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Abstract—This paper outlines a data-driven, distributionally
robust approach to solve chance-constrained AC optimal power
flow problems in distribution networks. Uncertain forecasts for
loads and power generated by photovoltaic (PV) systems are
considered, with the goal of minimizing PV curtailment while
meeting power flow and voltage regulation constraints. A data-
driven approach is utilized to develop a distributionally robust
conservative convex approximation of the chance-constraints;
particularly, the mean and covariance matrix of the forecast
errors are updated online, and leveraged to enforce voltage
regulation with predetermined probability via Chebyshev-based
bounds. By combining an accurate linear approximation of the
AC power flow equations with the distributionally robust chance
constraint reformulation, the resulting optimization problem
becomes convex and computationally tractable.

Index Terms—Distribution systems; optimal power flow;
chance constraints; renewable integration; voltage regulation.

I. INTRODUCTION

In 2014, installed solar power in the United States grew by
30%, amounting to 6.2 gigawatts of capacity. In the residential
sector alone, over a gigawatt of capacity was added, making
residential PV the fastest growing portion of the US solar
sector [1]. With this massive increase in renewables, many
issues in the electric power grid can be observed, such as re-
verse power flows, voltage fluctuations, and overloaded power
lines [2], [3]. With the utilization of advanced optimization and
control schemes, however, these issues can be mitigated [4]–
[6]. Specifically, with measurements drawn from PV systems
and load over time, advanced inverter control, and probabilistic
constraints, this paper will develop a control scheme that
attempts to minimize the curtailment of PV while adhering
to power flow and voltage constraints in a given distribution
network.

In this paper, we solve a chance-constrained voltage regula-
tion problem on a five-minute dispatch scale in a distribution
grid with a high penetration of PV, where the chance con-
straints are updated as measurements are taken from the PV
and load present in the grid. Here, measurements are made
of the actual observed irradiance and load, and the first and
second moments of the error distributions are updated over
time by using a sample average approximation [7]. Due to the
lack of knowledge of the underlying probability distributions
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of every renewable source and load in the system, we consider
a distribution agnostic, or distribution free, approach to solving
the chance constrained OPF problem in distribution grids.

Convex approximations of chance constraints have been de-
veloped in the literature, some of which require a priori exact
knowledge of the probability distribution or its parameters [8]–
[10]. Because of this limitation, data driven chance constraints
have been receiving recent attention [11]–[14] for their ability
to cope with the lack of exact distributional information
present in many real-world instances. In [11] and [15], a
distributionally robust chance constrained DC OPF problem is
solved at the transmission level for uncertain wind and load.
Exact chance constraint reformulations have also been applied
to power systems problems by assuming that the underlying
probability distributions are Normally distributed [16], [17];
however, in practice this is not the case, or the underlying
distribution of the random variable is unknown. Monte-Carlo
sampling approaches to incorporate arbitrary probability distri-
butions, on the other hand, can be computationally expensive;
it is desirable to have tractable approximations of these chance
constraints [18], especially when real-time system operation is
considered.

We will utilize a convex approximation of the chance con-
straint by using the traditional Chebyshev generating function
[9], [15], which reformulates the chance constraint into a
second-order cone constraint that depends only on the mean
and variance of the random variable. We assume the chance
constraints are independent; however, distributionally robust
joint chance constraints that are close to exact can be consid-
ered as in [19]. In addition, linear approximations of the AC
power flow equations [20], [21] which greatly approve upon
the DC power flow approximation, will be utilized to transform
the problem into one that can efficiently be solved in real
time. By combining these techniques into a cohesive approach,
we see that for enough collected data samples, the voltage is
between the prescribed limits with a high probability, and the
resulting optimization problem is convex.

The paper is thus organized as follows: In Section II,
variable definitions, models for the distribution grid and
random variables, and the AC power flow linearization will
be discussed. Section III will define the data-driven chance
constrained problem, and demonstrate how the resulting con-
vexification of the chance constraint is distribution-agnostic.
Simulation results are shown and interpreted in Section IV,
and finally, a conclusion and directions for future work are
given in Section V.



II. SYSTEM MODEL AND AC APPROXIMATION

A. System model

Consider a distribution feeder1 comprising N + 1 nodes
within in the set N ∪ {0}, N := {1, . . . , N} (Node 0
is defined as the secondary side of the distribution trans-
former), and distribution lines represented by the set of edges
E := {(m,n)} ⊂ N × N . Let Vn ∈ C and In ∈ C
denote the complex phasors for the line-to-ground voltage
and the current injected at node n ∈ N , respectively, and
define the vectors i := [I0, I1, . . . , IN ]T ∈ CN+1 and v :=
[V0, V1, . . . , VN ]T ∈ CN+1. The system admittance matrix,
Y ∈ CN+1×N+1, is formed based on the π-equivalent circuit
of the distribution lines and describes the relationship between
current and voltage via Ohm’s and Kirchoff’s laws as i = Yv.
Series and shunt admittances ymn and ysh

mn, respectively, of
line (m,n), the entries of Y are formed as:

[Y]m,n :=


∑
j∈Nm

ysh
mj + ymj , if m = n

−ymn, if (m,n) ∈ E
0, otherwise

(1)

where Nm := {j ∈ N : (m, j) ∈ E} is the set of nodes
connected to the m-th node through a single distribution
line. For simplicity, assume that shunt admittances ysh

mn are
negligible [22]. A constant-PQ model is adopted for the loads,
with P`,n and Q`,n denoting the real and reactive loads at
node n ∈ N , respectively. Let p` := [P`,1, . . . , P`,N ]T and
q` := [Q`,1, . . . , Q`,N ]T be vectors describing the real and
reactive power at all nodes; if no load is present at node
n ∈ N , then P`,n = Q`,n = 0.

B. PV and uncertainty model

Define the variable Pav,n as the maximum solar real power
generation, or available real power, at node n ∈ N . In order to
avoid overvoltages in the grid, real power curtailment can be
performed [5], [6], and will be modeled in our framework. To
account for the ability of the RES inverters to adjust the output
real power, let αn ∈ [0, 1] denote the percentage of available
real power curtailed by the PV inverters; i.e., the real power
curtailed from PV system n amounts to αnPav,n. If there is
no PV system at node n, αn = 0.

To account for the uncertainty in solar and load in the
current five-minute time instance, pav, p`, and q` are modeled
as random variables [15]. Specifically, the available solar
power is modeled as pav = p̄av + δav, where p̄av ∈ RN

1Upper-case (lower-case) boldface letters will be used for matrices (column
vectors); (·)T for transposition; (·)∗ complex-conjugate; and, (·)H complex-
conjugate transposition; <{·} and ={·} denote the real and imaginary parts of
a complex number, respectively; j :=

√
−1 the imaginary unit; |·| denotes the

absolute value of a number or the cardinality of a set; and, ◦ denotes Hadamard
product. For x ∈ R, function [x]+ is defined as [x]+ := max{0, x}. Further,
IA(x) denotes the indicator function over the set A ⊂ R; that is IA(x) = 1
if x ∈ A and IA(x) = 0 otherwise. For a given N × 1 vector x ∈ RN ,
‖x‖2 :=

√
xHx; diag(x) returns a N ×N matrix with the elements of x in

its diagonal; and, x � y implies that the inequality xi ≥ yi is enforced for
all the vector entries i = 1, . . . , N . Finally, IN denotes the N ×N identity
matrix; and, 0N , 1N the N -dimensional vectors with all zeroes and ones,
respectively, and 0N×M , 1N×M are N ×M matrices with all zeroes and
ones.

is a vector comprising the forecasted values and δav ∈ RN
is a random vector which represents the forecasting error.
Similarly, the real and reactive loads can be expressed as
p` = p̄` + δp,` and q` = q̄` + δq,`, respectively, where p̄τ`
and q̄τ` are the forecasted loads and δp,`, δq,` ∈ RJ`N are
random vectors describing the forecasting errors for real and
reactive loads. In Section III, it will be described in further
detail how no information about the underlying probability
distribution has to be known in order to include these variables
in the optimization formulation, and how measured samples
representing the forecasting errors will be used to form the
data-driven chance constraints.

C. AC Power Flow Approximation

The power balance at node n can be written as the follow-
ing:

Vn
∑
m∈Nn

y∗nm(Vn − Vm)∗ = Sn (2)

where Sn = (1 − αn)Pav,n − P`,n − jQ`,n. This well-known
power balance equation typically appears in the constraint sets
of standard formulations of optimal power flow problems, and
renders the underlying optimization problem nonconvex [23].
Another source of nonconvexity can be derived from the
voltage constraint Vmin ≤ |Vn| ≤ Vmax, where Vmin and
Vmax represent a pre-determined lower and upper limits on the
voltage magnitude (e.g., ANSI C.84.1 limits). Non-convexity
of the problem can result in no guarantee of global optimality,
and from a computational standpoint, the problem complexity
may become prohibitive when the problem size grows [24].
While semidefinite relaxation techniques can sometimes be
successfully employed to bypass the nonconvexity of these
constraints while achieving globally optimal solutions of the
nonconvex OPF [5], [23], in order to develop a computation-
ally efficient OPF formulation, linear approximations of (2)
and voltage-regulation constraints will be utilized in this work.
These approximate power-flow relationships will also facilitate
the application of convex approximation of chance constraints
to the problem that will be formulated in Section III.

Hence, let vN := [V1, . . . , VN ]T and iN := [I1, . . . , IN ]T be
the vectors of voltages and currents, respectively, at all nodes
N , and rewrite the current-voltage relationship i = Yv as
follows: [

I0
iN

]
=

[
y0j yT

0N
y0N YNN

] [
V0
vN

]
(3)

where y0N ∈ C1×N is comprising elements {[Y]0,n}n∈N
of the admittance matrix Y and, similarly, YNN ∈ CN×N
is comprising elements {[Y]m,n}m,n∈N . Without loss of
generality, node 0 is taken to be the slack node, and the
voltage at the secondary V0 = ρ0e

jθj0 is assumed known. Let
s := (IN − diag{α})pav − p` − jq` denote the vector of
complex power injections. With V0 known, Theorem 1 and
Corollary 2 in [25] assert that, if (ρ0)2 > 4‖Y−1NN ‖†‖s‖2,



then the voltages across nodes N can be approximated as the
following:

vN ≈ V0
(

1N +
1

(ρ0)2
Y−1NN (s)∗

)
(4)

with an approximation error per node n ∈ N that is bounded
by (4/(ρt0)3)‖[Y−1NN ]n‖2‖Y−1NN ‖†‖s‖22. This approximation
error is inversely proportional to ρ0, and decreases with respect
to the decreasing of the network net load [25].

Equation (4) provides a convenient way to bypass the non-
convexity of the balance constraint (2) in the OPF problem.
However, a second layer of approximation is sought next, in
order to establish a linear (and approximate) relationship be-
tween injected complex powers and voltage magnitudes. This
relationship will be utilized subsequently to derive convex con-
straints for voltage magnitudes. To this end, express the volt-
age phasors vN as vN = ρN ◦ejθN , where ρN ∈ RN collects
the voltage magnitudes {ρn}n∈N and θN the voltage phases
{θn}n∈N . Assuming that the nominal voltage ρ0 dominates
the voltage drops on the lines, i.e. ‖Y−1NN (s)∗‖2/(ρt0)2 � 1,
a first-order approximation to voltage magnitudes and angles
across the distribution network can be described as:

ρN ≈ gρ(α,pav,p`,q`) := ρ01N −
1

ρ0
CNNq`

+
1

ρ0
RNN ((IN − diag{α})pav − p`) (5)

θN ≈ gθ(α,pav,p`,q`) := θ01N +
1

(ρ0)2
RNNq`

+
1

(ρ0)2
CNN ((IN − diag{α})pav − p`) (6)

where the network-related matrices RNN and CNN are
defined as RNN := <{Y−1NN } and CNN := ={Y−1NN },
respectively. Equation (5) will be utilized next to develop a
computationally efficient solution to the chance-constrained
OPF problem.

III. PROBLEM FORMULATION

In this section, we will describe the problem formulation
first with generic chance constraints and then with their data-
driven convex approximation. Consider the following opti-
mization problem to compute the optimal curtailment levels
for the PV inverters:

(P0) min
ρ,α

E(f(ρ,α,p`,q`)) (7a)

subject to

ρ = gρ(α,pav,p`,q`) (7b)
Pr{Vmin ≤ ρn} ≥ 1− ε (7c)
Pr{ρn ≤ Vmax} ≥ 1− ε (7d)
0 ≤ αn ≤ 1 (7e)

for all n ∈ N , where gρ,n(·) denotes the n-th element of the
vector-valued function gρ(·) in (5). Constraint (7b) represents

a surrogate for the power balance equation; constraints (7d)
and (7c) are the chance constraints that require the voltage to
be within its upper and lower limits with at least 1−ε probabil-
ity; and constraint (7e) limits the curtailment percentage from
0−100%. The cost function f(ρ,α,p`,q`) is convex and can
consider a sum of penalties on curtailment, penalties on power
drawn from the substation, penalties on voltage violations,
among other objectives. In the data-driven framework, the
expected value of f(·) is formed from the sample average
over all data measurements.

In the current formulation, however, constraints (7d)–(7c)
can prove to be problematic. For non-Gaussian distributions,
Monte Carlo-based methods may be used; however, these can
lead to high computational burdens. In addition, even if the
function gρ,n(·) is affine, the feasible set of (7d)–(7c) may be
nonconvex. To account for a variety of possible distributions
of the forecasting errors δ and yet derive a computationally
efficient solution method for the optimization, a data-driven,
convex approximation of the chance constraints is described
next.

A. Distribution Agnostic Chance Constraints

First, consider a generic chance constraint Pr{g(x, δ) >
0} ≤ ε, where function g(x, δ) is convex in the optimization
variables x for given values of the random vector δ. In order
to develop a convex approximation of this constraint, next
consider a function ψ : R → R that is nonnegative valued,
nondecreasing, and convex. Assume that ψ(·) – referred to
as the (one-dimensional) generating function – satisfies the
conditions ψ(x) > ψ(0) ∀x > 0 and ψ(0) = 1. Given a
positive scalar z > 0 and a random variable δ, it follows
that ψ(·) is such that the following holds: Eδ{ψ(zδ)} ≥
Eδ{I[0,+∞)(zδ)} = Pr{zδ ≥ 0} = Pr{δ ≥ 0}. Thus, by
taking δ = g(x, δ) and replacing z with z−1, one has that the
following bound holds for all z > 0 and x [8]:

Pr{g(x, δ) > 0} ≤ Eδ
{
ψ
(
z−1g(x, δ)

)}
. (8)

Thus, the constraint

inf
z>0

{
zEδ

{
ψ(z−1g(x, δ))− zε

}}
≤ 0 (9)

represents a sufficient condition for Pr{g(x, δ) > 0} ≤ ε. This
implies that (9) is also a conservative convex approximation of
the chance constraint Pr{g(x, δ) ≥ 0} ≤ 1 − ε. With regards
to the convexity of (9), notice that since ψ(·) is nondecreasing
and convex and g(·, δ) is convex, it follows that the mapping
(x, z)→ zψ(z−1g(x, δ)) is convex. In addition, if g is biaffine
in x and δ, and ψ is quadratic, then constraint (9) is also
convex.

Specifically, for the data-driven model that will be formu-
lated without knowledge of underlying probability distribu-
tions, consider the traditional Chebyshev generating function
ψ(x) = (1 + x)2 [15], and let δ̄ and Σ denote the mean and
covariance matrix, respectively, of δ formed from all samples
S. That is, δ̄ := 1

s

∑S
s=1 δ[s] and Σ := 1

s

∑S
s=1((δ[s] −

δ̄)(δ[s] − δ̄)T). Note that these moments can be computed



offline using the available collected data and updated whenever
additional samples are measured; thus, the number of samples
does not affect the computation time.

Notice further that function gρ,n(α, δ) expressing the volt-
age magnitude at node n can be re-written as gρ,n(α, δ) =
hT
n(α)δ+ρ0, where an := 1

ρ0
[RT
NN ]n and hn(α) is an affine

function of α defined as:

hn(α) :=


1
ρ0

(IN − diag{α})[RT
NN ]n

− 1
ρ0

[RT
NN ]n

− 1
ρ0

[CT
NN ]n

 . (10)

Then, by using the the generating function ψ(x) = (1 + x)2,
we can write (9) as the following [9]:

gρ,n(ατ , δ̄
τ
)− Vmax + ε̄

∥∥∥(Στ )
1
2 hn(ατ )

∥∥∥
2
≤ 0 (11a)

Vmin − gρ,n(ατ , δ̄
τ
) + ε̄

∥∥∥(Στ )
1
2 hn(ατ )

∥∥∥
2
≤ 0 (11b)

where ε̄ :=
√

1−ε
ε . Notice that (11) are second-order cone

constraints, and so forming the final optimization problem by
replacing constraints (7d) and (7c) with (11), the result is
a second-order cone problem. It can be seen that from this
approach, equation (11) is a distributionally-robust constraint;
that is, (11) ensures that the original chance constraint is
satisfied for any distribution of the forecast errors as long
as data samples are measured to form the first and second
moments. If the first and second moments are known exactly,
the original chance constraints (7c) and (7d) are guaranteed
to be satisfied. However, in the following section it is shown
how accurately the chance constraints can be satisfied by only
using estimates of the mean and covariance that are drawn
from samples.

IV. SIMULATION RESULTS

A. Test feeder and input data

The proposed optimization and control scheme is tested
using a modified version of the IEEE 37-node test feeder
shown in Figure 1. Twenty-one photovoltaic (PV) systems are
located at nodes 4, 7, 9, 10, 11, 13, 16, 17, 20, 22, 23, 26,
28, 29, 30, 31, 32, 33, 34, 35, and 36, indicated in the figure
with boxes around the Node number. The modified network
is obtained by considering a single-phase equivalent, and by
replacing the loads specified in the original dataset with real
load data measured from feeders in Anatolia, CA during the
first week of August 2012 [26], which coincide with the solar
irradiance data from the same location.

The total loading of the feeder for a typical day during
this week can be seen in Figure 2, where data granularity is
of 5 minutes, and a 24-hour simulation period is considered.
Line impedances, shunt admittances, as well as active and
reactive loads are adopted from the IEEE 37-node dataset.2

The aggregate available power
∑
n Pav,n during the course of

the day is plotted in Figure 2. The voltage limits Vmax and
Vmin are set to 1.05 pu and 0.95 pu, respectively. It can be seen

2Available at: ewh.ieee.org/soc/pes/dsacom/testfeeders.

Figure 1: IEEE 37-node test feeder considered in the test cases.
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Figure 2: Total available solar generation and feeder loading.

from the system figure that many PV systems are placed at the
end of the feeder, which can result in overvoltage conditions
[27]. In this particular case, with PV inverters injecting all
available power into the feeder, overvoltage conditions are
observed at multiple nodes during solar peak irradiation hours,
as seen in Figure 3. For these simulations, the cost function
aimed to minimize the cost of PV curtailment; i.e.:

f(ρ,α,p`,q`) =
∑
i∈N

biαiPav,n, (12)

where the cost of curtailing power at each node is set to be
bi = $6/p.u.

B. Varying the amount of data

Varying the number of samples S used to form the mean
and covariance matrix and its impact on the solution is now
analyzed. In Figure 4, the voltage envelopes are shown for
the hours of 6 AM through 6 PM and compared for S =
5, 100, and 500 samples, and a chance constraint violation
parameter of ε = 0.05 (a 5% violation of the constraints is
allowed). Both the load and solar error samples are drawn
from a truncated Gaussian distribution with the tails ending
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Figure 3: Voltages without advanced inverter control.
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Figure 4: Voltage envelope for different values of S.

at ±3σ of the distribution, where σ, the standard deviation,
is assumed to be 3% of the actual value of load and solar
irradiance.

For a small amount of measured data (S = 5), the voltage
limits are still satisfied due to the conservative nature of the
distributionally robust constraints, but the voltage magnitude
fluctuates dramatically at multiple points (around 11 AM and
1 PM, for instance) due to the inaccuracy of the chance con-
straints. For example, this could be due to the measurements
indicating that a higher level of solar irradiance is more likely,
so the controller curtails more power compared to when more
information is obtained, as seen in Figure 5. As the number of
samples increases, the voltage profile flattens, and due to the
conservativeness of the chance constraints, remains below the
maximum threshold of 1.05 p.u. A more detailed analysis on
the “value of data” with regards to conservatism of data-driven
chance constraints and amount of historical data can be found
in [14].

C. Restrictions on chance-constraint fulfillment

Depending on the level of chance constraint fulfillment
parameter ε, the constraint may be more or less conservative
with respect to regulating the voltage at each node. Relaxing
the constraint somewhat may improve the total system cost,
but if the constraint is relaxed too far, the voltage limits risk
causing a violation. In Figure 6, the total system cost is plotted
for the hours of 6 AM to 6 PM for ε = 0.05, 0.10, and 0.40. As
expected, the looser the chance constraint violation parameter,
the lower the cost. However, it can be seen from Figure 7 that
as this parameter increases, the voltage profile flattens and
the system is operating closer to the maximum voltage limits,
indicating that a large disturbance may cause overvoltage
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Figure 5: Total PV curtailment for different values of S.
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Figure 6: Total cost for different values of ε.
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Figure 7: Voltage envelopes for different values of ε.

conditions to occur. The cost and benefit from increasing this
parameter must be determined for each individual application;
here, it appears that ε = 0.05 may be too restrictive, but
ε = 0.40 may be too loose for the small tradeoff of cost
decrease from ε = 0.10. In addition, in model predictive or
multi-timestep approaches, ε could be varied throughout the
prediction horizon.

V. CONCLUSION

In this paper, we demonstrated a data-driven approach to
solving the chance-constrained voltage regulation problem in
a distribution network under high levels of PV generation.
The resulting chance constraints are distribution-agnostic; i.e.,
no knowledge about the underlying probability distributions
needs to be known a priori. It was shown that the amount
of measured data can improve the accuracy of the constraints
and does not greatly impact the speed of the method, due to
the fact that the first and second moments used in the chance
constraints can be computed offline.

Future work will extend this framework into the joint chance
constraint case, as well as include other sources of uncertainty



such as price, user behavior, and demand responsive loads.
A model predictive approach could be considered in future
work in order to incorporate energy storage models and other
intertemporal constraints into the framework as well.
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