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Abstract— We consider design of sparse controllers for
a stochastic linear system with infinite horizon quadratic
objective. We formulate the non-sparse optimal solution
through a semidefinite program for the second order
moments of the states and inputs. Given that the centralized
non-sparse controller solves a linear equation in these mo-
ments, we find sparse least squares approximate solutions
to this linear equation. The performance of the approach
is shown with several simulations.

I. BACKGROUND

A fundamental problem in multiagent systems is de-
centralized optimal control. Witsenhausen in his seminal
paper showed that in a stochastic linear system with
quadratic cost, when the information structure is not
classic, as would be the case in decentralized control, the
optimal controller need not be linear [1]. Papadimitriou
and Tsitsiklis showed that the discrete version of the
decentralized stochastic control is NP-complete and as
a result the continuous version of the problem is also
in general intractable [2]. Motivated by these results,
several works in the past decades have been devoted
to answer the following two problems. Given an infor-
mation structure 1) under which conditions the optimal
controller satisfying the given structure is linear? 2)
under which conditions solving for an optimal structured
controller is a convex problem?

In terms of the first problem, Ho and Chu derived
sufficient conditions for optimality of linear controllers
in a quadratic cost setting based on the notion of nested
information structure [3]. Motee, Jadbabaie and Bamieh
showed that if the state-space operator in the linear
dynamics and the quadratic weighing matrix in the
cost belong to an operator algebra, the optimal linear
controller also belongs to this operator algebra and thus
has the same information structure [4]. The answer to the
second problem is completely characterized by the no-
tion of quadratic invariance as discussed by Rotkowitz
and Lall [5]. In particular, minimum norm structured
linear optimal controller design is convex if and only if
the structure and dynamics satisfy an algebraic condition
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referred to as quadratic invariance. Furthermore, the
link between nested information structure and quadratic
invariance is established [6].

Apart from the cases of nested information structure or
quadratic invariance, solving for minimum-norm struc-
tured or sparse linear controller can be cast as a non-
convex optimization problem. The work by Lin, Fardad
and Jovanovic [7] addresses the H2 norm minimization
of linear dynamical system given sparsity or struc-
tural constraint. The approach is to use the established
semidefinite program (SDP) formulation for the optimal
H2 controller, with an additional non-convex structural
constraint. An approximation scheme is developed lever-
aging the alternating direction method of multipliers
(ADMM) to find locally optimal structured/sparse linear
feedback gains.

Our work is inspired by [7] in approximating the
solution to the non-convex problem of optimal struc-
tured/sparse linear controllers. In particular, rather than
attempting to find the optimal controller, which may
have dynamic structure, we restrict our attention to
static state feedback controller with sparsity objective on
the gain matrix. Our formulation is an infinite horizon
discrete-time linear quadratic Gaussian (LQG) control.
Our approach is to characterize the solution of the
standard centralized problem through an SDP formula-
tion for the infinite horizon moments of the states and
inputs. The optimal centralized controller solves a linear
equation given by these moments. Thus, we include
structural/sparsity objectives by solving a modified least
squares problem. The SDP we consider for the second
order moments of the states and inputs is the dual of that
for the value function considered in [7]. By considering
this dual approach, we hope to achieve a more complete
picture of the (sub)optimality of these sparse controllers.
The performance is analyzed with a number of case
studies. Future work is discussed.

II. PROBLEM FORMULATION

We consider the following stochastic linear system:

xt+1 = Axt +But + ωt, (1)

where x ∈ Rn, u ∈ Rm, ω ∈ Rn are the state, input
and the stochastic noise, respectively. We assume ωt,
t = 0, 1, . . . , are independent identically distributed



Gaussian random variables and for all t, E{ωt} = 0
and E{ωtωTt } = W . The initial state is independent of
the stochastic noise. We consider control policies of the
form πt : X → U . Thus, control at time t is ut = πt(xt).
We assume the pair (A,B) is controllable

The infinite horizon discrete-time linear quadratic
Gaussian problem with average cost is given as:

min
π0,π1,···∈Π

J := lim
T→∞

1

T
E

T∑
t=0

(xTt Qxt + uTt Rut).

(D-LQG)

We assume Q ∈ Rn×n is positive semidefinite, R ∈
Rm×m is positive definite, and the pair (A,C) is observ-
able, where Q = CTC. Our objective is to find sparse
controllers K that achieve minimal cost.

The optimal centralized solution to the above problem
is static linear state feedback: π∗t (xt) = Kxt. Further-
more, a semidefinite program (SDP) can be formulated
to find the optimal linear gain K as follows:

min
Zxx,Zxu,Zuu

tr(QZxx) + tr(RZuu) (S-LQG)

s.t. − Zxx +W +AZxxA
T +AZxuB

T

+BZTxuA
T +BZuuB

T = 0n×n,[
Zxx Zxu
ZTxu Zuu

]
� 0.

In the above, tr(M) denotes trace of the matrix M .
The matrices Zxx ∈ Rn×n, Zxu ∈ Rn×m, Zuu ∈
Rm×m denote the infinite horizon second order mo-
ments of the states and inputs. For example, Zxu =
limT→∞

1
T E

∑T
t=0(xtu

T
t ). The optimal linear policy is

then found as K = ZTxu(Zxx)
−1. Note that problem

(S-LQG) is the dual of the semidefinite program which
solves for the matrix P associated to the Riccati equation
and the optimal value function of the control problem
[8]. The optimal policy can be equivalently computed as
K = (R + BTPB)−1BTPA. The equivalence of the
moment based and Riccati based optimal policy follow
from the strong duality of the SDP (S-LQG).

III. SPARSE CONTROL SOLUTION APPROACH

As discussed above, the controller K is a nonlinear
function of the optimization variables Zxx, Zxu. Con-
sequently, including general linear constraints on K
introduces a nonlinear constraint on the moments. Our
approach is to first solve for the optimal centralized
Zxx, Zxu, Zuu in (S-LQG) and then to find sparse ap-
proximations of K by solving a least squares problem.
In order to impose sparsity, we penalize the l1 norm of
the gain matrix [7] through a scalar γ ∈ R+. Thus, the
optimization problem is as follows:

min
K

‖KZxx − ZTxu‖22 + γ‖K‖1. (L-LQG)

The optimization problem above can be solved with
standard SDP solvers. If the required sparsity structure
S is given, we set γ = 0 in the above and instead
we include the constraint K ∈ S. Since S is a linear
subspace, this results in an additional linear constraint.
By varying γ we hope to achieve a tradeoff between
sparsity and performance of the controller K.

Let K(γ) denote the optimal solution of this least
squares problem for a given γ. In general, it is hard
to connect the performance of K(γ) with that of the
centralized solution K. In particular, the closed loop
system A+BK(γ) may not even be stable. A sufficient
condition for stability is based on the Gerschgorin circle
theorem [9]. This theorem states that all eigenvalues of a
matrix M ∈ Rn×n lie in at least one of the discs centered
at a diagonal entry with radius given by sum of absolute
values of the corresponding non-diagonal entries. Let
Mij denote the ij-th entry of a matrix M ∈ Rn×n. This
stability constraint is desirable since it results in addition
of a linear constraint to (L-LQG) as follows:

|(A+BK)ii +
∑
j 6=i

|(A+BK)ij| | < 1. (2)

IV. CASE STUDIES

We run several simulations to study the performance
of the proposed method. In all simulations the entries
of the dynamics A ∈ Rn×n were drawn from a normal
distribution with variance 0.3. The input matrix was B =
In×n, that is, each individual coordinate has a control.
The noise covariance was W = In×n. The cost function
was defined by Q = In×n, R = In×n. We let n = 10
and vary γ between 10−1.5 = 0.0316 and 10.1 = 1.26
in logarithmically spaced points. We illustrate three case
studies corresponding to stable and unstable dynamics.

In the first two cases, matrix A = A1 is stable. The
closed loop system without any sparsity objectives has
a full K matrix and a cost of J = 14.8. The results of
the optimization problem (L-LQG) are shown in Figures
1a and 1b. Figure 1a on the left shows the percentage
of LQG cost above its nominal centralized value as a
function of the sparsity. Fig. 1b on the right shows the
sparsity as a function of γ. As γ varies, the percentage
of nonzero entries of the gain matrix K decreases. For
γ = 0.119 there are 87 nonzero entries corresponding
to the cost increase of 1.89%; for γ = 0.143, there are
45 nonzero entries with a cost increase of 30.0%. The
results of the optimization problem (L-LQG) with the
inclusion of Gerschgorin circle constraint (2) are shown
in Figures 1c and 1d. In this case, the cost at γ = .119
increases only by 0.65%. Furthermore, as γ ≥ 0.37
the sparsity remains at 91 nonzero entries and the cost
remains at 1.43% increase above the centralized value.

In the third case, the matrix A = A2 is unsta-
ble. Without inclusion of Gerschgorin constraint (2) in
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(a) Stable A1 matrix, Gerschgorin not included.
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(b) Stable A1 matrix, Gerschgorin not included.
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(c) Stable A1 matrix, Gerschgorin included.
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(d) Stable A1 matrix, Gerschgorin included.
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(e) Unstable A2 matrix, Gerschgorin included.
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(f) Unstable A2 matrix, Gerschgorin included.

Fig. 1: The dynamics are given by the randomly generated stable matrix A1 in the first four figures and by randomly
generated unstable matrix A2 in the last two figures. In case of unstable A2, with the inclusion of Gerschgorin circle
constraint we can find stable closed loop dynamics but the sparsity in the control gain remains above a threshold.



(L-LQG) the resulting close loop system A + BK(γ)
is unstable, even for small γ. Thus, we include this
constraint. Figures 1e and 1f show the results. With
γ = .0316, there are 100 nonzero entries, but the cost is
0.35% higher than the centralized cost. This highlights
that the Gerschgorin sufficient stability condition can be
conservative. Similar to the previous two cases, with
increasing γ the sparsity of the gain K increases and
the cost degrades. At γ = 0.190, the cost increases by
1.70% corresponding to sparsity of 80%. The sparsity
remains constant at 80% for all γ ≥ 0.190.

In all simulations we conducted, in the case in which
matrix A was stable, without inclusion of constraint (2)
in (L-LQG) the closed loop dynamics remained stable
for γ within the given bounds. However, in the case of
unstable A, inclusion of constraint (2) was necessary to
ensure stability of sparse solutions. When this stability
condition was included in the SDP, the sparsity pattern
was not affected too much by the variations in γ.

V. CONCLUSIONS AND FUTURE WORK

We considered sparse controller design for an infinite
horizon discrete-time LQG problem. Given that the
optimal centralized controller solves a linear equation
defined by the second order moments of the states and
inputs, we searched for sparse approximate solutions
of this linear equation (sparse least squares). Based on
the Gerschgorin circle theorem, we included a sufficient
condition for stability that also preserves convexity of the
sparse least squares formulation. We verified the perfor-
mance of the resulting sparse controllers in simulation.
In the cases considered, a stabilizing sparse controller
was ensured with the Gerschgorin circle constraint. This
came at a price of sub-optimality of the controller.

Future work includes exploration of less conservative
stability conditions in the sparsity constraint design. To
do so one can formulate the SDP problem for the mo-
ments of the states and inputs, with the addition of non-
convex sparse/structured constraint and then seek con-
vex relaxation or suboptimal solutions of this problem.
Furthermore, we hope to derive improved lower bounds
on the performance of sparse and structured controllers.
In particular, so far the measure of performance of the
sparse controller has been sub-optimality with respect
to the performance of the centralized controller. By
improving the lower bound of performance we gain a
better understanding of achievable performance of sparse
linear controllers in the problems in which quadratic
invariance condition does not hold. Finally, we hope to
apply our algorithms to real-world complex problems
arising in power system domain.
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