xTATQ0Bu+ uTBTQBu+Tr(Q0W ) ∈ F(Rn×m).
Finally, part (d) holds due to finite variance of the initial
state distribution ν0.

3.1 Primal and Dual SDPs

We consider a relaxation of the inf-LP (P-SC), resulting in
an equivalent restriction of (D-SC), to obtain a tractable
formulation of these inf-LPs. These formulations are then
connected to the well-known Riccati LMIs to solve the
LQG (Balakrishnan and Vandenberghe, 2003).

First, consider the constraint ν0 − Tµ = 0 in (P-SC). It
can be verified that this is equivalent to < v, ν0 − Tµ >=
0, ∀v ∈ F(X). We relax this constraint by restricting F
to a subset F̂(X). In particular, define

F̂(X) = {v ∈ F(X) | v(x) = xTPx+ qTx+ r}, (15)
P ∈ Sn, q ∈ Rn, r ∈ R. Since v ∈ F(X) are quadratic, the
infinitely many constraint (7) on the measure µ are relaxed
to a set of finite constraints on its moments of order up to
two. These constraints will be derived as follows.

Introduce moments of measure µ as:

m =

∫

X×U
µ(dx, du) = µ(X × U) ∈ R+,

mx =

∫

X
xµ(dx, U) ∈ R

n,

Zxx =

∫

X
xxTµ(dx, U) ∈ Sn

+.

Similarly, mu, Zxu, Zuu are defined. For any S ∈ Rn×n,
Tr(S) denotes trace of the matrix S.

Proposition 2. (Primal SDP for LQG). By constrainingF(X)
to F̂(X), we obtain a relaxation of (P-SC) as

min Tr(Q0Zxx) + Tr(R0Zuu) (P-LQG)

s.t. Σ0 +m0m
T
0 − Zxx + αAZxxA

T +AZxuB
T

+BZT
xuA

T +BZuuB
T +mW ) = 0n×n (C2)

m0 −mx + α(Amx +Bmu) = 0n×1, (C1)
αm−m+ 1 = 0, (C0)

Z :=

⎡

⎣

m mT
x mT

u
mx Zxx Zxu

mu ZT
xu Zuu

⎤

⎦ ≽ 0, (Cp)

over the variables (m,mx,mu, Zxx, Zxu, Zuu).

Proof. Based on the definition of the moments, the cost
functions in Problem (14) can be expressed as:

< c0, µ >= Tr(Q0Zxx) + Tr(R0Zuu).

Next, expanding < v, ν0 − Tµ >= 0 we obtain the first
term as

< v, ν0 > =< xTPx+ qTx+ r, ν0 >

= Tr(PΣ0) +mT
0 Pm0 + qTm0 + r.

Using definition of T in (5), we expand < v,−Tµ >. The
first term is:

< v, µ̃ >=< xTPx+ qTx+ r,−µ̃ >=

−
∫

X
v(x)µ(dx, U) = −Tr(PZxx)− qTmx −mr.

The second term is obtained as:

α×
(

Tr(P (AZxxA
T +AZxuB

T +BZT
xuA

T +BZuuB
T )

)

+ qT (Amx +Bmu) +m
(

Tr(PW ) + r
)

.

In the above, we used the fact that the measure τ(dx|y, u)
has mean Ay+Bu and covarianceW . Each of the terms in
the constraint expansion above are linear in the variables
P, q, r. Since< v, ν0−Tµ >= 0 must hold for all v ∈ F̂(X),
that is, for all P ∈ Sn, q ∈ Rn, r ∈ R, the corresponding
coefficients of these variables need to equal zero. From this,
we obtain the set of affine constraints, (C0), (C1), (C2).
Constraint (Cp) holds since Z is moment of a positive
measure µ (Lasserre, 2009). ✷

Similarly, we can obtain the dual SDP as follows.

Proposition 3. (Dual SDP for LQG). By constraining F̂(X)
to F(X), we obtain a restriction of (D-SC) as follows:

min Tr(PΣ0) + Tr(Pm0m
T
0 ) + qTm0 + r (D-LQG)

s.t.

⎡

⎣

s0 sT1 sT2
s1 S11 S12

s2 ST
12 S22

⎤

⎦ ≽ 0,

with optimization variables, P, q, r and

s0 = r(α − 1) + αTr(PW ),

s1 =
1

2
(−I + αAT )q, s2 =

α

2
BT q,

[

S11 S12

ST
12 S22

]

=

[

αATPA− P +Q0 αATPB

αBTPA R0 + αBT PB

]

.

Furthermore, this SDP is the dual of (P-LQG).



Proof. The term < v, ν0 > in the cost function was
discussed in Proof of Proposition (2). For v ∈ F̂(X),
Constraint (11) becomes

xT (−P + αATPA+Q0)x+ 2αxTATPBu

+uT (αBTPB +R0)u+ qT (−I + αA)x

+αqTBu+ r(α − 1) + αTr(PW ) ≥ 0, ∀(x, u) ∈ X × U.

An equivalent way of writing the above constraint is:
[

1
x
a

]T ⎡

⎣

s0 s1 s2
sT1 S11 S12

sT2 ST
12 S22

⎤

⎦

[

1
x
a

]

≽ 0,

which leads to the constraint in (D-LQG). Using SDP
duality (Vandenberghe and Boyd, 1996), it can also be
verified that (D-LQG) is dual of (P-LQG). ✷

Remark. The primal and dual SDPs above are a gen-
eralization of the existing results in literature due to the
additional terms arising from zero and first order moments
of µ. If m0 = 0 from controllability of the pair (A,B) we
have mx = 0, mu = 0. Thus, removing the corresponding
dual variable q ∈ Rn, we can obtain that r = α

1−αTr(PW ).
This leads to the standard results in (Willems, 1971; Boyd
et al., 1994; Balakrishnan and Vandenberghe, 2003):

min Tr(PΣ0) +
α

1− α
Tr(PW ) (D-LQG0)

s.t. S :=

[

ATPA− P +Q0 αATPB
αBTP R0 + αBTPB

]

≽ 0.

In the rest of the paper, we consider m0 = 0 and thus, we
work with (D-LQG0) and its dual.

If the SDP (D-LQG0) and its dual have non-empty op-
timal sets, the complementary slackness condition holds
(Vandenberghe and Boyd, 1996):

Z∗S∗ = 0 ⇐⇒
[

Zxx Zxu

ZT
xu Zuu

]

×
[

−P +Q0 + αATPA αATPB
αBTPA R0 + αBTPB

]

= 0,

where we dropped ∗ from individual terms above. Expand-
ing above equality, we obtain that

0 = − P +Q+ αATPA+

αATPB(R + αBTPB)−1αBTPA, (16)

ZT
xuZ

−1
xx = (R + αBTPB)−1αBTPA, (17)

Zuu = ZT
xuZ

−1
xx Zxu. (18)

Equation (16) is the algebraic Riccati equation of the
infinite horizon discounted LQG problem. Equation (17)
provides the optimal controller gain, K = ZT

xuZ
−1
xx .

Remark. An alternative derivation of the optimal policy
is provided by considering the occupation measure µ in the
inf-LP. Since 1

mµ(X × U) = (1−α)µ(X × U) is a Gaussian
measure (alternatively, by considering only the knowledge
of the first and second order moments of this measure),
the conditional measure ϕ(u|x) (9) can be obtained as

ϕ(u|x) ∼ N (mu|x, Zu|x),

with the conditional mean mu|x = mu +ZT
xuZ

−1
xx x and co-

variance Zu|x = 1
m (Zuu−ZT

xuZ
−1
xx Zxu). By complementary

slackness of (18), the covariance of this measure is zero
and thus, the optimal policy predicted by inf-LP (P-SC)
is deterministic and is equal to ϕ(x) = ZT

xuZ
−1
xx x.

3.2 Constrained LQG

One of the advantages of the inf-LP (P-SC) is that
constraints of the form Eπν0

∑∞
t=0 α

tci(xt, ut) ≤ βi, i =
1, 2, . . . , N , can readily be incorporated. In particular,
from the definition of the occupation measure (8):

E
π
ν0

∞
∑

t=0

αtci(xt, ut) ≤ βi ⇐⇒ < ci, µ > ≤ βi.

Such constraints correspond to multi-objective stochastic
control, where ci, for i = 1, . . . , N , denotes a set of
additional objectives and βi ∈ R+ are desired bounds.

For the LQG problem, let c1(xt, ut) = xT
t Q1xt + uT

t R1ut.
Then, constraint < c1, µ > ≤ β1 is equivalent to
Tr(Q1Zxx)+Tr(R1Zuu) ≤ β1 in the primal SDP (P-LQG).
From our derivation of (D-LQG0), it can be verified that
the dual SDP with the additional constraint is

min Tr(PΣ0) +
α

1− α
Tr(PW )− γβ (C-LQG)

s.t.

[

−P +Q+ αATPA αATPB
αBTPA R + αBTPB

]

≽ 0,

where Q = Q0 + βQ1 and R = R0 + βR1 and the
optimization variables are P and the dual multiplier of
the constraint γ > 0. This is consistent with alternative
derivations in multi-criterion LQG in (Boyd et al., 1994).

Due to Zxx and Zuu corresponding to the second order dis-
counted moments of the occupation measure, constraints
Tr(Q1Zxx) ≤ β1 can also be used to pose chance con-
straints on the state of the form

∞
∑

t=0

αt
P
π
ν0(|g

Txt| < h) ≥ 1− ϵ. (19)

Proposition 4. Given a policy π, let µ be the resulting
occupation measure. Let Q1 = ggT , and β1 = ϵh2

Tr(Q1Zxx) ≤ β1 ⇒
∞
∑

t=0

αtP πν0(|g
Txt| ≤ h) ≥ 1− ϵ.

Furthermore, for the case in which π(x) = Kx and in

the LQG setting, letting β1 = h2

2(erf−1(1−ϵ/m)2)
,where erf

denotes the error function, the constraint above is also
sufficient for the chance constraint.

Proof. DefineXh = {x : |gTx| ≥ h}, so that µ(Xh, U) =
∑∞

t=0 α
tPπν0

(

xt ∈ Xh

)

. Then, the chance constraint (19)
can be written as µ(Xh, U) ≤ ϵ. Now

0 ≤ h21Xh
≤ (gTx)21Xh

Taking integral with respect to µ we obtain that

h2µ(Xh, U) ≤
∫

X
(gTx)21Xh

µ(dx, U) ≤ gTZxxg.

It follows that gT Zxxg
h2 < ϵ ⇒ µ(Xh, U) < ϵ.

If π is linear, the resulting occupation measure µ is a scaled
(by factor m = 1

1−α ) Gaussian measure. Since the cumu-
lative distribution function of the Gaussian distribution is
invertible and is given through the erf function, we have

µ(Xh, U) < ϵ ⇐⇒ 1 + erf(
−h

σ
√
2
) ≤ ϵ

m

⇐⇒ h2

2(erf−1(1− ϵ/m)2)
≥ gTZxxg. ✷



Remark. The above chance constraints were also con-
sidered in infinite horizon average cost LQG problems
(Schildbach et al., 2015). The authors derived analogous
SDPs for the average cost criterion. Their approach was
through considering the steady-state second order mo-
ments of the closed loop linear system, corresponding to
a linear policy. As shown here, this approach is equivalent
to the relaxation of the primal infinite dimensional LP
from which the occupation measure and the corresponding
second order moments were derived.

4. NUMERICAL CASE STUDIES

Our goal is to use the constrained LQG formulation of
the previous section to study effects of multi-objective
and chance constraints on the LQG problem. To this
end, we consider two linear systems, each with a nominal
objective, and closed-loop infinite horizon second order
moment constraints on states or inputs. In both cases, we
solved SDP (P-LQG) using the parser CVX (Grant et al.,
2008) with the solver SDPT3 (Toh et al., 1999).

Our first example is a second order system to study effects
of chance constraints (19). In our second example, we con-
sider a model for a miniature coaxial helicopter linearized
around a hover maneuver, with a nominal objective of min-
imizing deviations from hover. Our secondary objective is
to minimize control energy.

4.1 Two-state system with state constraints

The system dynamics parameters are

A =

[

1 0.1
0 1

]

, B =

[

0
1

]

, W =

[

0.1 0
0 0.1

]

.

The primary and secondary objective parameters are

Q0 =

[

1 0
0 1

]

, Q1 =

[

0 0
0 1

]

, R0 = 1, R1 = 0.

The discount factor is α = 0.99 and x0 ∼ N (m0,Σ0), with
mean m0 = [−0.46, 0.58]T and covariance Σ0 = I. The
second objective, Tr(Q1Zxx) is constrained to be less than
a parameter β. As such, we require

∑∞
t=0 α

tP πν0([0, 1]xt ≤
h) ≥ 1− ϵ. This has the interpretation of a soft constraint
for the second state to remain close to zero.

We vary β between the value of the second objective
achieved using the optimal policy for first objective with-
out the constraint and a lower tighter value that forces
the constraint to be active. Figure (4.1) shows the optimal
state covariance Z∗

xx. It is seen that as the constraint is
tightened, the discounted occupancy ellipse changes to one
with less variation in the second state, due to definition of
Q1, but more variation in the first state. The cost is 378
without the constraint and 981 with β = 15.

4.2 Miniature coaxial helicopter

We now consider a simplified eight-state model of a minia-
ture two-rotor coaxial helicopter linearized around a hover
maneuver based on (Kunz et al., 2013; Summers et al.,
2013). The states of the system are the three-dimensional
position and heading deviations from a desired hover pose
in an inertial reference frame and the associated velocities
in a body reference frame. There are four inputs: pitch,
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Fig. 1. Discounted state occupancy ellipses {x ∈ R2 |
(x − m∗

x)
TZ∗−1

xx (x − m∗
x) = 1} as the constraint

associated with the secondary cost is tightened from
unconstrained (blue) to β = 15 (red).

roll, thrust, and yaw, used for forward flight, sideways
flight, vertical flight, and heading change, respectively.
Pitch and roll are actuated with a swashplate mechanism
connected to two servos. Thrust is actuated by the rota-
tional speed of the rotor motors, and yaw is actuated by a
rotational speed difference of the rotor motors. The pitch
and roll angles and velocities are neglected in the model,
and the pitch and roll inputs are assumed to act directly
on the lateral position states.

The dynamics are discretized in time by Euler integration
with sampling time ts. The parameters of the the discrete-
time system dynamics are

A =

[

I4 tsI4
0 I4 + tsdiag([kx, ky, kz, kψ])

]

,

B =

[

04
tsdiag([bx, by, bz, bψ])

]

, W =

[

04 0
0 0.1I4

]

,

where [kx, ky, kz , kψ] = [−0.5, −0.5, 0, −5] represent fuse-
lage drag parameters and [bx, by, bz, bψ] = [2.0, 2.1, 11, 18]
represent inertial parameters mapping actuator influence
to state derivatives. The values of the parameters are taken
from (Kunz et al., 2013) and are based on a grey-box
system identification with experimental data.

We consider a scenario in which the deviations from the
desired hover pose are to be minimized, subject to an
infinite-horizon closed-loop constraint on the expected dis-
counted control energy. The trade-off between trajectory
optimization and energy cost minimization is a classical
control tradeoff. It is encoded in our framework with the
primary and secondary cost parameters

Q0 = I8, Q1 = 08, R0 = 04, R1 = I4.

The discount factor is α = 0.99 and the threshold is
β = 50. The constraint on control energy is achieved with
the constrained LQG formulation by solving (P-LQG).
This constraint is satisfied at a price of poorer regulation
compared to the unconstrained case as illustrated by the
closed-loop system performance in Fig. 2 .
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Fig. 2. Classical state regulation and control energy trade-
off achieved with the constrained LQG formulation.
The plots show a realization of the position and
heading state and control norm evolution with and
without the constraint on the closed-loop infinite-
horizon expected discounted control energy.

5. CONCLUSIONS

We established a link between the semidefinite programs
(SDPs) for solving the LQG problem and the infinite
dimensional linear programming (inf-LP) approach to
stochastic control. The inf-LP approach is an equivalent
alternative to the Dynamic Programming principle of op-
timality. While the inf-LP formulation has been known
since 1950’s, its computational aspects and connections
with existing control theoretic results have not been fully
explored. We showed that the LMI derived from the oc-
cupation measure formulation of the inf-LP corresponds
to the dual of the well-known Riccati LMI. Furthermore,
given second order moments of the occupation measure, we
showed that multi objective and chance constraints have
a natural interpretation in this framework, and these for-
mulations coincide with alternative approaches to derive
the results. We illustrated the constrained LQG problem
with two numerical case studies.

Extensions of this work to continuous-time LQG, and
average cost LQG problems are straightforward and will
complete the picture. While a rich theory of approximate
dynamic programming (ADP) exists, it would be inter-
esting to enrich the approximation procedures, through
advanced optimization techniques for solving the inf-LPs
corresponding to stochastic control. There has been recent
promising steps towards this objective (??). It will be
interesting to further apply these techniques to large-scale
and constrained stochastic control problems.
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Constrained Markov control processes in Borel spaces:
the discounted case. Mathematical Methods of Opera-
tions Research, 52(2), 271–285.

Hernández-Lerma, O., González-Hernández, J., and
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