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Abstract—Model Predictive Control (MPC) is a well-
developed and widely-used control design method, in which
the control input is computed by solving an optimization
problem at every sampling period. Traditionally, MPC has been
associated with control of slow processes, with sampling times
in the seconds/minutes/hours range, because an optimization
problem must be solved online. However, dramatic increases in
computing power and recent developments in code generation
for convex optimization, which tailor to specific optimization
problem structure, are allowing the use of MPC in fast
processes, with sampling times in the millisecond range. In
this paper, a MPC control design for a miniature remote-
controlled coaxial helicopter is developed and experimentally
validated. The nonlinear dynamic behavior of the helicopter
was identified, simplified and approximated by a Linear Time
Varying (LTV) model. A custom convex optimization solver
was generated for the specific MPC problem structure and
integrated into a controller, which was tested in simulation and
implemented on a hardware testbed. A performance analysis
shows that the MPC approach performs better than a tuned
Proportional Integral Differential (PID) controller.

I. INTRODUCTION
Model Predictive Control (MPC) [4] is a well-developed

and widely-used control design method partly due to its
ability to handle multivariable systems with state and input
constraints. At each sampling instant, a model of the system
is used to optimize the predicted behavior of the system
over a finite horizon. The first input of the solution to
this open-loop optimization is applied to the system, and
the optimization is repeated whenever new measurements
are received. This optimization problem is convex when
the dynamic model is linear and the stage cost function
and constraints are convex. Traditionally, MPC has been
associated with control of slow processes, with sampling
times in the seconds/minutes/hours range, because an opti-
mization problem must be solved online. However, dramatic
increases in computing power and recent developments in
code generation for convex optimization are allowing the use
of MPC in fast processes.
Fast model predictive control methods fall into two cat-

egories: (1) so-called explicit MPC and (2) MPC with
online optimization. In explicit MPC, the control law can be
explicitly computed offline when the dynamics are linear, the
stage cost is convex quadratic or linear, and the constraints
are polytopes [3] [2], but this method is limited to very
small problems due to the complexity of the explicit solution.
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When an optimization problem must be solved online, recent
developments in fast convex optimization algorithms and
code generators, which exploit specific problem structure,
are enabling the use of MPC for systems with fast sampling
times [14], [7], down to the millisecond range, depending on
problem size and processor capability.
There has been significant recent interest from various

fields on autonomous helicopters due to a wide variety of
possible civilian and military applications ranging from aerial
imagery to search and rescue. In particular, various advanced
control methodologies have been proposed, including some
limited work on MPC. Liu at al developed a nonlinear ex-
plicit MPC approach for the automatic control of small scale
helicopters [13]. An approximate solution of the nonlinear
MPC optimization problem is computed offline and applied
to the helicopter online by function evaluation. A disturbance
estimator is implemented to reduce errors resulting from
model mismatch, wind gusts, etc. Experimental results in-
clude trajectory tracking. Zhou at al [21] utilize a hierarchical
inner-outer loop control scheme for helicopter control. The
outer loop consists of a MPC controller that generates the
desired pitch and roll angles from a precomputed trajectory
and the desired main rotor thrust. The inner loop controls the
attitude angles with a back-stepping algorithm. However, the
method was only tested in simulation and not experimentally
validated. Joelianto at al [12] present a sliding mode MPC in
which the helicopter model changes during control in order to
approximate the helicopter behavior better for different flight
regimes; however, their method was also not experimentally
validated. Du et al. [8] present a hierarchical inner-outer loop
controller, with a PID controller in the outer loop and a
MPC controller in the inner loop to stabilize desired attitude
angles. Experimental results are limited to hover, which had
moderate errors (100 mm) in horizontal dimensions.
The main contribution of the present paper is the de-

velopment and experimental validation of an online model
predictive control design using a full 10-dimensional minia-
ture autonomous helicopter model for both hover and tra-
jectory tracking. This work is part of the ETH Zurich
RCopterX project (http://www.rcopterx.ethz.ch), which stud-
ies advanced control and estimation techniques for small
autonomous helicopters. The nonlinear dynamic behavior of
the helicopter was identified, simplified and approximated
by a Linear Time Varying (LTV) model. Feasible desired
trajectories are generated based on differential flatness of the
model. A custom convex optimization solver was generated
for the specific MPC problem structure and integrated into a
controller, which was tested in simulation and implemented
on a hardware testbed for both hover and trajectory tracking.
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A performance analysis shows that the MPC approach per-
forms better than a tuned Proportional Integral Differential
(PID) controller.
The rest of the paper is organized as follow. In Section II,

the nonlinear continuous-time helicopter model is presented.
The flat output formulation of this model, that is necessary
to generate feasible trajectories, will be introduced in a next
step. Next, a Linear Time Varying (LTV) approximation of
the continuous-time model is introduced that is used in the
formulation of the MPC optimization problem, presented
next. Section III presents simulation results, experimental
validation on a hardware testbed, and an experimental perfor-
mance comparison to a tuned PID controller. Finally, Section
IV provides concluding remarks.

II. FAST MODEL PREDICTIVE CONTROL
A. Helicopter Model
The helicopter considered in this work is a small-scale

remote controlled coaxial helicopter. The dynamics can be
described by the Newton-Euler laws of mechanics for single
rigid bodies. A full state description can be found for
example in [17]. However, observations of the dynamics of
the helicopter suggest that a simplified version can be used.
By assuming that the pitch or roll inputs directly act on the
translational accelerations, the pitch and roll angular states of
the helicopter body can be omitted. The resulting simplified
helicopter model is described by

ẋI = cos(Ψ)ẋB − sin(Ψ)ẏB, ẏI = sin(Ψ)ẋB + cos(Ψ)ẏB

żI = żB, Ψ̇ = Ψ̇

ẍB = bxux + kxẋB + Ψ̇ẏB, ÿB = byuy + ky ẏB − Ψ̇ẋB

z̈B = bzuz − g, Ψ̈ = bΨuΨ + kΨΨ̇

ẋint = ki(xI − xref ), ẏint = ki(yI − yref),
(1)

where xI, yI, zI denote the position of the helicopter in the
inertial frame, ẋB, ẏB, żB the velocities of the helicopter in
the body frame,Ψ the yaw heading angle and Ψ̇ its rotational
velocity in yaw. The control inputs for pitch, roll, thrust and
yaw are denoted by ux, uy, uz, uΨ. The model is augmented
by two integral states xint, yint to reduce steady-state error
in the respective dimension. The inertial frame of reference
is fixed to the measurement space with a North-West-Up
configuration. The body frame coordinate system is fixed to
the helicopter Center of Gravity (CoG). The x-axis points
towards the nose, the y-axis towards the port side and the
z-axis along the rotor axis. The identification of the model
parameters bx, by, bz, bΨ, kx, ky, kΨ and ki is described later
in Section III.

B. Trajectory Generation
The aim of our approach is to design a MPC controller that

is able to steer the helicopter along trajectories, following
both position and orientation. Here we are interested in
predefined trajectories which are computed offline. Con-
sider a continuous-time reference trajectory [xr(t),ur(t)]
describing the states and inputs of a system over time.

The objective of the controller is to track this trajectory as
close as possible. However, this is only achievable if the
generated trajectory is feasible with respect to the dynamics,
i.e., feasible trajectories are trajectories [xr(t),ur(t)] that
satisfy the differential equation of the process dynamics:

ẋr(t) = f(xr(t),ur(t))

xr(t) ∈ X , ur(t) ∈ U .

The function f(·, ·) describes the previously identified
helicopter dynamics (1) and X and U are constraint sets
for the states and inputs, respectively.
Generating such trajectories for nonlinear systems is a

nontrivial task. Murray [16] shows that the generation of such
feasible trajectories is possible if the system is differentially
flat [11]. The general idea is to find mapping between the
original states and so called flat outputs such that all states
and inputs can be determined from these outputs without
integration. Although there is no general rule to derive these
outputs, it turns out that this approach can be applied to the
nonlinear helicopter model used in our application. Consider
the state vector of the helicopter model without integral states

x =
[

xI yI zI Ψ ẋB ẏB żB Ψ̇
]T (2)

and the input vector u =
[

ux uy uz uΨ

]T
. Note that

the integral states are omitted because the reference value
for integral state is always zero. We select four flat outputs
zi given by

z1 = xI, z2 = yI, z3 = zI, z4 = Ψ. (3)

Expressing the remaining states by the flat outputs and their
derivatives yields

ẋB = cos(z4)ż1 + sin(z4)ż2

ẏB = − sin(z4)ż1 + cos(z4)ż2

żB = ż3, Ψ̇ = ż4.

(4)

The next step is to describe the inputs as functions of the
flat outputs and their derivatives:

uz =
1

bz
(z̈ − g) =

1

bz
(z̈3 − g) (5)

uΨ =
1

bΨ
(Ψ̈ − kΨΨ̇) =

1

bΨ
(z̈4 − kΨż4) (6)

ux =
1

bx
(ẍB − kxẋB − Ψ̇ẏB)

=
1

bx
(cos(z4)[z̈1 − kxż1] + sin(z4)[z̈2 − kxż2]) (7)

uy =
1

by
(ÿB − ky ẏB + Ψ̇ẋB)

=
1

by
(cos(z4)[z̈2 − ky ż2] + sin(z4)[−z̈1 + ky ż1]). (8)

Finally, the functions for the states and inputs can be
rewritten in compact matrix form as

x = h(z, ż), u = i(z, ż, z̈). (9)

We can now generate smooth point-to-point trajectories for
the flat outputs according to the method presented in [16].
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The states and input of the reference trajectory can now be
computed by a simple evaluation the functions (9).

C. Linear Time Varying Model
In general a MPC optimization problem requires a

discrete-time representation of the plant to compute the
necessary state predictions. In fast MPC applications, the
model must be linear so that the problem can be cast as a
convex quadratic program and solved by available fast con-
vex optimizers obtained from generators like CVXGEN [14]
or FORCES [7]. However, the helicopter model described in
Section II-A is nonlinear. Therefore a suitable linear discrete-
time approximation of the nonlinear model over the MPC
prediction horizon is needed. A simple linearization around
the initial state is not sufficient since the helicopter state
may change significantly over time along a desired reference
trajectory.
Falcone et al. show that nonlinear systems can be approx-

imated by a Linear Time Varying (LTV) model [10]. We
will briefly restate the basic theory and include two modi-
fications of the original derivation. The first one addresses
the fact that our initial model is a continuous-time nonlinear
model whereas Falcone begins with a discrete-time nonlinear
model. Hence the linearization step for the LTV approxima-
tion is followed by a discretization step. Second, we consider
a non-constant input trajectory for the linearization step. By
including more knowledge about actual possible inputs to the
system a better approximation of the system dynamics can
be obtained. Further, based on this variable input sequence,
we extend the LTV approximation by introducing a “warm-
start”-like method for model linearization.
Consider the following nonlinear continuous-time system

ẋ = f(x,u) (10)

where x ∈ Rn is the state vector, u ∈ Rm is the input
vector. The function f(·, ·) : Rn × Rm → Rn describes the
state dynamics. Let u be a piecewise constant function in
time given by

u(t) = uk (11)
with kTs ≤t < (k + 1)Ts, k ∈ Z

+,

where Ts is the sampling period of the system. We will
refer to û(t) as the nominal inputs and x̂(t) as the nominal
state trajectory generated by applying the piecewise constant
inputs û(t) to the nonlinear system (10). Starting at some
time t0 = k0Ts, k0 ∈ Z+ with initial condition x(k0Ts) =
x0, the nominal state and input trajectories are sampled with

x̂k = x̂(kTs), k = {k0, ..., k0 + p+ 1} (12)
ûk = û(kTs), k = {k0, ..., k0 + p}. (13)

Note already that the states trajectory needs to be sampled
p+1 times. This is requires to generate a LTV approximation
for a horizon of p steps as can be seen later from (21).
The system (10) is then linearized at p time instances

of the nominal trajectory leading to the following set of

linearized dynamics
δẋ(t) = Akδx(t) +Bkδu(t) (14)

Ak =
∂f

∂x

∣

∣

∣

∣

x̂k,ûk

, Bk =
∂f

∂u

∣

∣

∣

∣

x̂k,ûk

(15)

δx(t) = x(t) − x̂k, δu(t) = u(t)− ûk (16)
with kTs ≤ t < (k + 1)Ts, k = {k0, ..., k0 + p}. The
discretized dynamics of the continuous time linearizations
(14) are

δxk+1 = Ad,kδxk +Bd,kδuk, (17)

where Ad,k and Bd,k are Euler discretization of Ak, Bk and

δxk = x(kTs)− x̂k = xk − x̂k (18)
δuk = u(kTs)− ûk = uk − ûk (19)

k = {k0, ..., k0 + p}. (20)
The discretized system (17) is written in a δ formulation,

but can also be stated as a full state model
xk+1 − x̂k+1 = Ad,k(xk − x̂k) +Bd,k(uk − ûk) (21)

⇔ xk+1 = Ad,kxk +Bd,kuk + x̂k+1 −Akx̂k −Bkûk

= Ad,kxk +Bd,kuk + dk (22)
k = {k0 . . .k0 + p}. (23)

This discrete-time linear approximation (21)-(23) of the
nonlinear continuous-time system along the trajectory x̂k

and ûk is called the Linear Time Varying (LTV) model of
(10) for a time period of t ∈ [k0Ts . . . (k0 + p)Ts].

The MPC controller described in Section II-D solves a
problem at every sampling time t ≥ t0 for a prediction
horizon of p steps. Since we chose to use a non-constant
input for the LTV linearization, an input trajectory needs to
be selected. For the initial LTV-approximation at time t0, the
nominal input trajectory (13) can be obtained by sampling
the input trajectory generated by (9). In the consecutive ap-
proximations one can make use of the previously computed
control sequences of the MPC optimization. The control
trajectory at time t that minimizes the stage cost function
over the horizon p is

U∗
t→t+p|t =

[

u∗
t|t, . . . ,u

∗
t+p|t

]

, (24)

where the u∗
i|t denotes the optimized input for the i-th step of

the prediction horizon computed at time instance t. From this
control sequence only the first control input u∗

t,t is applied to
the system. The other control inputs will be used as nominal
input trajectory Ût+1→t+1+p for the next MPC problem at
time t + 1. This procedure “warm-starts” the LTV model
approximation. The nominal input trajectory for the next
problem will be
Ût+1→t+1+p|t+1 =

[

ût+1|t+1 . . . ût+p|t+1 ût+1+p|t+1

]

=
[

u∗
t+1|t . . . u∗

t+p|t u∗
t+p|t

]

. (25)

In (25) the p-th value for the nominal input is not available
from the preceding optimization step, hence we chose set it
to the previous input value as depicted in Figure 1.
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Fig. 1. The “warm-start” of the LTV nominal input trajectory.

D. MPC Problem Formulation
The Model Predictive Control problem with the LTV

model approximation of the helicopter dynamics is formu-
lated as the optimization problem (26), which is solved at
every time instance t.

minimize
Ut→t+p|t

Jt(Xt→t+p+1|t,Ut→t+p|t, . . .

Xref,t→t+p+1,Uref,t→t+p)

=
t+p
∑

k=t

(∆xT
k Q∆xk +∆uT

kR∆xk)

+∆xT
t+p+1Qf∆xt+p+1

subject to xk+1|t = Ad,k|txk|t +Bd,k|tuk|t + dk|t

dk|t = x̂k+1|t −Ad,k|tx̂k|t −Bd,k|tûk|t

uk|t ∈ Uk, k = t, . . . , t+ p

xk|t ∈ Xk, k = t, . . . , t+ p+ 1,

(26)

with the predicted state trajectory Xt→t+p+1|t =
[

xt|t, . . . , xt+p+1|t

]

, the planned input trajectory
Ut→t+p|t =

[

ut|t, . . . , ut+p|t

]

, the state reference
trajectory Xref,t→t+p+1 =

[

xref,t, . . . , xref,t+p+1

]

and the input reference trajectory Uref,t→t+p+1 =
[

uref,t, . . . , uref,t+p

]

. Note that ∆xk = xk|t − xref,k,
∆uk = uk|t − uref,k are the differences between the
predicted states and the reference trajectory. The states and
inputs are constrained to lie in the convex sets Xk and Uk,
respectively. The state error weighting matrix is Q ≥ 0, the
input error weighting matrix is R > 0, and the weight on
the final state error is Qf ≥ 0. The weighting matrices are
positive semi-definite so that the stage cost is convex.
In general a terminal cost Qf and a terminal set

∆xt+p+1 ∈ Xp+1 can be chosen to guarantee asymptotic
stability. Mayne et al. [15] show that choosing a final cost
function ∆xT

t+p+1Qf∆xt+p+1 that is a good approximation
of the infinite horizon cost function J0→inf is essential for
asymptotic stability. It can be chosen e.g. as the control
Lyapunov function satisfying the Lyapunov equation of the
linearized system as shown in [5]. Chen et al. [5] suggest
choosing Xp+1 to be a sufficiently small level set of the
terminal cost function to guarantee stability.
The presented MPC problem formulation (26) is used as

structure to generate a fast optimization problem solver.

III. RESULTS
The results achieved by the fast MPC approach for minia-

ture helicopters are now presented. The controller was tested
in simulation and experimentally validated on a testbed.

Fig. 2. Blade mCX2 micro-coaxial helicopters

Experimental Setting

The helicopter used in this application is a 28-gram Blade
mCX2 micro-coaxial helicopter as shown in Figure 2. It is
approximately 20 cm long with a main rotor diameter of
ca. 19 cm. The experimental flight area for the helicopter is
equipped with a 3D-motion tracking system. It consists of
four Vicon Bonita Cameras [19] using infrared diodes that
emit light which is reflected by special passive reflectors
placed onto the helicopter (see Figure 2). The data of the
four cameras is evaluated by the Vicon tracker software
[20] in order to compute the position and orientation of
the helicopter in the room. This data is input to the Coaga
custom helicopter control software [1] framework. Coaga
is a Object-Oriented control framework in C++ developed
by the RCopterX project group at ETH Zurich [9]. It runs
on a stand-alone Desktop PC allowing fast computations
and enough resources to perform various control schemes.
Control algorithms, such as the fast MPC algorithm, can
easily be integrated into the Coaga framework. Coaga in-
cludes a Kalman filter for velocity estimations as well as the
communication modules necessary to send the control signals
to the helicopter via a remote control. The testbed sampling
period is 20 ms due to communication channel limitations
imposed by the helicopter remote control.

Model Identification

The model linearizations Ak and Bk used for the LTV
model (14) are further simplified to avoid an unwanted
actuation of the yaw input. The linearization of the dynamic
equations for ẍB, ÿB, xi and yi in (1) lead to a cross-coupling
of the x and y components via the rotational states Ψ and
Ψ̇. We observed experimentally that the helicopter model
did not predict the actual behavior of the system well. When
the coupling terms were removed, the resulting closed loop
motion of the system was significantly improved. Therefore
we used the simplified version for all of our experimental
implementations.
The parameters of the model were identified by fitting

the suggested acceleration functions (1) to measured input
step responses of the helicopter which were obtained by
Daellenbach and Semeraro [6]. We used a Least-Squares
method to fit the parameters to the data and subsequently
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tuned them by hand. The parameters obtained are:
bx = 2.0, kx = −0.5,

by = 2.1, ky = −0.4,

bΨ = 111.0, kΨ = −5.0, bz = 18.

(27)

The integral parameter ki = 2 was chosen for both integral
states and obtained by manual tuning.

MPC Controller Settings
The states are constrained by their physical limits that were

determined in [6]. In our case, upper and lower limits were
given only for the velocities [ẋB, ẏB, żB, Ψ̇] by

x = [3
m
s , 3

m
s , 2

m
s , 25

rad
s ]T

x = [−3
m
s
, −3

m
s
, −2

m
s
,−25

rad
s
]T .

(28)

For the inputs the box constraints were derived from the
actuator control limits and stability considerations as

u = [1, 1, 0.4, 1]T , u = [−1, −1, −0.4, 0]T . (29)

The state and input weighting matrices used in the imple-
mentation are

Q = Qf = diag(50; 50; 5; 10; 3; 3; 1; 2; 15; 15)

R = diag(2; 2; 2; 2),
(30)

where diag(·) denotes the entries on the diagonal of a matrix
with appropriate dimension. The convex optimization solver
used both in simulation and on the real system was generated
with CVXGEN [14]. The MPC control prediction horizon
was chosen to be p = 18. The solve times of the generated
solver when used in the testbed varied between 5 ms and 7
ms depending on the problem data. This is a well lower than
the system sampling period of 20 ms.

Simulation
The fast MPC controller was tested in simulation prior

to being applied to the helicopter in the testbed. Figure 3
shows the helicopter position and heading while tracking a
circle trajectory. The helicopter tracks the heading angle very
well and the deviations in xI and yI are also very small
(approximately 2.5 cm).

Hardware implementation
The MPC controller can stabilize the helicopter in a hover

flight as can be seen in Figure 4. The states xI and yI are
shown with their inputs ux and uy respectively. The largest
deviation in xI is approximately 5.5 cm and in yI it is 4 cm.
The control signals have an offset because of the integral
action due to a constant disturbance.
As already shown in simulation the fast MPC controller

can track trajectories such as circles. The trajectory tracking
performance of the MPC controller on the testbed can be
seen in Figure 5. The horizontal position as well as heading
are tracked very well. The maximum deviation in xI is
approximately 4.0 cm and in xI approximately 8.5 cm.
Several other trajectories have been tracked successfully such
as pirouettes, ferris-wheels and pirouettes during circle flight.
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Fig. 3. Simulation of the helicopter tracking a circle trajectory while being
controlled by the fast MPC controller.
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Fig. 4. The horizontal helicopter CoG position during hover flight in the
testbed.

Comparing Controller Performance

We compared the performance of the MPC controller
to a tuned Proportional-Integral-Differential (PID) controller
also implemented on the testbed. Absolute performance
comparison is of course difficult because the performance
of each method depends highly on adjustable parameters
(stage cost weights for MPC and gains for PID). Never-
theless, we attempted to tune both controllers to achieve
good performance. The PID controller was tuned by applying
the Ziegler-Nichols method and subsequent manual fine-
tuning. The MPC controller weights were tuned by hand. The
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Fig. 5. The horizontal helicopter CoG position and the heading angle
during trajectory tracking of a circle on the testbed.
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Fig. 6. The average tracking error of the (1) MPC and (2) PID controller
flying a circle trajectory in position and heading.

tracking performance is quantified by the average squared-
error of the individual states over multiple experiments. The
MPC controller performs significantly better in xI, yI, and ΨI
(though the ΨI errors are negligible in both cases). In zI the
average PID tracking error is smaller than that of the MPC
controller because there is no integral state in z included
into the model that could compensate for a constant model
mismatch.

IV. CONCLUSION

In conclusion, we developed and experimentally validated
an online model predictive controller for a miniature au-
tonomous helicopter in both hover and trajectory tracking.
A nonlinear helicopter model was identified and used to
generate feasible trajectories for the helicopter by finding
flat outputs of the model. The MPC problem was formulated
using a LTV model approximation of the nonlinear model.

The controller was tested in simulation and implemented on
the helicopter testbed. The performance of both hover and
trajectory tracking are very good, and compared favorably to
a tuned PID controller. Future work includes identifying and
utilizing more detailed models and working with multiple
helicopters simultaneously, where one could consider using
a distributed MPC scheme such as that described in [18].
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