
Topology Design for Optimal Network Coherence

Tyler Summers, Iman Shames, John Lygeros, Florian Dörfler

Abstract— We consider a network topology design problem
in which an initial undirected graph underlying the network is
given and the objective is to select a set of edges to add to the
graph to optimize the coherence of the resulting network. We
show that network coherence is a submodular function of the
network topology. As a consequence, a simple greedy algorithm
is guaranteed to produce near optimal edge set selections.
We also show that fast rank one updates of the Laplacian
pseudoinverse using generalizations of the Sherman-Morrison
formula and an accelerated variant of the greedy algorithm
can speed up the algorithm by several orders of magnitude in
practice. These allow our algorithms to scale to network sizes
far beyond those that can be handled by convex relaxation
heuristics.

I. INTRODUCTION

Among the most challenging and important problems in
control and optimization of dynamical networks is the design
of topologies for sensing, control, and communication. One
important dynamical process in a variety of networks is
synchronization, and it is widely recognized that network
topology properties play a key role. There is now a growing
literature on synchronization and consensus and many as-
sociated applications, including power networks and robotic
vehicle networks.

Recently, there has been work on quantifying the ro-
bustness of consensus dynamics to stochastic disturbances
[2], [1], [25]. The concept of network coherence has been
proposed to quantify variance of states around the consensus
subspace [2] and is also closely related to the effective
resistance of graphs [13], [10]. Several recent papers have
focused on leader selection problems to optimize coherence
[22], [23], [16], [7], [17], [9], [4]. However, designing
network topologies to optimize coherence by choosing sets of
edges has received less attention. In [29], [10] the problems
of choosing edge weights for a given network topology
to optimize network coherence and effective resistance are
considered and shown to be convex optimization problems.
It is possible to modify the algorithm in [29], [10] to obtain
an convex relaxation heuristic for edge selection. However,
the resulting problems can still be difficult to solve for
large networks, and purely combinatorial versions of these
problems appear not to have been considered.

We consider a network topology design problem in which
an initial undirected graph underlying the network is given
and the objective is to select a set of edges to add to the graph
to optimize the coherence of the resulting network. Our main
result is to show that network coherence is a submodular
set function of the network topology. As a consequence,
a simple greedy algorithm is guaranteed to produce near
optimal edge set selections. The problem has a similar mathe-

matical structure to recently studied set function optimization
problems linking submodularity to controllability [26], [27],
[5] and rigidity [24]. We also show that fast rank one updates
of the Laplacian pseudoinverse using generalizations of the
Sherman-Morrison formula [19] and an accelerated variant
of the greedy algorithm [20], [14] can speed up the algorithm
by several orders of magnitude in practice. These techniques
allow our algorithms to scale to network sizes far beyond
those that can be handled by convex relaxation heuristics
based on [29], [10]. The results are illustrated with numerical
examples.

The rest of the paper unfurls as follows. Section II pro-
vides background on network coherence and submodular set
functions. Section III presents our main results on topology
design and algorithmic speed ups. Section IV exhibits the
performance of the accelerated algorithm and illustrates the
results on various types of fixed and random initial networks.
Finally, Section V concludes.

II. NETWORK COHERENCE AND SUBMODULAR SET
FUNCTIONS

This section reviews notions of network coherence and
submodular set functions. Topology design problems for
optimizing network coherence can be formulated as set
function optimization problems.

A. Network coherence

Consider a network with underlying weighted undirected
graph G = (V,E,w) where V = {1, ..., n} is a set of nodes,
E ⊆ V × V is a set of edges, and w ∈ R|E| is a set of
nonnegative weights associated with each edge. Suppose a
scalar state variable is associated with each node and the
network has consensus dynamics modeled by the stochastic
differential equation

dx(t) = −Lx(t)dt+ dW (1)

where L is the weighted Laplacian matrix and dW is a vector
of independent Gaussian white noise stochastic processes.

Without noise, it is well known that when the graph is
connected, the states converge exponentially to a point on
the consensus subspace corresponding to the average value of
the initial conditions. With additive noise, the state evolution
becomes a stochastic process. The expected values of the
states evolve according to deterministic consensus dynamics,
but the actual average value undergoes Brownian motion and
the states stochastically fluctuate around this value. When
the graph is connected, the state variance relative to the
average converges to a steady state value. Network coherence
quantifies the steady-state variance of these fluctuations

and can be considered as a measure of robustness of the
consensus process to the additive noise; networks with small
steady-state variance have high network coherence and can
be considered to be more robust to noise than networks with
low coherence.

Formally, network coherence is defined for connected
graphs as the average steady-state deviation from the average
value

C = lim
t→∞

n∑
i=1

E

(xi(t)−
1

n

n∑
j=1

xj(t))
2

= lim
t→∞

E[x(t)TPx(t)],

(2)

where P = I − 1
n11

T is the projection operator onto the
disagreement subspace. The coherence then relates to the
system H2 norm as

C = trace
∫ ∞
0

e−L
T tPe−Ltdt. (3)

This in turn can be shown to be related to the spectrum of
the Laplacian matrix [22]

C =
1

2
trace(L†) =

1

2

n∑
i=2

1

λi(L)
, (4)

where 0 = λ1 < λ2 ≤ ... ≤ λn, i.e., the pseudoinverse
trace of the Laplacian matrix is proportional to network
coherence. This quantity is also proportional to the total
effective resistance of a graph [13], which is known to be a
monotone convex function of the edge weights for a given
topology [10].

B. Submodularity

Many combinatorial problems can be formulated as set
function optimization problems. For a given finite set V =
{1, ...,M}, a set function f : 2V → R assigns a real
number to each subset of V . For the set function optimization
problem

maximize
S⊆V, |S|=k

f(S), (5)

the objective is to select a k-element subset of V that max-
imizes f . This can be solved by brute force by enumerating
all possible subsets of size k, evaluating f for all of these
subsets, and picking the best subset. However, the number
of possible subsets grows factorially as |V | increases, so the
brute force approach quickly becomes infeasible even for
moderate |V |.

Instead, there are structural properties of the set function
f that facilitate optimization. In particular, submodularity
plays similar roles in combinatorial optimization as convexity
and concavity play in continuous optimization [18], [14]. It
occurs often in applications [3], [12], [15]; is supported by
an elegant and practically useful mathematical theory; and
there are efficient methods for minimizing and approximation
guarantees for maximizing submodular functions.

Definition 1 (Submodularity): A set function f : 2V → R
is called submodular if for all subsets A ⊆ B ⊆ V and all
elements s /∈ B, it holds that

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B), (6)

or equivalently, if for all subsets A,B ⊆ V , it holds that

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (7)
Intuitively, submodularity is a diminishing returns property
where adding an element to a smaller set gives a larger gain
than adding one to a larger set. The following definition
and result from [18] makes this precise and will be used
to prove submodularity of a set function associated with
network coherence.

Definition 2: A set function f : 2V → R is called
monotone increasing if for all subsets A,B ⊆ V it holds
that

A ⊆ B ⇒ f(A) ≤ f(B) (8)

and is called monotone decreasing if for all subsets A,B ⊆
V it holds that

A ⊆ B ⇒ f(A) ≥ f(B). (9)
Theorem 1 ([18]): A set function f : 2V → R is submod-

ular if and only if the derived set functions fa : 2V−{a} → R

fa(X) = f(X ∪ {a})− f(X)

are monotone decreasing for all a ∈ V .
Maximization of monotone increasing submodular func-

tions is NP-hard, but a greedy heuristic can be used to
obtain a solution that is provably close to the optimal solution
[21]. The greedy algorithm for (5) starts with an empty set,
S0 ← ∅, computes the gain ∆(a | Si) = f(Si∪{a})−f(Si)
for all elements a ∈ V \Si and adds any element with the
highest gain:

Si+1 ← Si ∪ {arg max
a

∆(a | Si) | a ∈ V \Si}.

The algorithm terminates after k iterations.
Performance of the greedy algorithm is guaranteed by a

well known bound [21]:
Theorem 2 ([21]): Let f∗ be the optimal value of the set

function optimization problem (5), and let f(Sgreedy) be
the value associated with the subset Sgreedy obtained from
applying the greedy algorithm on (5). If f is submodular and
monotone increasing, then

f∗ − f(Sgreedy)

f∗ − f(∅)
≤
(
k − 1

k

)k
≤ 1

e
≈ 0.37. (10)

This means that the greedy algorithm is guaranteed to
produce a subset whose function value is within a constant
factor of the value of the optimal subset. This is the best
any polynomial time algorithm can achieve [8], assuming
P 6= NP . Note that this is a worst-case bound; the greedy
algorithm often performs much better than the bound in
practice, which we will verify for the considered set of
problems.

III. OPTIMAL TOPOLOGY DESIGN FOR NETWORK
COHERENCE

Consider the problem of choosing a subset E of k edges,
each with a given weight, to add to a given weighted undi-
rected graph G = (V,E) to maximize the network coherence
of the resulting graph GE , which can be formulated as a set
function optimization problem:

minimize
E⊂V×V \E

trace(L†E), (11)

where LE is the resulting Laplacian. In the first subsection,
we will assume that the given graph is connected so that the
rank of the Laplacian remains constant as edges are added.
In the third subsection, we will relax this assumption and
present a modified algorithm for constructing trees with good
network coherence.

A. Network coherence is a submodular function of network
topology

To prove that network coherence is a submodular function
of the network topology, the key structure is additivity of
the Laplacian matrix in the edges. Specifically, let M ∈
R|E|×|V | denote the weighted incidence matrix of a graph
G = (V,E,w) which has a row mT

e for each edge e =
(i, j) ∈ E with elements (for i > j) Mev = we if v = i,
Mev = −we if v = j, and Mev = 0 otherwise. The
Laplacian associated with any edge set E can be written

LE = MTM =

|E|∑
e=1

mem
T
e =

|E|∑
e=1

Le, (12)

which implies LE1∪E2 = LE1 +LE2 for any disjoint pair of
edge sets E1 and E2. We have the following result; the proof
has almost identical structure to the proof for the inverse
of the controllability Gramian in [26] and the proof for the
pseudoinverse of the rigidity Gramian in [24].

Theorem 3: Let G = (V,E,wE) be a given connected
weighted graph, let E ⊆ V ×V \E with weights wE , and let
LE be the weighted graph Laplacian matrix associated with
the edge set E∪E . Then the set function f : V ×V \E → R
defined by f(E) = −trace(L†E) is submodular.

Proof: Denote the set of potential edge choices by Ec =
V × V \ E. Take any e ∈ Ec and consider the derived set
functions fe : 2Ec\{e} 7→ R given by

fe(E) = −trace(L†E∪{e}) + trace(L†E)

= −trace((LE + Le)
†) + trace(L†E).

Take any E1 ⊆ E2 ⊆ Ec \ {e}. By the additivity property of
the Laplacian, it is clear that E1 ⊆ E2 ⇒ LE1 � LE2 . Now
define L(t) = LE1 + t(LE2 − LE1) for t ∈ [0, 1]. Obviously,
L(0) = LE1 and L(1) = LE2 . Now define

f̂e(L(t)) = −trace((L(t) + Le)
†) + trace(L(t)†).

Note that f̂e(L(0)) = fe(E1) and f̂e(L(1)) = fe(E2). We
have
d

dt
f̂e (L(t)) =

d

dt

[
−trace((L(t) + Le)

†) + trace(L(t)†)
]

= trace
[
(L(t) + Le)

†(LE2 − LE1)(L(t) + Le)
†]

− trace
[
L(t)†(LE2 − LE1)L(t)†

]
= trace

[(
(L(t) + Le)

†,2 − L(t)†,2
)

(LE2 − LE1)

]
≤ 0.

To obtain the second equality we used the matrix derivative
formula d

dt trace(L(t)†) = trace(L(t)† ddt (L(t))L(t)†) which
holds whenever L(t) has constant rank for all t [11], which
we have here since the given graph is connected and thus
rank(LE) = n − 1, ∀E ⊆ Ec. To obtain the third equality
we used the cyclic property of trace. Since (L(t) +Le)

†,2−
L(t)†,2 � 0 and LE2 − LE1 � 0, the last inequality holds
because the trace of the product of a positive and negative
semidefinite matrix is non-positive. Since

f̂e(L(1)) = f̂e(L(0)) +

∫ 1

0

d

dt
f̂e(L(t))dt,

it follows that f̂e(L(1)) = fe(E2) ≤ f̂e(L(0)) = fe(E1).
Thus, fe is monotone decreasing, and f is submodular by
Theorem 1.

Finally, it can be seen from additivity of the Laplacian that
f is monotone increasing, which just means that adding an
edge to the graph cannot decrease its coherence.

As a consequence, the greedy algorithm is guaranteed to
produce a near optimal edge set selection. If the given graph
is not connected, the Laplacian changes rank as edges are
added. This means that L(t) in the proof does not have
constant rank, so f̂e is not differentiable, and the proof breaks
down.

B. Accelerated greedy algorithm and fast rank-one updates

For a sparse connected network, the number of possible
edges to be added scales quadratically with the number of
nodes. So for the standard greedy algorithm, the marginal
gain function may need to be evaluated many times.

Two techniques can be used to significantly speed up
the greedy algorithm. First, an accelerated form of the
greedy algorithm can be used to reduce the number of times
that the marginal gain function is evaluated by exploiting
submodularity of the set function [20]. In particular, at each
iteration an element is selected that maximizes the marginal
benefit of the function given previously chosen elements. The
key observation is that submodularity implies ∆(s|Si+1) ≤
∆(s|Si); i.e., the marginal benefits of each element can never
increase between algorithm iterations. In the accelerated
greedy algorithm, after the first iteration, a list of marginal
benefits from the previous iteration sorted in decreasing order
is maintained. The marginal benefits for the next iteration
are then updated starting from the top of this list. If during
this process an element remains at the top of the list after
this update, submodularity guarantees that this element has
maximal marginal gain, and the algorithm can move to the
next iteration without needing to compute the marginal gain

for a potentially very large number of elements. Otherwise,
the list is resorted and the process continues. Although the
worst case complexity of this accelerated variant is the same
as the naive greedy algorithm, speedups of multiple orders
of magnitude have been observed in practice [14].

Second, the individual marginal gain function calls can
be cheaply performed as rank-one updates using a gener-
alized Sherman-Morrison formula. Note that computing the
marginal gain requires computing the trace of the pseudoin-
verse of a matrix following a rank one update. Although the
standard Sherman-Morrison formula does not hold in general
for updating the pseudoinverse of a matrix (as opposed to
the inverse) [19], we show that for the case of the Laplacian
pseudoinverse, one can use the standard formula with the
inverse replaced by the pseudoinverse.

Lemma 1: For any connected weighted graph G =
(V,E,w) with weighted Laplacian matrix LE and any edge
e ∈ V ×V \E with given weight we and associated weighted
incidence matrix row me, we have

L†E∪{e} = (LE +mem
T
e)† = L†E −

1

β
L†Emem

T
e L
†
E , (13)

where β = 1 +mT
e L
†
Eme, and correspondingly,

trace(L†E∪{e}) = trace(L†E)− 1

β
||LEme||2. (14)

Proof: From Theorem 3 in [19], it holds that

(LE +mem
T
e)† = L†E +

1

β
ukTL†E −

β

σ
pq,

where u = (I−LEL†E)me, k = L†Eme, β = 1+mT
e L
†
Eme,

p = ||k||2
β u+k, q = (||u||

2

β kTL†E+kT), and σ = ||k||2||u||2+

β2. But since I − LEL
†
E = 1

n11
T , it follows that for

any incidence matrix row, (I − LEL
†
E)me = u = 0, so

the expression collapses immediately to (13). Finally, (14)
follows from the linearity and cyclic properties of trace.
This means that the full Laplacian pseudoinverse needs
to be computed from scratch only once at the beginning
for the given connected graph, requiring O(n3) operations.
Then within each iteration, (14) can be used to evaluate the
marginal gain for each edge in O(n) operations since me has
only two non-zero entries. Finally, after the optimizing edge
has been found, the Laplacian pseudoinverse can be updated
using (13) in O(n2) operations.

C. Constructing Tree Graphs with Optimal Coherence and
Nonidentical Edge Weights

We now relax the assumption that the given graph is
connected and consider the problem of constructing a tree
graph with optimal network coherence. It is known that when
the edge weights are identical, a star graph is the tree with
optimal network coherence; see, e.g., [6]. However, when
non-identical edge weights are given, it is not obvious how
to find the tree with optimal coherence. Given a node set
V = {1, . . . , n} and weights we ≥ 0 associated with each
possible edge e ∈ V × V , the goal is to find an edge set

E such that the undirected graph G = (V, E) is a connected
tree with minimum trace(L†E). This can be expressed as

minimize
E⊂V×V

trace(L†E)

subject to |E| = n− 1, rank(LE) = n− 1.
(15)

A modified greedy algorithm detailed in Algorithm 1 can
be used as a heuristic for this problem. The only difference is

Algorithm 1 Finding a tree with small trace(L†E).
Require: V, we for each e ∈ V × V

1: E ← {argmaxe∈V×V we}
2: V ← {i, j|(i, j) ∈ E}
3: while |E| ≤ n− 1 do
4: E ← {(i, j) | (i, j) ∈ V × V \ E , {i, j} ∩ V 6= ∅}
5: e = argmine∈E trace(L†E∪{e})
6: E ← E ∪ e
7: V ← V ∪ {i, j | e = (i, j)}
8: end while

that the feasible edge set described in line 4 prevents cycles
from forming, which would involve redundant edges in terms
of connectivity. As in Lemma 1, the value of trace(L†E∪{e})
can be calculated more efficiently. From Theorem 1 of [19]

trace(L†E∪{e}) = trace(LE +mem
T
e)†

= trace(L†E)−
trace

(
L†Emem

T
e (I − LEL†E)

)
‖(I − LEL†E)me‖2

−
trace

(
(I − LEL†E)mem

T
e L
†
E

)
‖(I − LEL†E)me‖2

+
1 +mT

e L
†
Eme

‖(I − LEL†E)me‖2
.

(16)

Since L†ELEL
†
E = L†E , we have trace

(
(I −

LEL
†
E)mem

T
e L
†
E

)
= trace

(
L†E(I − LEL

†
E)mem

T
e

)
= 0.

Hence,

trace(L†E∪{e}) = trace(L†E) +
1 +mT

e L
†
Eme

‖(I − LEL†E)me‖2
. (17)

Thus, the marginal gain computations in line 5 of Algorithm
1 can be written as

e = argmin
e∈E

1 +mT
e L
†
Eme

‖(I − LEL†E)me‖2
.

Note that Algorithm 1 can be used to add a new node or
a set of new vertices to an existing graph such that resulting
graph with a small trace(L†E) as well.

IV. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we illustrate the results with numerical
examples.

Fig. 1. Computation times for the naive and fast versions of the greedy
algorithm. The algorithms were applied to compute a set of n edges to add
to n-node Erdős-Rényi random networks with the edge probability chosen
to be slightly above lnn/n to ensure connectivity of the generated base
graph. For the data at 120 nodes, the fast algorithm exhibits a factor of 350
speed-up.

A. Naive vs. fast greedy algorithm

We first compare the performance of the naive greedy
algorithm with that of the modified greedy algorithm using
the improvements described in Section III-B. We applied
both algorithms to compute a set of n edges to add to n-node
Erdős-Rényi random networks with the edge probability
chosen to be slightly above ln(n)/n to ensure connectivity
of the generated base graph. Note that even for the smallest
networks considered here, e.g. choosing 20 edges to add from
around 150, brute force computation is not feasible. How-
ever, the greedy algorithm is guaranteed by Theorem 3 to
produce a network topology with suboptimality-guarantees.
Figure 1 shows computation times for the two algorithms
for various network sizes on a laptop with a 1.7 GHz Intel
Core i7 processor. One can see a substantial increase in
computation time for the naive greedy algorithm around 100
nodes (corresponding to about 4500 possible edges to add).
This is also roughly where convex relaxation heuristics based
on [29], [10] and using general purpose semidefinite pro-
gramming solvers begin to have difficulties. The fast greedy
algorithm displays significantly better scaling properties: for
the data at 120 nodes, the fast algorithm exhibits a factor
of 350 speed-up. Our techniques (using unoptimized Python
code) were able to near-optimally modify networks with up
to 1,000 nodes, with nearly half a million decision variables
associated possible edges, in a few hours, which is far beyond
the capabilities of current state-of-the-art general purpose
semidefinite programming solvers.

B. Experiments with cycles and random graphs

We then examined the qualitative behavior of the algorithm
for cycles and other types of random graphs. Figure 2 shows
the results of applying to greedy algorithm to add various
numbers of edges to a cycle on 50 nodes. The initial added

Fig. 2. Adding various numbers of edges to a cycle graph on 50 nodes.

edges tend to be long distance links, reminiscent of Watts-
Strogatz small world graphs [28], but with the link distances
intentionally chosen by the algorithm to optimize coherence.
When many edges are added, the resulting graph tends to
be nearly regular, indicating that small world regular graphs
have near optimal coherence. A similar story emerges for
Erdős-Rényi random graphs. Figure 3 shows the result of
applying the greedy algorithm. In small added edge sets, the
added edges tend to connect distant low-degree vertices, and
in large added edge sets, the result tends to a regular graph
with small-world-like long distance connections. Finally, we
also applied the greedy algorithm to Barabasi-Albert scale
free networks, in which a preferential attachment mechanism
leads to power law degree distributions. Figure 4 shows a
set of 10 edges added to a scale free tree on 100 nodes. We
observe that some of the added edges tend to connect highly
connected hubs together, while others make low-degree long-
distance connections.

V. SUMMARY AND CONCLUSIONS

In summary, we considered a network topology design
problem in which the objective is to select a set of edges
to add to a given graph to optimize the coherence of the
resulting network. We showed that network coherence is a
submodular function of the network topology, which means
that a simple greedy algorithm can be used to select a near
optimal edge subset. A modified fast greedy algorithm was
developed using Sherman-Morrison pseudoinverse updates
and exploiting the submodularity property and provides a
computational speed-up of several orders of magnitude,

Fig. 3. Adding 10 edges to an Erdős-Rényi random graph on 50 nodes
(left); adding 35 edges to an Erdős-Rényi random random graph on 20 nodes
(right). In small added edge sets, the added edges tend to connect distant
low-degree vertices, and in large added edge sets, the result converges to a
regular graph with small-world-like long distance connections.

Fig. 4. A set of 10 edges added to a Barabasi-Albert scale free network
with power law degree distribution. Some of the added edges tend to
connect highly connected nodes, while others make low-degree long-
distance connections.

allowing scaling to network sizes far beyond the capabilities
of current state of the art semidefinite programming solvers.

Our current work is applying our algorithms to study
various network coherence metrics for networks with second-
order dynamics and associated power network models and
using the algorithms for design of wide-area controllers.

REFERENCES

[1] B. Bamieh and D.F. Gayme. The price of synchrony: Resistive losses
due to phase synchronization in power networks. In American Control
Conference (ACC), 2013, pages 5815–5820. IEEE, 2013.

[2] B. Bamieh, M.R. Jovanovic, P. Mitra, and S. Patterson. Coherence
in large-scale networks: Dimension-dependent limitations of local
feedback. IEEE Transactions on Automatic Control, 57(9):2235–2249,
2012.

[3] Y.Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal bound-
ary & region segmentation of objects in nd images. In Proceedings
of the Eighth IEEE International Conference on Computer Vision,
volume 1, pages 105–112. IEEE, 2001.

[4] L. Bushnell, A. Clark, and R. Poovendran. A supermodular optimiza-
tion framework for leader selection under link noise in linear multi-
agent systems. IEEE Transactions on Automatic Control, 59(2):283–
296, 2014.

[5] F.L. Cortesi, T.H. Summers, and J. Lygeros. Submodularity of energy
related controllability metrics. In to appear, IEEE Conference on
Decision and Control, Los Angeles, CA, 2014.

[6] W. Ellens, F.M. Spieksma, P. Van Mieghem, A. Jamakovic, and R.E.
Kooij. Effective graph resistance. Linear algebra and its applications,
435(10):2491–2506, 2011.

[7] M. Fardad, F. Lin, and M.R. Jovanovic. Algorithms for leader selection
in large dynamical networks: Noise-free leaders. In IEEE Conference
on Decision and Control, pages 7188–7193. IEEE, 2011.

[8] U. Feige. A threshold of ln n for approximating set cover. Journal of
the ACM, 45(4):634–652, 1998.

[9] K. Fitch and N.E. Leonard. Information centrality and optimal leader
selection in noisy networks. In IEEE Conference on Decision and
Control, pages 7510–7515. IEEE, 2013.

[10] A. Ghosh, S. Boyd, and A. Saberi. Minimizing effective resistance of
a graph. SIAM Review, 50(1):37–66, 2008.

[11] G.H. Golub and V. Pereyra. The differentiation of pseudo-inverses
and nonlinear least squares problems whose variables separate. SIAM
Journal on numerical analysis, 10(2):413–432, 1973.

[12] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of
influence through a social network. In Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 137–146. ACM, 2003.

[13] D.J. Klein and M. Randić. Resistance distance. Journal of Mathemat-
ical Chemistry, 12(1):81–95, 1993.

[14] A. Krause and D. Golovin. Submodular function maximization.
Tractability: Practical Approaches to Hard Problems, 3, 2012.

[15] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical
studies. The Journal of Machine Learning Research, 9:235–284, 2008.

[16] F. Lin, M. Fardad, and M.R. Jovanovic. Algorithms for leader
selection in large dynamical networks: Noise-corrupted leaders. In
IEEE Conference on Decision and Control, pages 2932–2937. IEEE,
2011.

[17] F. Lin, M. Fardad, and M.R. Jovanovic. Algorithms for leader selection
in stochastically forced consensus networks. IEEE Transactions on
Automatic Control, 59(7):1789–1802, 2013.

[18] L. Lovász. Submodular functions and convexity. Mathematical
programming: the state of the art, pages 235–257, 1983.

[19] C.D. Meyer, Jr. Generalized inversion of modified matrices. SIAM
Journal on Applied Mathematics, 24(3):315–323, 1973.

[20] M. Minoux. Accelerated greedy algorithms for maximizing sub-
modular set functions. In Optimization Techniques, pages 234–243.
Springer, 1978.

[21] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of
approximations for maximizing submodular set functions—I. Mathe-
matical Programming, 14(1):265–294, 1978.

[22] S. Patterson and B. Bamieh. Leader selection for optimal network
coherence. In IEEE Conference on Decision and Control, pages 2692–
2697. IEEE, 2010.

[23] S. Patterson and B. Bamieh. Network coherence in fractal graphs. In
IEEE Conference on Decision and Control, pages 6445–6450. IEEE,
2011.

[24] I. Shames and T.H. Summers. Rigid network design via submodular
set function optimization. submitted to IEEE Transactions on Network
Science and Engineering, 2014.

[25] M. Siami and N. Motee. Graph-theoretic bounds on disturbance
propagation in interconnected linear dynamical networks. arXiv
preprint arXiv:1403.1494, 2014.

[26] T.H. Summers, F. Cortesi, and J. Lygeros. On submodularity
and controllability in complex dynamical networks. arXiv preprint
arXiv:1404.7665, 2014.

[27] T.H. Summers and J. Lygeros. Optimal sensor and actuator placement
in complex dynamical networks. In IFAC World Congress, Cape Town,
South Africa, pages 3784–3789, 2014.

[28] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’
networks. nature, 393(6684):440–442, 1998.

[29] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus
with least-mean-square deviation. Journal of Parallel and Distributed
Computing, 67(1):33–46, 2007.

	Introduction
	Network coherence and submodular set functions
	Network coherence
	Submodularity

	Optimal topology design for network coherence
	Network coherence is a submodular function of network topology
	Accelerated greedy algorithm and fast rank-one updates
	Constructing Tree Graphs with Optimal Coherence and Nonidentical Edge Weights

	Illustrative numerical examples
	Naive vs. fast greedy algorithm
	Experiments with cycles and random graphs

	Summary and conclusions
	References

