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Abstract—In this paper we study the effect of impulsive
attacks, also known as initial condition attacks, on networked
systems and propose a new security index to be able to analyze
the impact of such attacks. In addition, we pose, and subsequently
solve, optimization problems for selecting inputs or outputs that
point to attacks with maximum impact and least detectability.

Index Terms—Security, Networked Systems, Impulsive Attacks

I. INTRODUCTION

Critical infrastructures, such as electricity grids, water distri-
bution networks, and transport systems, are examples of cyber-
physical systems. Among these systems, the energy/power as-
sets are of significant importance as they underpin all facets of
modern life (e.g. food, health, manufacturing, commerce and
trade, etc). These systems consist of large-scale physical pro-
cesses monitored and controlled by networked control systems
running over a heterogeneous set of communication networks
and computers. Although the use of such powerful software
systems adds flexibility and scalability, it also increases the
vulnerability to hackers and other malicious entities capable of
cyber attacks through the IT systems. Several security breaches
have been recently announced, e.g. see [1], [2] and references
there-in.

To analyze the vulnerabilities of measurement systems in
power networks to false data attack, a security index was
introduced in [3]. The index was defined to be the minimum
number of measurements that need to be tampered so as
an attack on a specific bus in the network goes unnoticed
when using linear static estimators. The buses that have a
small security index are particularly vulnerable as the effort
and/or the resources needed for attacking them is small.
Calculating this security index was shown to be NP-hard
in general, however, efficient algorithms were proposed for
determining the index in special situations, such as the full
measurement case [4]. This idea was further generalized to
linear dynamic estimators in [5]. Alternatively, controllability
and observability notions were used in [6] to identify the
most impactful attacks that are difficult to be detectable. A
wide range of attacks in the presence of different estimators
were studied in [7] to investigate the security of descriptor
systems arising in smart grids and irrigation networks. It was
shown that some inconsistent initial conditions, i.e., initial
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conditions that do not satisfy the algebraic equation in the
descriptor systems, can stay undetected based on subsequent
measurements. The authors proposed using impulsive attacks,
also known as initial condition attacks, to create stealth attacks
using this limitation.

In this paper, we study the scenarios where an adversarial
agent’s objective is to compromise a networked system via
impulsive attacks. We propose an optimization framework that
enables us to study the effect of impulsive attack on the outputs
and states of a networked system and determine the attack
strategies with the highest impact on the network.

The outline of this paper is as follows. In the next section,
the required background, definitions, and the problem formula-
tions are provided. In Section III, the solution to the problems
introduced in Section II are provided. Section IV considers
two networked systems, namely a 9 bus power network and a
data network, and studies the impact of impulsive attacks in
each system. Concluding remarks are presented in Section V.

II. PRELIMINARIES PROBLEM STATEMENT

Assume that the attack-free networked system of interest
is modelled by the following continuous-time linear time-
invariant dynamical system

ẋ = Ax+Bu, (1)
y = Cx (2)

where x = [x>1 , . . . , x
>
N ]> ∈ Rn is the network state with xi ∈

Rni being the state of system i, u ∈ Rm is an external input,
and C ∈ Rp×n. The dynamics matrix A ∈ Rn×n is assumed
to be stable, and the input matrix B ∈ Rn×m corresponds
to a set of existing network inputs. The measurement y is
assumed to be available to the network monitor and is used
for anomaly and attack detection in the system. Therefore, we
call y monitoring outputs.

Throughout this paper, we assume that an adversary can
carry out an attack consisting of a impulsive attacks. In
other words, the attacker can inject an a-dimensional signal
α = [δ(ta), . . . , δ(ta)]> into the system where δ(ta) is the
Dirac function and ta is an arbitrary attack time. We call α the
impulsive attack signal. Without loss of generality, we assume
ta = 0. The network dynamics under this adversarial input
becomes

ẋ = Ax+Bu+Hα, (3)
y = Cx (4)

where H ∈ Rn×a is the attack matrix to be chosen by the
attacker. The columns of H are to be picked from a set of



possible attack vectors denoted by H = {h1, . . . , hm} where
hi ∈ Rn.

Moreover, we define a set of q ≤ n target states, T ⊆
{x1, . . . , xn}. Let z be the vector obtained from concatenating
the states in the target set. These states are the ultimate target
of the attacker. The attacker has to find the best attack matrix
from the available attack vectors that achieves the following
two objectives:

1) The total energy transferred to the states in T over a
time period of length T after the attack is maximized.

2) The total energy transferred to measurements y over a
time period of length T after the attack is minimized.

The first objective is to drive the crucial states as far as possible
from where they are and the second objective captures the
fact that the attacker does not want to trigger the network
monitor’s anomaly detection. This problem is formalised in
what follows.

Problem 1: Consider the system described by (3)-(4). Let
z be a vector of length q ≤ n whose entries are a subset of
x, i.e. there exists a matrix E with q rows of all zeros except
for one entry equal to one such that

z = Ex. (5)

Furthermore, let H = {h1, . . . , hm} be a finite set of arbitrary
vectors hi ∈ Rn. Addressing the following questions is of
interest. For given wA ≥ 0, wD ≥ 0, and a ≤ m, find H ∈
Rn×a whose columns are members of A ⊆ H, |A| = a, that
solves the following optimization problem

maximize wAtr(H>XEH)− wDtr(H>XCH) (6)

where XE and XC are the finite-time observability Gramians
over the interval [0, T ] associated with measurement matrices
E and C, respectively.
The finite-time observability Gramians in Problem 1 are given
by

XE =

∫ T

0

eA
>tE>EeAtdt, (7)

XC =

∫ T

0

eA
>tC>CeAtdt, (8)

which for the case that A is stable and T → ∞ are the
unique positive-semidefinite solutions of the following Lya-
punov equations

A>XE +XEA+ E>E = 0, A>XC +XCA+ C>C = 0.

The relative magnitude of coefficients wA and wD determines
which objective is more important. If wA > wD the first
objective, i.e. influencing z, out-weighs the risk of being
detected by the monitor and vice versa. Now, we propose
the following definition for the impulsive security index of
a network.

Definition 1 (a-Impulsive Security Index): For the system
described in Problem 1, where the target states and monitor
outputs are fixed, the impulsive security index is the maximum
of (6).

The next problem of interest is described below. Given a
set of attack vectors H and all the states, it is desired to find

an attack matrix H and a target matrix E such that the energy
transferred to z = Ex by an impulsive attack through the
attack matrix H is maximized. This problem is formalised
next.

Problem 2: Consider the system described by (3)-(4). Let
S = {s1, . . . , sn} be a finite set of row vectors si ∈ R1×n

that corresponds to measuring each state of the network,
i.e. all the entries are zero except for and entry equal to
one that corresponds to each of the states. Similarly, let
H = {h1, . . . , hm} be a finite set of attack vectors hi ∈ Rn
and m ≤ n. For given q > 0 and a > 0, the goal is to
find matrices T ∈ Rq×n with q rows from T ⊆ S and
H ∈ Rn×a with a columns from A ⊆ H, that solves the
following optimization problem:

maximize tr(H>XEH)

subject to XE =

∫ T

0

eA
>tE>EeAtdt, (9)

where XE is the observability Gramian associated with ma-
trix E.
Similar to before, we propose the following definition for the
worst case impulsive security index of a network.

Definition 2 ((q, a)-Worst Case Impulsive Security Index):
For the system described in Problem 2, where a attack vectors
and q target states are to be chosen, respectively, from sets H
and S, the maximum of (9) corresponds to the (q, a)-worst
case impulsive security index of the networked system.

Remark 1: Note that solving (9) is equivalent to solving

maximize tr(TYHT
>)

subject to YH =

∫ T

0

eAtHH>eA
>tdt, (10)

where YH is the controllability Gramian associated with the
input matrix H .
As before for the case where A is stable the Gramians can
be uniquely obtained from solving Lyapunov equations. Note
that hi in Problem 2 can correspond to individual states of
the network. Then, the attacks illustrate a sudden change in
the value of each of the states. To solve these problems, we
introduce some background material in the remainder of this
section.

Furthermore, we have the following definitions. For a given
finite set V = {1, . . . ,m}, which represents a set of edges
or nodes in a network, a set function f : 2V → R assigns a
real number to each subset of V . Cardinality constrained set
function optimization problems have the form

maximize
A⊆V, |A|≤κ

f(A). (11)

This finite combinatorial optimization problem can by solved
by brute force by evaluating f for the all possible subsets
of size κ and selecting the maximizing subset. However,
this approach quickly becomes intractable even for moderate
values of m and κ. However, if f is modular then the problem
can be solved very efficiently.

Definition 3 (Modularity): A function f is modular if for
any A ⊆ V:

f(A) = g(∅) +
∑
i∈A

g(i). (12)



One can see that optimizing modular set functions is
easy because each element of a subset gives an independent
contribution to the function values. Thus, (11) is solved by
evaluating the set function for each individual element and
choosing the top κ individual elements to obtain the best size
κ subset.

Definition 4 (Complete Bi-partite Graph): The complete bi-
partite graph, or a biclique, G = (V1

⋃
V2, E) is such that

V1
⋂
V2 = ∅ and E = V1 × V2.

Definition 5 (Induced Subgraph): An induced subgraph of
the vertices of a graph G = (V, E) is a subset of vertices of G
together with any edge in E whose endpoints are both in this
subset.

Definition 6 (Induced Biclique): An induced biclique of
a graph G is a biclique graph as well as being an induced
subgraph of G.

III. MAIN RESULTS

In this section, first, we propose a solution to Problem 1.
Before continuing any further, we have the following result
regarding Problem 1.

Proposition 1: The optimization problem (6) is equivalent
to the following problem.

maximize
A⊆H, |A|=a

∑
hi∈A

wA(h>i XEhi)− wD(h>i XChi). (13)

Moreover, the cost function is modular.
Proof: First, note that for any solution H , we have H =[

. . . hi . . .
]
, where hi ∈ A. Thus, (6) can be written as

maximize
A⊆H, |A|=a

wAtr(H>XEH)− wDtr(H>XCH)

subject to H =
[
. . . hi . . .

]
, hi ∈ A,

and equivalently

maximize
A⊆H, |A|=a

wAtr(HH>XE)− wDtr(HH>XC)

subject to H =
[
. . . hi . . .

]
, hi ∈ A.

In turn, it can be written as

maximize
A⊆H, |A|=a

wAtr(
∑
hi∈A

hih
>
i XE)− wDtr(

∑
hi∈A

hih
>
i XC),

which in light of the linearity of trace and the fact that
tr(CAB) = tr(ABC) establishes that any solution to (6)
is a solution to (13). The reverse direction can be shown in
a similar fashion as well. Thus, the first part of the proof is
completed.

The second part follows directly from the definition of
modularity in Definition 3.

Remark 2: The optimization problem (6) can be written as
a mixed-integer program and then relaxed to be solved as a
semidefinite programming (SDP) problem. However, as it will
be clarified below, there is a much more efficient way to solve
the problem. Moreover, large SDP problems cannot be solved
efficiently while the method we propose below scales well to
solve very large problems.

As a result of Proposition 1, (6) can be solved exactly. The
solution is outlined in Algorithm 1.

Algorithm 1 An Exact Greedy Solution to (6).
Require: XE , XC , H, wD, wA

1: A ← ∅
2: while |A| ≤ a do
3: h?i = argmax

hi∈H\A
wA(h>i XEhi)− wD(h>i XChi)

4: A ← A
⋃
{i?}

5: end while

It is worthwhile to observe that step 3 of the algorithm
does not need to be evaluateed in every iteration. In fact,
Algorithm 1 can be implemented efficiently by sorting the
value of wA(h>i XEhi)− wD(h>i XChi) for different hi ∈ H
and choosing H̃ to be the set of those hi that correspond to
the a largest values of wA(h>i XEhi)− wD(h>i XChi).

In what follows, we propose a solution to Problem 2. First,
we present the following proposition.

Proposition 2: The optimization problem described by (9)
is equivalent to

maximize
m∑
i=1

n∑
j=1

βiγjwij

subject to
m∑
i=1

βi = a,

n∑
i=1

γi = q,

βi ∈ {0, 1}, j = 1, . . . ,m,

γi ∈ {0, 1}, i = 1, . . . , n, (14)

where wij = h>i Xjhi ≥ 0 and

Xi =

∫ T

0

eAts>i sie
A>tdt, i = 1, . . . , n. (15)

Proof: Note that (9) is equivalent to

maximize tr(H>XEH)

subject to XE =
∑
si∈T

∫ T

0

eAts>i sie
A>tdt,

where the decision variables are the sets A ⊆ H and T ⊆ S
where |A| = a and |T | = q. Along with (15), this optimization
problem can be written as

maximize tr(H>XEH)

subject to XE =
∑
sj∈T

γjXj .

Replacing the constraint in the cost function and similar to the
proof of Proposition 1, we have

maximize
∑
hi∈A

∑
sj∈T

(h>i Xjhi).

Note that the membership in sets T and A can be checked by
binary variables {γi}mi=1 and {βi}ni=1 where γi = 1 if si ∈ T
and 0 otherwise, and βi = 1 if hi ∈ A and 0 otherwise.
The cardinality constraints on T and A can be ensured by
enforcing constraints on the summations

∑n
i=1 γi = q and∑m

i=1 βi = a.
In the next proposition, we relate (14) to the famous

maximum edge weight induced biclique problem which is



Fig. 1. The bipartite graph G = (V, E) described in Proposition 1.

postulated to be NP-complete in general, see [8]. For more
information on different variants of this problem the reader
may refer to [8]–[10].

Proposition 3: Define a complete bipartite graph G = (V, E)
V = VH

⋃
VS = {1, . . . ,m}

⋃
{1, . . . , q} and edge set E =

VH × VS with edge weights wij = h>i Xjhi ≥ 0 where i ∈
{1, . . . ,m} and j ∈ {1, . . . , q}. Let G′ = (V ′, E ′) an induced
biclique of G where V ′ = VA

⋃
VT , E = VA × VT , VA ⊆

{1, . . . ,m}, VT ⊆ {1, . . . , n}, |VA| = a, VT = q, and edge
weights wij , ∀(i, j) ∈ E ′. Solving (14) is equivalent to finding
G′ that maximizes

∑
(i,j)∈E′ wij .

Proof: Let {β?i }mi=1 and {γ?i }ni=1 be the optimal solutions
to (14) and the optimum value of the cost function in (14) be
given as

J? =

m∑
i=1

n∑
j=1

β?i γ
?
jwij .

The optimum value is the sum of all wij such that βi = γj =
1. Now consider the complete bipartite graph G = (V, E)
where V = VH

⋃
VS = {1, . . . ,m}

⋃
{1, . . . , q} and edge

set E = VH × VS with edge weights wij = h>i Xjhi ≥ 0
where i ∈ {1, . . . ,m} and j ∈ {1, . . . , q}. It can be seen
that βi = γj = 1 corresponds to (i, j) ∈ E . So the problem
can be cast as selecting a nodes from VH and q nodes from
VT such that the sum of edge weights is maximized. This is
exactly the problem of finding the induced graph of G, G′, with
maximum edge weights where G′ = (V ′, E ′), V ′ = VA

⋃
VT ,

E = VA×VT , VA ⊆ {1, . . . ,m}, VT ⊆ {1, . . . , n}, |VA| = a,
VT = q, and edge weights wij , ∀(i, j) ∈ E ′.
The bipartite graph of Proposition 3 is depicted in Fig. 1. The
optimization problem (14) is an integer programming problem
with a bilinear cost function and linear constraints. There are
many methods proposed to approximately solve this problem,
for example the reader may refer to the methods proposed in
[11]–[13] and the references there-in.

We conclude this section by briefly discussing the case
where the networked system is described by discrete-time
equations. Assume that the attack-free networked system is
described by

x+ = Ax+Bu, y = Cx (16)

where x+ denotes the value of x in the next time-step. The
corresponding model for the case that there is an attack in the
system becomes

x+ = Ax+Bu+Hα, y = Cx (17)

where α is the a-dimensional discrete-time attack signal and
α = [δ̄[ta], . . . , δ̄[ta]]> with δ̄[ta] is the discrete-time Dirac
function and ta is an arbitrary attack time index. As before,
we assume ta = 0. All the earlier problems and solutions
can be extended to this case subject to using the following
definitions for the finite-time observability Gramians of (7)
and (8) and the finite-time controllability Gramian of (10):

XE =

T∑
k=1

(
A>
)k
E>EAk, XC =

T∑
k=1

(
A>
)k
C>CAk,

YH =

T∑
k=1

AkHH>
(
A>
)k
.

IV. APPLICATIONS

In this section, we analyse two networked systems and study
the optimal impulsive attack vectors and the corresponding
impulsive security indices for each system.

A. Impulsive Attacks in Power Networks
The first system that we consider models the active power

flow in a power network. We determine the optimal attack
vector for an adversary to launch an impulsive attack. The
impulsive attack here corresponds to a sudden addition or
draining of active power in the buses of the network. Specif-
ically, the optimal attack vector indicates a sudden change in
the load of which buses has the largest impact on the states of
target buses. To this aim, we consider the classical linearized
synchronous machine model [14] for each node of the power
network. The behaviour of each bus i can be described by the
so-called swing equation:

miθ̈i + diθ̇i − Pmi = −
∑
j∈Ni

Pij , (18)

where θi is the phase angle of bus i, mi and di are, respec-
tively, the inertia and the damping coefficients, Pmi is the
mechanical input power and Pij is the active power flow from
bus i to j. Considering that there are no power losses nor
ground admittances and letting Vi = |Vi| ejθi be the complex
voltage of bus i, the active power flow between bus i and bus
j, Pij , is given by:

Pij = kij sin(θi − θj) (19)

where kij = |Vi| |Vj | bij and bij is the susceptance of the
power line connecting buses i and j. Since the phase angles
are close, we can linearize (19), rewriting the dynamics of
bus i as:

miθ̈i + diθ̇i = −
∑
j∈Ni

kij(θi − θj) + Pmi. (20)

Letting x =
[
θ1, · · · , θN , θ̇1, · · · , θ̇N

]>
and u =

[Pm1 · · · PmN ]
>, we obtain ẋ = Ax+Bu, where

A =

[
0N IN
−ML −DM

]
, B = [0N M ]

>
,

M = diag
(

1

m1
, · · · , 1

mN

)
, D = diag (d1, · · · , dN ) ,



Fig. 2. A 9 bus power network.

Fig. 3. The value of (13) for different hi.

and L is the Laplacian matrix of graph P(VP , E) with
N = |VP | nodes, where each node corresponds to a bus in the
power network and the undirected edge {i, j} ∈ EP if bus i
is connected to bus j with edge weight kij for all {i, j} ∈ E .

In the rest of this section, we consider the 9 bus system
depicted in Fig. 2. First, we solve Problem 1 for the case
where H = {h1, . . . , h9} with hi being a vector of all zeros
except for the (i + 9)-th entry that is equal to one, a = 1,
z = [θ̇1, θ̇4]>, T = 5, wA = 1, and y = 0, i.e. no monitor
outputs. The optimal attack vector in this scenario is h4,
i.e. attacking the input of bus 4 yields the highest gain from
the attacker’s point of view. In the next scenario, we assume
that an anomaly detecter has access to the monitor output
y = [θ8, θ̇8]>. Moreover, we assume that all the parameters
are identical to the previous case except for wD = 1. The
optimal attack vector for this scenario is h6. The values of
h>i (wAXE−wDXC)hi are presented in Fig. 3 for both of the
aforementioned scenarios. The impulsive security index for the
network in the case where no monitor output was available
is 0.33 and is obtained at T = {h4} and it is 0.23 and is
obtained at T = {h6} for the case where y = [θ8, θ̇8]>. In
the next scenario, we consider Problem 2 for the same 9 bus
network where a = q = 1. Choosing T = {s5} and A = {h2}
correspond to the optimal solution of (9). The value of cost
function for different choices of T and A are depicted in Fig.
4.

B. Impulsive Attacks in Network Congestion Control

The second networked system that is considered here arises
from congestion control in data networks. In this scenario,
the attack is a sudden change in the link prices. The attacker’s

Fig. 4. The value of (9) for different choices of T and A where a = q = 1
in the 9 bus power network.

objective is to introduce the biggest shift in a set of target links’
prices by changing the prices in another part of the network.
This depending on the attack may result in an increased
congestion or increased under-utility, i.e. lack of traffic, in the
target links.

One of the most powerful approaches in congestion control
is to formulate the problem as a Network Utility Maximization
(NUM) has emerged. Many of the existing solutions to the
problem are based on the dual decomposition technique intro-
duced in [15], where the optimal bandwidth sharing among N
flows in a data network is posed as the optimizer of a convex
optimization problem

maximize
x

∑
i ui(xi)

subject to Rx ≤ c
(21)

In this formulation xi is the communication rate of flow i,
and the strictly concave function ui(xi) describes the utility
that source i has of communicating at rate xi. The routing
matrix, R ∈ {0, 1}`×N where ` is the number of links, has
entries Rli equal to one if flow i travels through link l and
zero otherwise. In other words, the entries of Rx correspond
to the total traffic on each of the links, which in turn cannot
exceed their capacities c ∈ Rn. Moreover, we assume that for
all link l, there exists a source i whose flow only goes through
l, i.e. Rli = 1 and Rl′i = 0 for all l′ 6= l. In the light of this
assumption, Rx ≤ c in (21) can be replaced with Rx = c.
Applying dual decompositions (see [16] and [15] for more
information), we have

x?i (µ) = arg max ui(z)− z
∑
l

Rliµl, (22)

µ+
l = µl + ρ

(∑
l

Rlix
?
i (µ)− cl

)
(23)

where µl is the Lagrange multiplier associated with link l and
ρ is an appropriately chosen constant step-size. Note that the
updates can be done locally. For each link, if the traffic demand
on the link exceeds capacity, the multiplier is increased,
otherwise it is decreased. Furthermore, in this example, we

assume that the utility functions are ui(xi) = −1

2
(xi − x̄i)2



Fig. 5. A network with 9 links and 8 flow sources.

Fig. 6. The value of (6) for the case where z = µ1 for different attack
vectors.

where x̄i � 0. Thus, x?i (µ) = x̄i −
∑
lRliµl. Hence,

A = I−ρRR> if the system is written as (16). For the rest of
this section, we consider the network depicted in Fig. 5 along
with the routing matrix

R =



1 0 0 0 0 0 1 0
0 1 0 1 0 0 0 0
0 0 1 0 0 0 1 1
1 0 0 0 0 0 1 0
0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0
0 1 0 1 1 0 1 0


.

The target link in this scenario is assumed to be link 1,
i.e. z = µ1. The objective is to find the link among links
VH = {3, 5, 8, 9} where an impulsive change in its price has
the highest impact on the price of link 1 and consequently its
traffic. The optimal link for an impulsive attack is determined
to be link 8. The value of (6) for each of the links is depicted
in Fig. 6.

The simulations for this paper are carried out in Python
and to conform with the guidelines of reproducible research1

1http://reproducibleresearch.net/

they can be found at [17].

V. CONCLUSION

In this paper, we studied the impact of impulsive attacks
on networked systems. We proposed a security index tailored
for such attacks and considered the worst case scenario for
impulsive attacks. We commented on the fact that the index
can be applied to both continuous- and discrete-time systems
and related the problem of finding the worst case impulsive se-
curity index to the famous NP-complete problem of maximum
induced biclique in graphs. We considered two networked
systems, namely power networks and data networks, and
studied the impact of impulsive attacks on them.
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