
Concurrent Goal Assignment and
Collision-Free Trajectory Generation for

Multiple Aerial Robots

Benjamin Gravell† Tyler Summers†

†University of Texas at Dallas

Abstract: We develop computationally tractable methods for concurrent goal assignment
and planning of collision-free trajectories for multiple aerial robot systems. Our method first
assigns robots to goals to minimize total time-in-motion, assuming straight-line maximum-speed
trajectories. By coupling the assignment and trajectory generation, the initial motion plans tend
to require only limited collision resolution. We then refine the plans by checking for potential
collisions and resolving them using either start time delays or altitude assignment. Numerical
experiments using both methods show significant reductions in the total time required for agents
to arrive at goals with only modest additional computational effort in comparison to state-of-
the-art prior work.

1. INTRODUCTION

Autonomous aerial robot teams are emerging as a com-
pelling platform for a variety of application areas, includ-
ing search-and-rescue, infrastructure inspection, environ-
mental monitoring, and product delivery. A key challenge
in safely and effectively deploying large fleets of robots is
to minimize the time required for the team to simultane-
ously complete a set of tasks while ensuring robot-to-robot
collisions do not occur. We consider a multi-robot planning
problem which requires the assignment of robots in given
start locations to given goal locations, along with the gen-
eration of minimum-cost trajectories which connect these
locations, subject to collision avoidance constraints. As the
number of robots increases, so too does the complexity of
finding collision-free paths, warranting the development of
computationally tractable methods to this end.

Traditional motion planning methods typically rely on
discretizing the state space into a graph Švestka and
Overmars (1998). Feasible paths are then found through
a graph search Dijkstra (1959); Hart et al. (1968); Wang
and Goh (2012); Koenig and Likhachev (2002); Koenig
et al. (2004); Stentz (1993), or other combinatorial solv-
ing methods LaValle (2006). While these methods can
in principle solve the multi-agent planning problem, they
intrinsically introduce suboptimality and become compu-
tationally intractable quickly as the number of agents
increases, leading to an exponential growth of the search
space dimensionality Erdmann and Lozano-Perez (1986);
LaValle (2006). Some methods have been explored which
reduce the search space dimensionality LaValle (2006);
Wagner et al. (2012); Wagner and Choset (2015), but
are unable to sufficiently reduce the complexity for large
numbers of agents Turpin et al. (2014). Other centralized
planning approaches such as sequential mixed-integer lin-
ear optimization Schouwenaars et al. (2001); Richards and

? The authors are with the Department of Mechanical Engineering
at The University of Texas at Dallas, Richardson, TX, 75080 USA.
E-mail: bjgravell@gmail.com, tyler.summers@utdallas.edu

How (2002); Alonso-Ayuso et al. (2016), sequential convex
programming Augugliaro et al. (2012); Chen et al. (2015),
semidefinite programming Frazzoli et al. (2001), or forma-
tion space-based velocity planning Kloder and Hutchinson
(2006) can work well for relatively small teams but do not
scale well to large teams due to the high computational
complexity.

An alternative approach to avoiding collisions is to utilize
local decentralized feedback control laws to avoid neigh-
boring agents and associated velocity obstacles Warren
(1990); Fiorini and Shiller (1998); van den Berg et al.
(2008, 2011); Guy et al. (2009, 2010); Cap et al. (2014,
2015). This requires real-time sense-and-avoid capabilities,
increasing the system cost and complexity. In general, it
is difficult to couple global motion planning with local
collision avoidance while maintaining optimal or near-
optimal performance and avoiding undesirable deadlock
situations.

It was recently shown by Turpin et al. (2014) that when
the robots are interchangeable (i.e., it does not matter
which robot is assigned to a particular goal so long as
all goals receive an assignment), combining the assign-
ment and planning problems considerably facilitates find-
ing collision-free trajectories. They proposed a concur-
rent assignment and trajectory planning algorithm which
tractably gives collision-free trajectories for large robot
teams for sufficiently spaced start and goal locations. How-
ever, their work optimized a total squared distance metric
and assumed synchronized robot motion, which results in
trajectories that can be significantly suboptimal in terms
of total time in motion and may violate minimum veloc-
ity constraints associated with certain aerial robots. Here
we consider a closely related problem setup and present
methods to overcome these limitations.

Our main contributions are as follows. We first define
a variation of the trajectory planning problem given by
Turpin et al. (2014), then propose a semi-coupled strategy,
in which goal assignment and initial trajectory planning

are performed concurrently, followed by a refinement step
to resolve potential collisions using either time delays or
altitude assignment. By minimizing the total non-squared
distance and allowing asynchronous trajectories, our al-
gorithm tractably produces collision-free trajectories with
near optimal total time in motion. Our method can signif-
icantly reduce to total time in motion relative to Turpin
et al. (2014), with only modest additional computational
expense which becomes negligible for large numbers of
agents. Finally, we present numerical experiments that
illustrate the effectiveness of our algorithms.

2. PRELIMINARIES

Where applicable, we follow the notation of citeturpin2014.
We consider the scenario where N agents begin at N start
locations and move towards N goal locations in an n-
dimensional Euclidean space. The set of integers between
1 and positive integer Z is denoted by IZ ≡ {1, 2, . . . , Z},
and the Z × Z identity matrix is denoted by IZ .

The ith agent center location is given by xi ∈ Rn, i ∈ IN ,
and a ball BR centered at xi of radius R represents
the collision zone. The ith start location is given by
si ∈ Rn, i ∈ IN . The jth goal location is given by
gj ∈ Rn, j ∈ IN . The agents operate in an obstacle-
free region K, the convex hull of start and goal locations
with the Minkowski sum of a ball of radius R: K ≡
conv ({si|i ∈ IN} ∪ {gj |i ∈ IN})⊕BR.We define theN×n
goal matrix as G = [g1

T , g2
T , . . . , gN

T]T . We define the
N×N assignment matrix φ, which assigns agents to goals,
as

φi,j =

{
1 if agent i is assigned to goal j

0 otherwise
(1)

Therefore the ith row of φG, denoted as (φG)i, gives the
goal location assigned to the ith agent. All agents are
assigned to goals in a one-to-one mapping, so

φTφ = IN . (2)

3. TRAJECTORY PLANNING PROBLEM

The trajectory planning problem requires finding N n-
dimensional trajectories, which are given agent-wise by

γi(t) : [t0,i, tf,i]→ xi, i ∈ IN
and must satisfy the initial and terminal conditions

γi(t0,i) = si, i ∈ IN , (3)

γi(tf,i) = (φG)i , i ∈ IN . (4)

Each agent is assumed to have simple first order dynamics:

ẋi = vi (5)

and may move with a maximum speed

‖vi‖2 ≤ ci. (6)

The distance between the centers of agents i and j at any
given instant is di,j(t) = ‖xj(t)− xi(t)‖2. The clearance
between the physical extents of agents i and j at any given
instant is then

ei,j(t) = di,j(t)− 2R = ‖xj(t)− xi(t)‖2 − 2R.

We define the global start and end times for which motion
may occur over all agents:

t0,all = min(t0,1, t0,2, . . . , t0,N),

tf,all = max(tf,1, tf,2, . . . , tf,N).

We ensure collision avoidance by requiring positive clear-
ance between all agent pairs during the period of possible
motion:

ei,j(t) > 0 for t : [t0,all, tf,all], i 6= j ∈ IN . (7)

We seek trajectories γ(t) = [γ1(t), ..., γN (t)] that minimize
a cost functional:

γ∗(t) = argmin
γ(t)

N∑
i=1

∫ tf,i

t0,i

L(γi(t))dt

subject to (2), (3), (4), (5), (6), (7)

Our strategy for finding a solution to this problem pro-
ceeds by temporarily ignoring clearance requirements,
choosing a suitable cost function to reduce the problem to
goal assignment, generating trajectories, then implement-
ing refinement techniques to detect and resolve collisions.

3.1 Goal Assignment

In order to solve the trajectory planning problem, we
first choose a meaningful cost function. The C-CAPT
algorithm of Turpin et al. Turpin et al. (2014) uses a cost
function of the distance traveled squared, but also requires
agents to start and arrive at goals at the same time,
which limits the speed at which agents may move. This
approach also does not easily accommodate agents with
heterogeneous speed capabilities. In addition, the choice
of a cost function of the distance traveled squared results
in sub-optimal assignments with respect to minimizing
the total time-in-motion, which for many applications is
the true cost of interest. Furthermore, in order to ensure
collision avoidance, a sufficient separation spacing between
starts and between goals of 2

√
2R must be enforced, which

greatly limits the permissible locations.

From a practical standpoint, it is desirable to minimize
the task completion time, fuel consumption, and wear,
which requires minimizing time-in-motion and allowing
each agent to move with the maximum speed available
to it. Therefore we choose to use a cost function of the
time-in-motion:

minimize
φ,γ(t)

N∑
i=1

∫ tf,i

t0,i

dt

subject to (2), (3), (4), (5), (6)

An argument from the calculus of variations shows that
the trajectories which minimize the integral of dt, which is
the time-in-motion, are straight lines with constant maxi-
mum velocity and which satisfy the boundary conditions.
Therefore the the problem reduces to simply finding the
optimal assignment and connecting the starts to goals with
straight line paths, effectively minimizing the total non-
squared distance. The optimal assignment is given by

φ∗ = argmin
φ

N∑
i=1

N∑
j=1

φi,jCi,j

where entries of the cost matrix C contain the values of the
time-in-motion taken by agent i to travel to goal j along
a straight line with maximum speed:

Ci,j =
‖gj − si‖2

ci
, i ∈ IN , j ∈ IN .

This is a linear assignment problem which may be solved
to optimality using the well-known Hungarian Algo-
rithm Kuhn (1955); Munkres (1957), which runs in O(N3)
time.

3.2 Trajectory Generation

We define the heading vector and the unit heading vector:

hi = (φG)i − si, ĥi =
hi
‖hi‖2

.

Since the optimal trajectories are straight lines between
starts and goals with constant maximum velocity, we have

γ∗i (t) = (t− t0,i)ciĥi + si, i ∈ IN
with corresponding velocity vectors vi = ciĥi, i ∈ IN .

A theorem proven via the triangle inequality by Turpin
et al. Turpin et al. (2014) reveals that paths almost
never intersect using this assignment. For this reason,
collisions will be rare for sufficiently spaced agents. This
is demonstrated empirically in Section 7 in Fig. 3 by the
limited number of altitudes and Fig. 2 by the low number
of large time delays required to resolve collisions.

The advantage of allowing asynchronous goal arrival is
dependent on the distribution of the start and goal loca-
tions; when some trajectory lengths are much larger than
others, the ability to move at maximum speed significantly
improves speed resource utilization. For many practical
applications, such as commercial package delivery, the
service area may include goal locations which are both
near and far from the start locations.

4. CONSTRAINED COLLISION DETECTION
ALGORITHM (CCDA)

The optimal assignment yields a set of minimum time-
in-motion trajectories, but it may be required to resolve
collisions since collision constraints were ignored. We now
develop an algorithm for detecting whether a collision
will occur between agents i and j, and will subsequently
present two methods to resolve collisions. We use the well-
known Closest Point of Approach (CPA) method Muñoz
and Narkawicz (2010); Bestaoui-Sebbane (2014) and in-
corporate terminal conditions at the trajectory bounds,
which constrains the time domain. We call this algorithm
the Constrained Collision Detection Algorithm (CCDA).

For CCDA and all other subsequent algorithms, we assume
that each agent instantly appears before commencing
motion from its start location and vanishes upon reaching
its goal location, such that no collisions are possible whilst
vanished. Physically, this corresponds to a 3D aerial robot
taking off instantly to enter a 2D flight altitude and
landing instantly upon arriving at the goal location. 1

Thus, collisions will not occur if positive clearance is
maintained during periods of mutually occurring motion
between all agent pairs:

ei,j(t) > 0 for t : [t0,i,j , tf,i,j], i 6= j ∈ IN
where the shared start and end times are defined as

t0,i,j = max(t0,i, t0,j), and tf,i,j = min(tf,i, tf,j).

1 It is possible to explicitly incorporate takeoff and landing maneu-
vers, but we do not in order to simplify the exposition.

For CCDA, we assume that all agents begin motion at
the same time so that t0,i = t0,i,j = t0, i 6= j ∈ IN .
Thus, collision detection is accomplished by determining
whether ei,j(t) > 0 for t : [t0, tf,i,j], i 6= j ∈ IN . The
minimum clearance which occurs during the shared motion
is ei,j,min ≤ ei,j(t) for t : [t0, tf,i,j]. The time at which
ei,j,min occurs is notated as tcrit,i,j so that ei,j(tcrit,i,j) =
ei,j,min. We define the relative start position and velocity
vectors:

si,j = sj − si,

vi,j = vj − vi.

We have the following exact collision detection condition.

Theorem 1. Trajectories are collision-free if and only if

ei,j,min = ‖(tcrit,i,j − t0)vi,j + si,j‖2 − 2R > 0,

i 6= j ∈ IN
where

tcrit,i,j =

t0 if t0 ≥ tcpa,i,j

tcpa,i,j if t0 < tcpa,i,j < tf,i,j
tf,i,j if tcpa,i,j ≥ tf,i,j

and

tcpa,i,j = −si,j · vi,j
vi,j · vi,j

+ t0.

Proof: The time of the closest point of approach without
time constraints tcpa,i,j is found by minimizing the square
of the separation distance di,j(t). Taking the derivative
with respect to time and setting equal to zero yields

2 (tcpa,i,j − t0) (vi,j · vi,j) + 2(si,j · vi,j) = 0.

By comparing endpoint times to tcpa,i,j , the critical time
at which ei,j,min occurs is found, leading to the desired
expression. �

We associate as CCDA output a binary flag matrix F ∈
{0, 1}N×N whose off-diagonal entries are 1 to indicate a
collision between two agents and 0 otherwise:

Fi,j =

1 if ei,j,min < 0, i 6= j ∈ IN
0 if ei,j,min ≥ 0, i 6= j ∈ IN
0 if i = j ∈ IN

Clearly, trajectories are collision free if and only if Fi,j =
0, ∀i, j ∈ IN . Note also that F is symmetric, since the
computation of ei,j,min is unchanged if the indices i and j
are swapped.

The condition of Theorem 1 is exact, meaning it only flags
agents as colliding when they actually do and does not
flag them if they do not. In contrast, the approach of
Turpin et al. (2014) stipulates a simple, sufficient (but
not necessary) condition for ensuring collision avoidance,
namely that starts and goals be separated by a distance
of 2
√

2R. By comparison, CCDA gives a slightly more
complicated, but exact condition for collision avoidance.

Due to symmetry and trivial values on the main diagonal

of F , one must perform N2−N
2 computations of ei,j,min to

detect all potential collisions. In our subsequent numerical
experiments, we observe solve times which increase as
N2 or N3 in Section 7.4 in Fig. 5, indicating that our
approaches for resolving collisions do not require signif-
icantly more computation than assignment and collision
detection. Another beneficial property of CCDA is that it

is trivially parallelizable, as the result for each agent-pair
is independent and may be solved concurrently.

Now that we know which agents will collide, when they
will collide, and how much (possibly negative) clearance
will exist, we seek to resolve these collisions.

5. COLLISION RESOLUTION VIA ALTITUDE
ASSIGNMENT

One way to resolve collisions between agents in the Rn
space is to introduce an additional dimension such that
the new global space is Rn+1. We can then move agents
into discrete parallel Rn hyperplanes within the Rn+1

global space. Thus any agent within one hyperplane cannot
collide with any agent in another hyperplane. We will
hereafter assume a R3 global space split into many parallel
R2 planes in which the agents operate. This scenario
may be physically realized by confining 3D aerial robots
to various horizontal 2D altitudes with sufficient vertical
spacing.

Altitude Assignment Algorithm

Once the collision flag matrix F is known, the agents may
be assigned to altitudes in such a way that all collisions
are eliminated. We develop a simple randomly prioritized
sequential algorithm (RPSA) which generates a set of
altitude assignments which eliminate all collisions, though
it does not guarantee a globally minimum number of
altitudes. This algorithm, described in Algorithm 1, yields
a N × a altitude assignment matrix A which assigns N
agents to a altitudes:

Ai,j =

{
1 if agent i is assigned to altitude j

0 otherwise.

The algorithm assigns the first agent to the first altitude,
then iterates through the remaining agents and adds a
new altitude whenever it is not possible to assign an
agent to an existing altitude without a collision. For
space considerations, we indicate the end of a conditional
statement by a decrease in indentation for all algorithms.

Algorithm 1 RPSA for altitude assignment

a = 1, A = zeros(N, 1), A1,1 = 1
for i = 2→ N do

for j = 1→ a do
currentAltAgents={k | A(k, j) = 1}
if F (currentAltAgents, i) = 0 then
Ai,j = 1 break

else
if j = a then

a = a+ 1
A = [A, zeros(N, 1)]
Ai,a = 1

In the worst case, a = N , which occurs if every agent
collides with every other agent. In the best case a = 1,
which occurs if no agent collides with any other agent.
Our numerical experiments indicate that often only a
small number of altitudes are needed even in quite dense
scenarios.

6. COLLISION RESOLUTION VIA TIME DELAYS

Another way to resolve collisions between agents is to
introduce a delay time td,i to each agent before beginning
motion. For this approach, we restrict motion to a single
2D flight altitude. We also assume that each agent will
start on the local ground, remain motionless during the
delay time, instantly enter the flight altitude and begin
motion, then instantly move to the local ground upon
reaching the goal location. In this approach, collisions
may be eliminated regardless of start and goal location.
As a motivating example, consider a pair of agents which
must exchange positions. By introducing sufficient delay
time to one agent, the other is allowed to complete its
motion before the first enters the flight altitude, avoiding
a collision. This illustrates that there always exists a
feasible set of time delays, which is easily generated by
allowing only a single agent to be in motion at any given
time, essentially sending agents one-by-one to their goal
locations. The problem then is to find the set of time delays
which minimize some objective function, such as the sum
of the delay times of each agent, while avoiding collisions
as calculated by the collision detection algorithm. This
also necessitates modifications to the collision detection
algorithm which accommodate the presence of time delays.

6.1 Constrained Collision Detection Algorithm with Delay
Times (CCDA-DT)

We develop an algorithm which considers only the time
that a pair of agents are both in motion, e.g. if one agent
is on the ground then there cannot be a collision. This
is equivalent to moving the agent with lower time delay
forward along its path by the delay time difference tdiff =
td,j−td,i to a “virtual” start location, then running CCDA.
We call this algorithm the Constrained Collision Detection
Algorithm with Delay Times (CCDA-DT), detailed in
Algorithm 2.

Algorithm 2 CCDA-DT

if td,i > td,j then
if |tdiff| > (tf,j − t0,j) then

ei,j,min = +∞, Fi,j = 0 return

s′j = sj + vj |tdiff |
t′f,j = tf,j − |tdiff |

else if td,i < td,j then
if |tdiff| > (tf,i − t0,i) then

ei,j,min = +∞, Fi,j = 0 return

s′i = si + vi |tdiff|
t′f,i = tf,i − |tdiff|

CCDA with s′i, t
′
f,i, i ∈ IN

For cases where the time delays are such that both agents
are never moving at the same time (one is on the ground
while the other is moving), the effective clearance is
infinite. CCDA-DT thus consists of running CCDA using
the new virtual start location in place of the actual start
location to find the minimum clearance and the presence
of a collision.

Optimization Using CCDA-DT as a constraint equation
where ei,j,min(td,i, td,j) ≥ 0 is enforced for each pair of

agents, strong nonlinearities are present due to the time
domain considerations. Furthermore, the constraint equa-
tion will be nonconvex in general, necessitating nontrivial
global optimization schemes which are beyond the scope
of this work. For the purposes of this paper, we devise a
simple heuristic algorithm for finding feasible, suboptimal
time delays.

6.2 Randomly Prioritized Sequential Algorithm for Finding
Time Delays

We now develop an algorithm, described in Algorithm 3,
which works by sequentially searching for small time delays
necessary to avoid collisions. This is achieved by iterating
through the agents, increasing at fixed increments the time
delay on the current agent, and running CCDA-DT against
previously set agents after each delay time increase. This
process is repeated sequentially, advancing through each
agent. This guarantees that eventually, a feasible set of
time delays will be found. Though there is no guarantee
of global optimality, in practice the time delays found
are good, as demonstrated in Fig. 4. We chose to use a

time increment tinc = A
(
R
ci

)
where A = 0.1, which was

found to offer a good compromise between optimality and
computation time. Running CCDA-DT for agents i and j
is denoted as CCDA-DT(i, j).

Algorithm 3 RPSA for time delays

td,i = 0 ∀i, tinc = A
(
R
ci

)
, A = 0.1

for i = 2→ N do
for j = 1→ N do

Fi,j = CCDA-DT(i, j)

while ∃k < i such that Fi,k = 1 do
td,i = td,i + tinc

for j = 1→ (i− 1) do
Fi,j = CCDA-DT(i, j)

7. NUMERICAL EXPERIMENTS

In order to analyze the performance of our algorithms as
well as existing algorithms, we used Monte Carlo estima-
tion with start and goal locations generated uniformly at
random over an operation area. The operation area is a
square of side length S+2R with rounded corners of radius
R, so that the agent centers are drawn from a square of
side length S. We varied the number of agents N and the
area density, defined as

η =
Aagents

Aspace
=

NπR2

S2 + 4RS + πR2
.

Fig. 1 visualizes 100 agents with η = 0.4 and uniform
speeds at a time when many agents are in an intermediate
state between start and goal locations.

Requiring a minimum separation distance between starts
and goals leads to an upper bound on the density, which
occurs when the start locations are hexagonally close
packed Chang and Wang (2010). For a separation of 2R
the uppper limit of density is π

2
√

3
≈ 0.9068 and for a

separation of 2
√

2R as in Turpin et al. (2014) the limit
is π

4
√

3
≈ 0.4534. For reference, a typical area density for

(a) No collision resolution (b) Collision resolution via
time delays

Fig. 1. Visualization of 100 agents without (a) and with
(b) collision resolution via time delays.

commercial aircraft traffic management is 10−5 air (2016),
at which collisions are quite rare. For applications involv-
ing many unmanned robots the traffic may be considerably
more dense, so we perform simulations for a wide range of
densities.

7.1 Time Delay Distribution

Fig. 2 shows a typical histrogram of time delays using our
time delay collision resolution method for N = 1000 agents
and a density of η = 0.1.This shows that even for start
and goal locations which are allowed to be less than 2R
apart, most agents have zero or low-valued time delays
and only a few have large time delays. The small number
of large delays and the low average delay is a direct result
of coupling the assignment and trajectory generation.

Fig. 2. Histogram of time delays for 1000 agents with
R = 1m, uniform speed of c = 1ms , and η = 0.1.

7.2 Altitudes Required

Using our altitude assignment approach, we studied the
number of altitudes required to resolve collisions. Fig. 3
shows the empirical average number of altitudes as a
function of area density. As expected, the number of
altitudes required grew as the density increased, as a result
of more potential collisions. Again, we observe that by
coupling the assignment and trajectory generation, only
a few altitudes are typically required even for highly dense
scenarios.

7.3 Normalized Total Time

The time-in-motion and total time of agent i are defined
respectively as tm,i = tf,i − t0,i and tt,i = tm,i + td,i. If

10
-4

10
-3

10
-2

10
-1

10
0

Area Density

1

2

3

4

5

6

7

8
N

u
m

b
e
r

o
f
A

lt
it
u
d
e
s

Fig. 3. Number of altitudes required to resolve collisions
as a function of area density using 100 agents. Mean
value from 100 trials at each of 32 densities between
10−4 and 100.

collisions are resolved via altitude assignment, then there
is no need for time delay and consequently the time-in-
motion and total time are equivalent. We also define a
characteristic time tc which is the time an agent traveling
with average speed would take to traverse the longest
straight-line path within the space, which for a square
space is simply

√
2S. If all agents travel with uniform

speed, then cavg = c and tc =
√

2S
c . The normalized

average total time is

tt,avg,norm =
tt,avg

tc
=
c
∑N
i=1 (tm,i + td,i)

N
√

2S
.

With respect to this metric, plotted in Fig. 4, our altitudes
approach gave the best results for all densities. At low
densities, our time delay approach gave nearly the same
performance as a consequence of small time delays which
vanish as the density goes to zero. At higher agent densi-
ties, the time delay approach result began to increase as
the physical extent of the agents became more influential.
Both of our approaches gave better performance at all
densities than the Turpin et al. approach. This increase
in performance became more apparent when agents had
heterogeneous maximum speeds, mainly due to the fact
that the Turpin approach does not consider speed and
is not suited to handling this situation. Nevertheless it
was instructive to observe that the introduction of var-
ious maximum speeds did not have a deleterious effect
on performance in our approach. We allowed collisions
for simulations using the Turpin et al. approach to avoid
imposing the 2

√
2R separation condition required for that

approach to be collision-free for simplicity in generating
the starts and goals.

7.4 Computational Speed

Computation time is critical for scalability to large robot
teams in practice. Our simulations were implemented in
MATLAB running on a desktop with an Intel i7 6700K
quad-core processor running at 4.0GHz. The results are
given in Fig. 5, where we observe reasonable computation
times for relatively large teams.

At high agent numbers the assignment computations,
which grew as N3, dominated over our collision resolution
steps, which grew only as N2. Assignment required almost
exactly the same computational time whether using a

10
-3

10
-2

10
-1

10
0

Area Density

 0%

 5%

10%

15%

20%

N
o
rm

a
liz

e
d
 T

o
ta

l
T

im
e

Gravell (Altitudes)

Gravell (Time Delay)

Turpin

Fig. 4. Normalized average total time as a function of area
density using various trajectories for 100 agents with
uniform maximum speed. Mean value from 1000 trials
at each of 25 area densities.

time-in-motion cost as in our approach (Gravell, no reso-
lution) or a total distance squared approach, as in Turpin
et al. (2014).

10
0

10
1

10
2

10
3

Number of Agents

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
s
)

Gravell (No Resolution)
Gravell (Resolve via Time Delay)
Gravell (Resolve via Altitudes)
Turpin

Quadratic (N
2
)

Cubic (N
3
)

Fig. 5. Computational time as a function of number of
agents using various trajectories using an area density
of 0.1. Mean value from 10 trials at each of 10 numbers
of agents between 2 and 1000.

8. CONCLUSION

We proposed semi-coupled solutions to assignment and
collision-free trajectory planning problem for multiple
robots. Our assignment of agents to goals minimizes
the total time-in-motion, and the resulting straight-line,
maximum-speed, asynchronous trajectories take full ad-
vantage of possibly heterogeneous speed capabilities. The
trajectories were then refined using collision resolution
methods involving either altitude assignment or start-
time delays. The results of numerical simulations revealed
promising decreases in the total time without unwork-
able increases in the computation time over existing ap-
proaches, allowing faster task completion. Our algorithm
also allowed eliminated restrictions on start and goal loca-
tions as opposed to other methods which require enforce-
ment of a minimum separation.

Future work includes extension to agents with more com-
plex dynamics and/or motion constraints, combining time
delays with altitudes, and a parallel implementation to
decrease solve times.

REFERENCES

(2016). Doc 4444 - Procedures for Air Navigation Services
- Air Traffic Management. International Civil Aviation
Organization, 16 edition.

Alonso-Ayuso, A., Escudero, L.F., and Martn-Campo,
F.J. (2016). Multiobjective optimization for aircraft
conflict resolution. a metaheuristic approach. European
Journal of Operational Research, 248(2), 691 – 702. doi:
http://dx.doi.org/10.1016/j.ejor.2015.07.049.

Augugliaro, F., Schoellig, A.P., and D’Andrea, R. (2012).
Generation of collision-free trajectories for a quadro-
copter fleet: A sequential convex programming ap-
proach. In IEEE/RSJ International Conference on In-
telligent Robots and Systems, 1917–1922. IEEE.

Bestaoui-Sebbane, Y. (2014). Planning and Decision Mak-
ing for Aerial Robots, volume 71. Springer International
Publishing, Gewerbestrasse 11, 6330 Cham, Switzer-
land, 1 edition.

Cap, M., Novak, P., Kleiner, A., and Seleck, M. (2015).
Prioritized planning algorithms for trajectory coordina-
tion of multiple mobile robots. IEEE Transactions on
Automation Science and Engineering, 12(3), 835–849.

Cap, M., Novak, P., and Kleiner, A. (2014).
Finding near-optimal solutions in multi-robot
path planning. CoRR, abs/1410.5200. URL
http://arxiv.org/abs/1410.5200.

Chang, H.C. and Wang, L.C. (2010). A Simple Proof
of Thue’s Theorem on Circle Packing. ArXiv e-prints.
URL https://arxiv.org/abs/1009.4322.

Chen, Y., Cutler, M., and How, J.P. (2015). Decoupled
multiagent path planning via incremental sequential
convex programming. In 2015 IEEE International Con-
ference on Robotics and Automation, 5954–5961.

Dijkstra, E.W. (1959). A note on two problems in connex-
ion with graphs. Numer. Math., 1(1), 269–271.

Erdmann, M. and Lozano-Perez, T. (1986). On multi-
ple moving objects. In Proceedings. 1986 IEEE In-
ternational Conference on Robotics and Automation,
volume 3, 1419–1424.

Fiorini, P. and Shiller, Z. (1998). Motion planning in
dynamic environments using velocity obstacles. The
International Journal of Robotics Research, 17(7), 760–
772.

Frazzoli, E., Mao, Z.H., Oh, J.H., and Feron, E. (2001).
Resolution of conflicts involving many aircraft via
semidefinite programming. Journal of Guidance, Con-
trol, and Dynamics, 24(1), 79–86.

Guy, S.J., Chhugani, J., Curtis, S., Dubey, P., Lin, M.,
and Manocha, D. (2010). Pledestrians: A least-effort
approach to crowd simulation. In Proceedings of the
2010 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’10, 119–128. Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland.

Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M.,
Manocha, D., and Dubey, P. (2009). Clearpath:
Highly parallel collision avoidance for multi-agent sim-
ulation. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Ani-
mation, SCA ’09, 177–187. ACM, New York, NY, USA.

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Kloder, S. and Hutchinson, S. (2006). Path planning
for permutation-invariant multirobot formations. IEEE
Transactions on Robotics, 22(4), 650–665.

Koenig, S. and Likhachev, M. (2002). Incremental A*. In
T.G. Dietterich, S. Becker, and Z. Ghahramani (eds.),
Advances in Neural Information Processing Systems 14,
1539–1546. MIT Press.

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong
planning A*. Artificial Intelligence, 155(1-2), 93–146.

Kuhn, H.W. (1955). The Hungarian method for the as-
signment problem. Naval Research Logistics Quarterly,
2(1-2), 83–97.

LaValle, S.M. (2006). Planning Algorithms. Cambridge
University Press, Cambridge, U.K.

Munkres, J. (1957). Algorithms for the assignment and
transportation problems. Journal of the Society for
Industrial and Applied Mathematics, 5(1), 32–38.

Muñoz, C.A. and Narkawicz, A.J. (2010). Time of closest
approach in three-dimensional airspace. Technical re-
port, National Aeronautics and Space Administration,
Langley Research Center, Hampton, Va.

Richards, A. and How, J.P. (2002). Aircraft trajectory
planning with collision avoidance using mixed integer
linear programming. In American Control Conference,
volume 3, 1936–1941. IEEE.

Schouwenaars, T., De Moor, B., Feron, E., and How, J.
(2001). Mixed integer programming for multi-vehicle
path planning. In European Control Conference, 2603–
2608. IEEE.

Stentz, A. (1993). Optimal and efficient path planning
for unknown and dynamic environments. International
Journal of Robotics and Automation, 10, 89–100.

Švestka, P. and Overmars, M.H. (1998). Probabilistic path
planning, 255–304. Springer Berlin Heidelberg, Berlin,
Heidelberg.

Turpin, M., Michael, N., and Kumar, V. (2014). Capt:
Concurrent assignment and planning of trajectories for
multiple robots. The International Journal of Robotics
Research, 33(1), 98–112.

van den Berg, J., Lin, M., and Manocha, D. (2008).
Reciprocal velocity obstacles for real-time multi-agent
navigation. In 2008 IEEE International Conference on
Robotics and Automation, 1928–1935.

van den Berg, J., Guy, S.J., Lin, M., and Manocha, D.
(2011). Reciprocal n-Body Collision Avoidance, 3–19.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Wagner, G., Kang, M., and Choset, H. (2012). Prob-
abilistic path planning for multiple robots with sub-
dimensional expansion. In 2012 IEEE International
Conference on Robotics and Automation, 2886–2892.

Wagner, G. and Choset, H. (2015). Subdimensional expan-
sion for multirobot path planning. Artificial Intelligence,
219, 1 – 24.

Wang, W. and Goh, W.B. (2012). Multi-robot path
planning with the spatio-temporal A* algorithm and
its variants. In Proceedings of the 10th International
Conference on Advanced Agent Technology, AAMAS’11,
313–329. Springer-Verlag, Berlin, Heidelberg.

Warren, C.W. (1990). Multiple robot path coordination
using artificial potential fields. In Robotics and Au-
tomation, 1990. Proceedings., 1990 IEEE International
Conference on, 500–505. IEEE.

