
Approximate dynamic programming for stochastic reachability

Nikolaos Kariotoglou, Sean Summers, Tyler Summers, Maryam Kamgarpour and John Lygeros

Abstract— In this work we illustrate how approximate dy-
namic programing can be utilized to address problems of
stochastic reachability in infinite state and control spaces. In
particular we focus on the reach-avoid problem and approxi-
mate the value function on a linear combination of radial basis
functions. In this way we get significant computational advan-
tages with which we obtain tractable solutions to problems
that cannot be solved via generic space gridding due to the
curse of dimensionality. Numerical simulations indicate that
control policies coming as a result of approximating the value
function of stochastic reachability problems achieve close to
optimal performance.

I. INTRODUCTION

The main reason stochastic optimal control problems have
been of particular interest to a wide range of researchers
is the inherent uncertainty of real-world dynamical systems
that give rise to various stochastic formulations. Among these
formulations, we will be concerned with a version of Markov
decision processes (MDPs) which can be related to discrete
time stochastic hybrid systems (DTSHS) as shown in [1]
and [2]. For discrete time MDPs, several stage cost optimal
control problems (e.g discounted cost, average cost, etc)
have been shown to be solved via dynamic programming
(DP) as in [3], [4], [5]. Furthermore, due to the infamous
curse of dimensionality, approximation techniques have been
proposed to solve DPs. A well studied approach is that
of linear programming [6], [7], [8] where the goal is to
approximate the value function of these problems on a space
spanned by a predefined set of basis functions.

The situation is somewhat different for problems of
stochastic reachability [1], [2] where dynamic program-
ming formulations have been shown to exist but without a
systematic way to efficiently approximate the solution via
linear programming. Stochastic reachability problems such
as safety, reach-avoid and target hitting are of particular
interest due to the interpretation of their value function as
the probability of achieving the underlying objectives. For the
purpose of model checking and verification [9] these value
functions are used to directly infer system properties.

We restrict ourselves to the reach-avoid problem and
illustrate that close approximations can be achieved in the
case of finite horizon problems defined on compact but
infinite control and state spaces. This is achieved by choosing
a special class of basis functions to approximate the value
function and stochastic kernel of the problem. Later on, the
randomized sampling technique of [10], [11] is used to han-
dle infinite dimensional constraints. An alternative method

This research was partially supported by the European Commission under
project MoVeS (FP7-ICT-2009-5) - Grant number 257005. The work of
Nikolaos Kariotoglou was supported by SNF grant number 2000211 37876

for handling the infinite constraint set using polynomial basis
functions and sum of squares techniques is explored in a
companion paper [12].

The paper is organized as follows: In the first section
we introduce the specific reach-avoid stochastic reachability
problem that we will deal with. Using previous results, we
illustrate how this can be solved by a dynamic program and
equivalently a linear program which is infinite dimensional in
both decision variables and constraints. When the dimension
of the product space of state and control spaces is low,
standard (grid based) dynamic programming techniques can
be used to obtain solutions. The limitations are quite strict,
due to the curse of dimensionality, highlighting the need of
approximation methods.

In the second part we introduce a specific basis function
that for a certain class of systems transforms the given
infinite problem to one with finite decision variables but
still infinite constraints; we call this the semi infinite LP.
Moreover, due to properties of the chosen basis, integral
calculations in high dimensions admit an analytic solution
(over hyperrectangles) making them computationally effi-
cient. To tackle the infinite constraints we follow a scenario
based approach which provides a lower bound on the sample
number needed to satisfy the constraints probabilistically,
with a certain confidence [10], [11]. Finally, using the idea of
sampling again, we synthesize an approximate control policy
and evaluate the performance of the proposed methodology
both on the approximation of the optimal value function and
the resulting control policy.

II. STOCHASTIC REACHABILITY

The basic framework for stochastic reachability in the
context of discrete time stochastic hybrid systems (DTSHS)
is presented in [1], [2]. For the purpose of this work we
will focus on the reach-avoid problem for Markov decision
processes (MDPs) which are an equivalent description for
DTSHSs. More precisely we consider a discrete time con-
trolled stochastic process xt+1 ∼ Q(dx|xt, ut), (xt, ut) ∈
X × U with a transition kernel Q depending on the current
state and control action. The state space X ⊆ Rn and control
space U ⊆ Rm are both infinite.

Consider a safe set K ′ ∈ B(X) and a target set K ⊆ K ′

where B(X) denotes the Borel σ-algebra of X . The reach-
avoid problem over a finite time horizon N is to maximize
the probability of xt hitting the set K at some time tK ≤ N
while staying in K ′ for all t ≤ tK . We denote the control
policy associated with this probability µ = {µ0, . . . , µN−1}
with µi : X → U , i ∈ {0, . . . , N − 1} and for an initial state
x0 we denote it as: rµx0

(K,K ′) := Pµx0
{∃j ∈ [0, N] : xj ∈

K ∧ ∀i ∈ [0, j − 1], xi ∈ K ′ \K}. Therefore, for a given
time indexed policy µ, we are looking at the probability that
xj hits K before K ′ \ K for some time j ≤ N . In [2],
rµx0

(K,K ′) is shown to be equivalent to the expected value
of the following sum multiplicative cost function:

rµx0
(K,K ′) = Eµx0

 N∑
j=0

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

 (1)

and the task is to select a state feedback control policy
µ(x) such that (1) is maximized. Note that to calculate µ
that achieves this maximum (µ∗), one needs to calculate
{µ∗0, . . . , µ∗N−1}. For the rest of this work we drop the
notation of time since it is clear from context and denote
xt, ut simply as x, u.

A. Solution via dynamic programming

In [2], the solution to this problem is shown to be given
by a dynamic recursion involving the value functions V ∗k :
X → [0, 1] for k = 0, 1, . . . , N − 1 :

V ∗k (x) = sup
u∈U

{
1K(x) + 1K′\K(x)H(x, u, V ∗k+1)

}
V ∗N (x) = 1K(x), H(x, u, Z) =

∫
X
Z(y)Q(dy|x, u)

(2)

where Q is the process stochastic kernel describing the
evolution of xt and Z : X → [0, 1]. The optimal control
policy for a state x ∈ K ′ \K is then given by:

µ∗k(x) = arg sup
u∈U

{
1K(x) + 1K′\K(x)H(x, u, V ∗k+1)

}
.

(3)

The value of the above recursion at k = 0 and for any
initial state x0 is the solution to (1), V ∗0 (x0) = supµ r

µ
x0

.

B. Reach avoid expressed as an infinite LP

Solving problem (2) requires gridding the state and control
spaces and working backwards from the known value func-
tion V ∗N (x) at k = N . In this way, the value of V ∗0 (x) can be
calculated on the grid points of X while the optimal control
policy at each step k is calculated and stored when evaluating
the supremum over the grid of U . This is a computationally
expensive process and as the size of the state and control
spaces grows, it becomes intractable.

We define the following operators for any function V :
X → [0, 1]:

Tu[V](x) := 1K(x) + 1K′\K(x)H(x, u, V)

T [V](x) := sup
u∈U

Tu[V](x) (4)

and use them to express problem (2) as an infinite LP, the
solution of which we will approximate in the following
section.

Proposition 1. For each k ∈ {0, . . . , N − 1}, V ∗k (x) is the
solution to the following optimization problem:

min
Vk(·)

∫
X
Vk(x) dx

s.t Vk(x) ≥ T [V ∗k+1](x) ∀x ∈ X
(5)

Proof. Let J∗(x) be the solution to the above optimization
problem and assume ∃Ac ∈ B(X) (with non-zero measure)
such that ∀x′ ∈ Ac, J

∗(x′) 6= V ∗k (x′). Since J∗(x′) is
feasible, it must be that J∗(x′) > V ∗k (x′). Then decreasing
J∗(x′) on Ac until J∗(x′) = V ∗k (x) decreases

∫
X J
∗(x) dx.

With this we conclude that J∗(x) could not be optimal unless
J∗(x) = V ∗k (x), ∀x ∈ Ac.

The problem stated in Proposition 1 is equivalent to the
following one, using the fact that Vk(x) ≥ T [V ∗k+1](x),∀x ∈
X ⇐⇒ Vk(x) ≥ Tu[V ∗k+1](x),∀(x, u) ∈ X × U :

min
Vk(·)

∫
X
Vk(x) dx

s.t Vk(x) ≥ Tu[V ∗k+1](x) ∀(x, u) ∈ X × U .
(6)

This is a linear optimization problem (linear cost and con-
straints) over the infinite space of functions Vk(·) and with
an infinite number of constraints. To find a solution we rely
on approximation methods to make both decision variables
and constraints finite. In the following sections we restrict
ourselves to a given basis function set and illustrate how
(6) can be transformed to obtain tractable (approximate)
solutions. As a first step we will transform (6) by replacing
the function Vk(x) with its representation V̂k(x) on a given
finite set of M basis functions φ : X → R for each
k ∈ {0, . . . , N − 1}, such that:

Vk(x) ≈ V̂k(x) =

M∑
i=1

wiφ(x) (7)

with appropriately selected weights wi. Note that since V̂k(x)
is linear on the basis weights wi, any such approximation can
be written as an infinite dimensional linear program once the
functions φ(x) are fixed. We now discuss the choice of a
particular type of function φ.

III. RADIAL BASIS FUNCTIONS

We choose the Gaussian function, which is a type of radial
basis function (RBF) and the sum of RBFs is known to be
a universal approximator for any continuous function on a
compact subspace of Rn. In particular, the sum of RBFs
forms a neural network that with sufficiently many hidden
layers (basis elements) allows universal approximation [13].
The parametrized radial basis functions φ : Rn → R
considered here are:

φ(x; c, ν) :=

n∏
i=1

ψ(xi; ci, νi). (8)

with elements xi, ci, νi ∈ R, i ∈ {1, . . . , n} and x, c, ν ∈
Rn. The functions ψ : R→ R are Gaussian functions defined
as:

ψ(xi; ci, νi) :=
1√

2νiπ
e
− 1

2

(xi−ci)
2

νi .

which are parametrized by the mean ci and variance νi, i ∈
{1, . . . , n}. A neural network is then constructed by taking
a finite sum of such functions φ as in (7)

A. Multi-dimensional integration

A property of the chosen RBFs is that they admit an
analytic expression to multi-dimensional integration over
hyperrectangles, involving the well-studied error function
erf . More precisely, for the integral of a function V (x)
approximated by V̂ (x) on a n-dimensional hyperrectangle
AB = [a1, b1]× · · · × [an, bn], it holds:

∫
AB

V̂ (x) dx =

M∑
i=1

wi

n∏
k=1

∫ bk

ak

ψ(xj , ci,j , νi,j)

=

M∑
i=1

wi

n∏
k=1

−1

2
erf

(
xk − ci,k − bk√

2νi,k

)

+
1

2
erf

(
xk − ci,k − ak√

2νi,k

)

since on a compact interval [a, b]:∫ b

a

1√
2νπ

e−
1
2

(x−c)2
ν dx = − erf(

x− c− b√
ν

)

+ erf(
x− c− a√

ν
)

In the following sections we have implicitly assumed that
the stochastic kernel Q is restricted to the set of models
that can be expressed as a summation of RBFs. As a result,
H(x, u, V̂) reduces to an analytical expression similar to
the one given above for the integral of V̂ (x). The result
is particularly useful for problems where integration over
high dimensions is carried out repeatedly. In our attempt to
address stochastic reachability problems with approximate
dynamic programming it eliminates the need for Monte
Carlo integration which otherwise occupies most of the
computation time. In the approximation of the value function,
an integral over the dimension of X is evaluated for every
pair (x, u). Even if both spaces are finite, the computation
time required for evaluating the integral is enough to make
non-trivial problems intractable.

B. Semi infinite LP

The approximation of V (x) ≈ V̂ (x) in (7) is linear in
the weights wi which leads to the reformulation of problem
(6) for k ∈ {0, . . . , N − 1} to a semi-infinite LP with a
finite number of decision variables and an infinite number
of constraints:

min
w1,...,wM

∫
X
V̂k(x) dx

s.t V̂k(x) ≥ Tu[V̂ ∗k+1], ∀(x, u) ∈ X × U

V̂k(x) =

M∑
i=1

wi

n∏
j=1

ψ(xj ; ci,j , νi,j)

(9)

The above results allow the reach-avoid problem described
in the previous section to be approximately solved. It is
well known that current methods utilize space gridding and
are limited due to the curse of dimensionality [14] and the
exponential growth in storage and computation requirements
with respect to the dimension of X×U . Being able to reduce
this by an order of magnitude is a significant improvement.

IV. APPROXIMATE DYNAMIC PROGRAMMING

The solution to the semi-infinite LP reach-avoid problem
is a projection of the optimal value function onto the span
of the proposed RBF mixture. It has been impossible so far
however to state conditions on the system’s transition kernel
Q and the reachability sets K,K ′ for finding particular basis
such that the value function belongs in the span. Hence, the
solution to the above LP is only approximate. However, along
the lines of [6] we make the following proposition:

Proposition 2. The solutions for each k ∈ {1, . . . , N − 1}
to problem (9) minimize the following norm:

‖V̂ ∗k (x)− V ∗k (x)‖1 =

∫
X
|V̂ ∗k (x)− V ∗k (x)|dx

over the same constraints V̂k(x) ≥ Tu[V̂ ∗k+1]. To prove
Proposition 2 we will make use of the following claim:

Claim 1. For every k ∈ {1, . . . , N} it holds that V̂ ∗k (x) ≥
V ∗k (x) where V ∗k (x), V̂ ∗k (x) are the solutions to problems
(2),(9) respectively.

Proof. By induction. First of all we assume that V̂ ∗N (x) =
V ∗N (x). For k = N − 1, due to feasibility, it holds that
V̂ ∗N−1(x) ≥ T [V̂ ∗N](x) = T [V ∗N](x) = V ∗N−1(x). Assuming
that for k+1 it holds that V̂ ∗k+1(x) ≥ V ∗k+1(x) we show that
V̂ ∗k (x) ≥ V ∗k (x).

V̂ ∗k+1 ≥ V ∗k+1 ⇒ T [V̂ ∗k+1] ≥ T [V ∗k+1]⇒
V̂ ∗k ≥ T [V̂ ∗k+1] ≥ T [V ∗k+1] = V ∗k (x)⇒ V̂ ∗k ≥ V ∗k .

Proof. According to Claim 1, V̂ ∗k (x) ≥ V ∗k (x), ∀x ∈ X
hence:

‖V̂ ∗k (x)− V ∗k (x)‖1 =

∫
X
|V̂ ∗k (x)− V ∗k (x)|dx

=

∫
X
V̂ ∗k (x)− V ∗k (x) dx =

∫
X
V̂ ∗k (x) dx−

∫
X
V ∗k (x) dx

which implies that minimizing ‖V̂ ∗k (x)− V ∗k (x)‖1 is equiv-
alent to minimizing

∫
X V̂

∗
k (x) dx.

On top of the approximation introduced here we also have
to approximate the infinite number of constraints. We will use
a well known result by [11], [10], to convert these to a chance
constraint with a certificate of confidence on its feasibility.
More precisely, randomized sampling will be used to solve
the following epigraph reformulation of (9):

min
w1,...,wM ,γ

γ

s.t P
{

(x, u) ∈ X × U
∣∣∣V̂k(x) < Tu[V̂ ∗k+1]

}
< ε∫

X
V̂k(x) ≤ γ, V̂k(x) =

M∑
i=1

wi

n∏
j=1

ψ(xj , ci,j , νi,j)

Intuitively, as explained by [11], the infinite constraint is now
required to be satisfied on all but a fraction ε of the space X×
U with probability 1− β. To achieve this, the authors prove
that the sample size must be at least Ns ≥ 2ε (ln(1/β) + d).
To deal with the chance constraint, we follow a scenario
based approach. The fraction ε ∈ (0, 1) and confidence β ∈
(0, 1) are design choices while d = dim(X ×U) refers to the
number of the decision variables in the optimization problem.
Note that in the version of the problem considered here, the
space X × U is treated as an uncertainty set and the results
hold irrespective of the probability distribution over X × U
used to draw the samples. Drawing Ns samples and solving
the following LP gives for each k ∈ {1, . . . N −1} a V̂ ∗k (x)
that satisfies all but an ε fraction of the constraints with a
confidence 1− β.

min
w1,...,wM

∫
X
V̂k(x) dx

s.t V̂k(xs) ≥ Tus [V̂ ∗k+1](xs), ∀s ∈ {1, . . . , Ns}

V̂k(xs) =

M∑
i=1

wi

n∏
j=1

ψ(xsj , ci,j , νi,j)

(10)

The pairs (xs, us) denote the sth sample drawn from X ×
U and lead to a super-optimal solution without guarantees
regarding the super-optimality gain. Consequently, it is no
longer guaranteed that V̂ ∗k (x) ≥ V ∗k (x), ∀x ∈ X .

A. Impact on reachability

The number Ns corresponds to the number of evaluations
of Tu[V ∗k+1](x) needed to achieve the desired confidence.
The use of RBFs of form (8) allows the analytic calculation
of the integral involved in the introduced operators. The
total computational time is therefore reduced significantly for
each constraint evaluation. As a consequence, the resulting
approximation not only provides a solution when gridding
methods fail, but in cases where they don’t, reduces calcula-
tions requiring hours to ones requiring minutes - See Table
I for an example. Finally, as illustrated in section V, the
(optimal) approximate controller achieves close to optimal
performance.

B. Optimal control policies

The optimal control policy µ∗k(x) which comes as a
solution to (3) for a given value function V ∗k (x) and initial
state x is different from the solution of the following problem
where the value function approximation at k + 1 is used:

µ̂∗k(x) = arg sup
u∈U
{1K(x) + 1K′\K(x)H(x, u, V̂ ∗k+1)} (11)

We could not obtain an analytic solution to the problem
of (11) even though we have an analytic expression for
V̂ ∗k+1(x). We will employ randomized sampling once again
and solve the following optimization problem instead:

min
γ

γ

s.t P
{
u ∈ U

∣∣∣Tu[V̂ ∗k+1](x) > γ
}
< ε

(12)

As stated previously, the solution comes with a certain
probabilistic confidence by drawing Ns samples from U .
Notice that since x is fixed, we now only sample the control
space thus reducing the number of samples needed during
the on-line computation of the optimal approximate control
policy. Also note that u∗(x) is obtained by looking at the
dual variables of (12) since γ is a scalar and there will be
only 1 support constraint.

The algorithms for approximating the value function and
the associated control policy are summarized below.

Algorithm 1 Recursive value function approximation
1: Randomly place {c1, . . . , cM} basis centers on K ′ \K
2: Choose {ν1, . . . , νM} basis variances
3: Initialize V̂ ∗N (x)← V ∗N (x)
4: for all n ∈ {N − 1, . . . , 1} do
5: Sample Ns pairs (xs, us) uniformly from X × U
6: for all (xs, us) do
7: Evaluate b(xs, us) = Tus [V̂ ∗n+1](xs)
8: end for
9: Solve the LP from (10)

10: end for

Algorithm 2 Approximate control policy
1: Measure the system state x ∈ K ′
2: Sample Ns points us uniformly from U
3: for all us do
4: Evaluate p(us) = Tus [V̂ ∗1](x)
5: end for
6: Calculate µ̂∗(x) = arg maxus p(u

s)
7: Apply µ̂∗(x) to the system.

V. SIMULATION RESULTS

A. Gridded vs approximate value function

To illustrate the performance of the proposed method on
problems of stochastic reachability, we set up a reach-avoid

Method Total time (min) ‖V ∗0 (x)−V̂ ∗0 (x)‖1
‖V ∗0 (x)‖1

DP 748 0
ADP, Ns = 500 0.10 0.492
ADP, Ns = 1000 0.21 0.371
ADP, Ns = 10000 0.45 0.083
ADP, Ns = 20000 0.89 0.054
ADP, Ns = 200000 9.22 0.023

TABLE I
COMPUTATION TIME COMPARISON BETWEEN THE GRIDDED AND THE

APPROXIMATE VALUE FUNCTION

problem for a 2D stochastic linear system with a 2D control
input. Both control and state spaces are infinite and compact
domains while the noise is a non-zero mean 2D Gaussian
distribution with diagonal covariance matrix. Note that the
DP solution for this problem requires gridding both the state
and control spaces giving rise to a 4D grid. A transition
probability matrix calculated for such a grid requires several
hundred megabytes for storing and increasing any space to
3D will make the solution intractable. The dynamics chosen
for the particular example are of the form xk+1 = Axk +
Buk + w, w ∼ N (µ,Σ).

The target set K = {x ∈ [−1, 1]2} and safe set K ′ =
{x ∈ [−7, 7]2} are rectangular such that K ⊆ K ′ and the
time horizon is chosen as N = 5. The gridded solution
for this problem is denoted as V ∗0 (x) and according to (2)
requires N−1 recursion evaluations, given V ∗N (x) = 1K(x).
Each recursion requires a numerical integral computed on
the grid of X for each point of U in order to calculate
supu∈U . Following the approximate dynamic programming
method outlined in this work with the particular choice of
RBFs, we can improve on the computation time required
without sacrificing much accuracy - Table I. Moreover, we
can obtain an explicit approximation for the value function
in continuous space as opposed to the grid solution. In future
work we will use this to further investigate properties of the
optimization problem of the optimal control policy (11).

Using M = 100 basis centers randomly placed on K ′\K,
we solve problem (10) by uniformly sampling the set X ×U ,
Ns times for a choice of ε = 0.01 and β = 0.01. Fig
1 shows V̂ ∗0 (x) =

∑M
i=1 w

∗
i

∏d
j=1 ψ(xj ; ci,j , νi,j) for a

constant variance of 8, color coded by the normalized 1-norm
error with respect to V ∗0 (x). Fig. 2 shows the normalized 1-
norm error between the DP value function and the approx-
imate one ‖V ∗0 (x) − V̂ ∗0 (x)‖1/‖V ∗0 (x)‖1 as a function of
constraint samples Ns. The final choice of trade-off between
computational time and accuracy depends on the application.
As an indication, consider that the particular V̂ ∗0 (x) was
calculated more than 80 times faster than V ∗0 (x) and within
accuracy of ≈ 2.5%.

B. Gridded vs approximate control policy

Here we compare the performance of the optimal con-
trol policy (3) against the approximate policy that comes
as a solution to (12). To carry out this test, we uni-
formly sampled 100 initial states xi0 from K ′ \ K,

x
y

Va
lu

e
fu

nc
tio

n
va

lu
e

Fig. 1. Value function comparison. The approximate solution is plotted,
color coded by the error V̂ ∗0 (x)− V ∗0 (x).

100 200 1000 2000 10000 20000 100000 200000
0

0.5

1

1.5

2

2.5

Number of samples

N
or

m
al

iz
ed

 1
-n

or
m

 e
rr

or

Fig. 2. Value function 1-norm error with respect to number of samples
Ns.

i ∈ {1, . . . , 100} and for each ran 1000 simulations of
the tK-step controls {µ∗0(xi0), µ∗1(xi1), . . . , µ∗tK (xitK)} and
{µ̂∗0(xi0), µ̂∗1(xi1), . . . , µ̂∗tK (xitK)}. Note that the gridded pol-
icy is only defined on the grid of X while the approximate
one can be calculated for any point x ∈ X without interpo-
lation needed. The performance was measured according to
how many trajectories of the 1000 simulations (all starting
at one of the different xi0) managed to hit K within N
steps, without hitting X \K ′ prior to that. Fig. 3 shows the
mean absolute error over all xi0, of the success probabili-
ties corresponding to {µ∗0(xi0), µ∗1(xi1), . . . , µ∗tK (xitK)} and
{µ̂∗0(xi0), µ̂∗1(xi1), . . . , µ̂∗tK (xitK)}, as a function of sample
points Ns.

Although several approximations are taking place in subse-
quent steps of the presented method, the quality of the final
approximate control policy suggests a potential of further
exploitations. The main drawback of the presented approach
is the fact that an on-line optimization problem (12) needs
to be solved at every horizon step, in order to retrieve the
control policy. For the exact grid solution, the policy comes
for free with the construction of the value function. However,
as already mentioned, the calculations become prohibitive as
the dimensions increase.

M
ea

n
ab

so
lu

te
 e

rr
or

 o
f s

uc
ce

ss
pr

ob
ab

ili
tie

s

Number of samples

100 200 300 400 500 600 700 800 900 1000

0.04

0.045

0.05

0.055

0.06

0.065

Fig. 3. Mean absolute error between exact and approximate control policies
as a function of samples on the space U

C. Approximate solution for a high dimensional problem
To illustrate that the proposed method can be applied on

higher dimension problems, we considered a 3D stochastic
linear system with a 3D control input and a 3D normally
distributed noise with diagonal covariance matrix. The target
and safe set were defined as K = {x ∈ [−1, 1]3} and
K ′ = {x ∈ [−7, 7]3} respectively. In order to solve the
reach-avoid problem using the exact DP (2) on a grid, one
needs to traverse the 6D grid X ×U . This is a limitation of
gridding methods due to the curse of dimensionality and we
could not obtain a solution due to the storage requirements.
Moreover, even if we could store the fine grid, the compu-
tation time required to calculate integrals would make the
solution practically intractable. As there is no value function
to compare with, we evaluated the performance based on the
approximate control policy. We sampled 50 initial states xi0,
i ∈ {1, . . . , 50} and for each ran 1000 simulations of the
feedback tK-step control {µ̂∗0(xi0), µ̂∗1(xi1), . . . , µ̂∗tK (xitK)}
recording how many reached K without leaving K ′. In 90%
of initial states the ADP value functon V̂ ∗0 (x) is a lower
bound for the actual performance of the policy and the mean
absolute error is ≈ 17%. The time taken to calculate V̂ ∗0 (x)
for this problem was ≈ 10 min.

D. Short note on approximations
The approximations techniques used throughout this work

enter in three separate subsequent steps. First, in (9) we
approximate the value function in the class of RBFs. Not
much is sacrificed by this since RBFs can accurately approx-
imate any continuous function with a large enough number
of centers. The approximation is carried out on the set
K ′ \ K ⊆ Rn and the value function is continuous on
it. The second approximation is introduced via randomized
sampling for solving the semi-infinite LPs in (10). We
chose a scenario based approach due to the probabilistic
guarantees it provides, independently of the distribution used
for sampling. Note however that we are still missing a strong
bound on the approximation error in (10) if constraints of
are not respected. There is hope however of achieving this
by imposing certain conditions on the value function (e.g
Lipschitz continuity). The final approximation introduced

in (12) can be replaced by local non-convex optimization
methods (e.g Gradient based methods). This technique has
the potential of producing promising results and reducing
the on-line computation requirements allowing real time
implementations.

VI. CONCLUSION

In this work we outlined the method of applying approx-
imate dynamic programming to a reach-avoid problem of
stochastic reachability. We restricted the systems that we
can deal with in the class of radial basis functions allowing
analytic calculations of multi-dimensional integrals as well as
analytic expressions for the recursive value function. Based
on the results of [6], [15] we converted an infinite LP solving
the reach-avoid problem to a finite one both in decision
variables and constraints. Although we do get a probabilistic
guarantee that the set of pairs (x, u) ∈ X ×U that violate the
constraints is small, we have no bound on how much they
can violate them. Subsequent work is focusing on answering
these questions both for the approximation of the optimal
value function as well as the approximation of the optimal
control policy.

REFERENCES

[1] A. Abate, M. Prandini, J. Lygeros, and S. Sastry, “Probabilistic
reachability and safety for controlled discrete time stochastic hybrid
systems,” Automatica, vol. 44, no. 11, pp. 2724–2734, 2008.

[2] S. Summers and J. Lygeros, “Verification of discrete time stochastic
hybrid systems: A stochastic reach-avoid decision problem,” Automat-
ica, vol. 46, no. 12, pp. 1951–1961, 2010.

[3] C. Guestrin, M. Hauskrecht, and B. Kveton, “Solving factored mdps
with continuous and discrete variables,” in Proceedings of the 20th
conference on Uncertainty in artificial intelligence, pp. 235–242,
AUAI Press, 2004.

[4] O. Hernández-Lerma and J. Lasserre, Discrete-time Markov control
processes: basic optimality criteria. Springer New York, 1996.

[5] M. Puterman, Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons, Inc., 1994.

[6] D. de Farias and B. Van Roy, “The linear programming approach to
approximate dynamic programming,” Operations Research, vol. 51,
no. 6, pp. 850–865, 2003.

[7] M. Hauskrecht and B. Kveton, “Linear program approximations to
factored continuous-state markov decision processes,” NIPS-17, 2003.

[8] Y. Wang and S. Boyd, “Approximate dynamic programming via
iterated bellman inequalities,” 2010.

[9] F. Ramponi, D. Chatterjee, S. Summers, and J. Lygeros, “On the
connections between pctl and dynamic programming,” in Proceed-
ings of the 13th ACM international conference on Hybrid Systems:
Computation and Control, pp. 253–262, ACM, 2010.

[10] M. Campi and S. Garatti, “The exact feasibility of randomized solu-
tions of uncertain convex programs,” SIAM Journal on Optimization,
vol. 19, no. 3, pp. 1211–1230, 2008.

[11] G. Calafiore and M. Campi, “The scenario approach to robust control
design,” Automatic Control, IEEE Transactions on, vol. 51, no. 5,
pp. 742–753, 2006.

[12] T. Summers, K. Kunz, N. Kariotoglou, M. Kamgarpour, S. Summers,
and J. Lygeros, “Approximate dynamic programming via sum of
squares programming,” Submitted to the IEEE European Control
Conference, 2013.

[13] J. Park and I. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural computation, vol. 3, no. 2, pp. 246–257,
1991.

[14] D. Bertsekas, Dynamic programming and optimal control, vol. 1.
Athena Scientific Belmont, MA, 1995.

[15] M. Campi, S. Garatti, and M. Prandini, “The scenario approach for
systems and control design,” Annual Reviews in Control, vol. 33, no. 2,
pp. 149–157, 2009.

