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Simultaneous Sensor and Actuator Selection/Placement through

Output Feedback Control
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Abstract—In most dynamic networks, it is impractical to
measure all of the system states; instead, only a subset of
the states are measured through sensors. Consequently, and
unlike full state feedback controllers, output feedback control
utilizes only the measured states to obtain a stable closed-loop
performance. This paper explores the interplay between the
selection of minimal number of sensors and actuators (SaA)
that yield a stable closed-loop system performance. Through
the formulation of the static output feedback control problem,
we show that the simultaneous selection of minimal set of
SaA is a combinatorial optimization problem with mixed-
integer nonlinear matrix inequality constraints. To address the
computational complexity, we develop two approaches: The first
approach relies on integer/disjunctive programming principles,
while the second approach is a simple algorithm that is akin to
binary search routines. The optimality of the two approaches
is also discussed. Numerical experiments are included showing
the performance of the developed approaches.

Index Terms—Sensor and actuator selection and placement,
static output feedback control, mixed-integer nonlinear matrix
inequality, disjunctive programming, binary search algorithm.

I. INTRODUCTION

The interplay between the selection of minimal number

of sensors and actuators (SaA) in dynamic systems is in-

vestigated in this paper. In general, the SaA selection or

placement problem can be described as finding the optimal

binary, on/off configuration of SaA that satisfy certain dy-

namic system metrics such as closed-loop system stability,

output-feedback stability, linear quadratic regulator and ro-

bust H2/H∞ control/estimation metrics. This problem has

potential applications in areas such as: large scale power

systems [1], [2], power systems integration with microgrids

[3], municipal water networks [4], and transportation systems

[5], [6].

Various studies investigate the problem of selecting sensors

or actuators separately, while invoking the separation prin-

ciple that decouples the problems of designing controllers

and state estimators, while assuming classical state feedback

controller. A more interesting problem is that of simultane-

ously selecting SaA in the context of output feedback control,

where the control law is obtained explicitly from the output

measurements, rather than the states of the network. Even
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when the separation principle is conveniently exploited, the

SaA selection problems are inherently coupled.

Three major approaches have been developed in the recent

literature of SaA selection. The first approach is based on

combinatorial algorithms, heuristics, and detailed algorithms

that often exploit network structure and properties [7]–

[15]. The second approach entails utilizing semidefinite pro-

gramming (SDP) formulations of control/estimation methods

while including sparsity promoting penalties on the gain

matrix—thereby minimizing the total number of activated

SaA [16]–[19]. The third approach uses a combination of

mixed-integer convex programming, convex relaxations and

approximations to obtain the minimal set of SaA [1], [20],

[21]. In particular, the problem of simultaneously select-

ing/placing SaA with dynamic output feedback control is

studied in [18], [22]. In this paper, we investigate the problem

of simultaneously selecting SaA through static output feed-

back control framework, where the objective is to stabilize the

closed-loop system through the least number of SaA given

logistic constraints on the selection of SaA. Two different

approaches to solve this problem are proposed.

The paper organization are as follows. First, we discuss

the needed assumptions, definitions, and the formulation

of the classical static output feedback problem through an

SDP—all in Section II. The problem formulation is presented

in Section III, where we show that the simultaneous SaA

selection requires solving a nonconvex optimization problem

with mixed-integer nonlinear matrix inequality (MI-NMI)

constraints. Section IV presents the first approach, whereby

the problem is transformed to MI-SDP by using disjunctive

programming principles [23], [24]. Section V presents a

departure from the mixed-integer formulations to an algo-

rithm that is akin to binary search routines. The developed

algorithm leverages the SaA problem structure and the sub-

optimality or infeasibility of specific SaA combinations. We

prove that both approaches yield optimal solutions to the

formulated nonconvex problem. Numerical tests are provided

in Section VI.

Some of the mathematical proofs are omitted in this

version of the paper, but will be included in an extended

version of this work.

II. STATIC OUTPUT FEEDBACK CONTROL REVIEW AND

PROBLEM FORMULATION

In this section, we present some necessary background in-

cluding the definition of static output feedback stabilizability
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and the SDP that solves for the output feedback gain given

a fixed SaA combination.

A. Notation

The set of n× n symmetric and positive definite matrices

are denoted S
n and S

n
++. For a square matrix X , the notation

Λ(X) denotes the set of all eigenvalues of X . The function

Re(c) extracts the real part of a complex number c, whereas

blkdiag(·) is used to construct a block diagonal matrix. For

a matrix X ∈ R
p×q , the operator Vec(X) returns a stacked

pq×1 column vector of entries of X , while Diag(Y ) returns

a n × 1 column vector of diagonal entries of square matrix

Y ∈ R
n×n. The symbol ⊗ denotes the Kronecker product.

For any x ∈ R, |x| and ⌈x⌉ denote the absolute value and

ceiling function of x. The cardinality of a set S is denoted

by |S|, whereas (0)n denotes a n-tuple with zero valued

elements.

B. Systems Description

Consider a linear time invariant (LTI) dynamical system

consisting of N nodes, with N = {1, . . . , N} defining the

set of nodes, modeled in the following state-space equations

ẋ(t) = Ax(t) +Bu(t) (1a)

y(t) = Cx(t), (1b)

where the state, input, and output vectors on each node

i ∈ N are represented by xi(t) ∈ R
nxi , ui(t) ∈ R

nui ,

and yi(t) ∈ R
nyi . The global state, input, and output

vectors are written as x(t) , [x⊤
1 (t), . . . ,x

⊤

N (t)]⊤, u(t) ,
[u⊤

1 (t), . . . ,u
⊤

N(t)]⊤, and y(t) , [y⊤
1 (t), . . . ,y⊤

N (t)]⊤

where x(t) ∈ R
nx , u(t) ∈ R

nu , and y(t) ∈ R
ny . We

assume that the SaA on each node i only correspond to

that particular node. Therefore, B and C can be respec-

tively constructed as B , blkdiag(B1,B2, . . . ,BN ) and

C , blkdiag(C1,C2, . . . ,CN ) where B ∈ R
nx×nu and

C ∈ R
ny×nx . This assumption enforces the coupling among

nodes to be represented in the state evolution matrix A ∈
R

nx×nx , which is realistic in various dynamic networks as

control inputs and observations are often determined locally.

In addition, we also assume that B and C are full column

rank and full row rank, respectively.

To formalize the SaA selection problem, let γi ∈ {0, 1}
and πi ∈ {0, 1} be two binary variables that represent the

selection of SaA at node i of the dynamic network. We

consider that γi = 1 if the sensor of node i is selected (or

activated) and γi = 0 otherwise. Similarly, πi = 1 if the

actuator of node i is selected and πi = 0 otherwise. The

augmented dynamics can be written as

ẋ(t) = Ax(t) +BΠu(t) (2a)

y(t) = ΓCx(t), (2b)

where Π and Γ are symmetric block matrices defined as

Π , blkdiag(π1Inu1
, π2Inu2

, . . . , πNInuN
) (3a)

Γ , blkdiag(γ1Iny1
, γ2Iny2

, . . . , γNInyN
). (3b)

C. The Static Output Feedback Stabilizability Problem

We begin this section by providing the definition of static

output feedback stabilizability.

Definition 1. The dynamical system (1) is stabilizable via

static output feedback if there exists F ∈ R
nu×ny , with

control law defined as u(t) = Fy(t), such that Re(λ) < 0
for every λ ∈ Λ(A+BFC).

By using the above definition, the static output feedback

stabilizability problem can be defined as the problem of

finding F such that the closed loop system A + BFC is

asymptotically stable. Throughout this paper, we require that

dynamical system (1) satisfies the following assumption.

Assumption 1. The following conditions apply to (1):

1) The pair (A,B) is stabilizable,

2) The pair (A,C) is detectable.

Note that above assumption is not enough to guarantee

that (1) is stabilizable via static output feedback. To proceed,

the following proposition provides a sufficient condition for

static output feedback stabilizability.

Proposition 1. The dynamic network (1) is static out-

put feedback stabilizable if there exist an invertible matrix

M ∈ R
nu×nu , matrices P ∈ S

nx

++, N ∈ R
nu×ny , and

F ∈ R
nu×ny such that the following linear matrix inequali-

ties are feasible

A⊤P + PA+C⊤N⊤B⊤ +BNC ≺ 0 (4a)

BM = PB, (4b)

with control law u(t) = Fy(t) where F = M−1N .

The proof of the above proposition is available in [25]. The

condition presented in Proposition 1 allows the static output

feedback stabilization problem to be solved as an LMI. The

problem formulation of output feedback stabilizability with

simultaneous SaA selection is given next.

III. PROBLEM FORMULATION

The simultaneous SaA selection with static output feed-

back control is the problem of selecting a minimal set of SaA

while still maintaining the stability of the system through

static output feedback control. Thus, based on Proposition 1,

the SaA selection problem for output feedback stabilization

can be formulated as follow.

minimize

N
∑

k=1

πk + γk (5a)

subject to A⊤P + PA+C⊤
ΓN⊤

ΠB⊤

+BΠNΓC ≺ 0 (5b)

BΠM = PBΠ (5c)

Φ

[

π

γ

]

≤ φ (5d)

P ≻ 0, π ∈ {0, 1}N , γ ∈ {0, 1}N . (5e)

In (5), the optimization variables are {π,γ,N ,M ,P }
with P ∈ S

nx , π = [π1, . . . , πN ]⊤, and γ = [γ1, . . . , γN ]⊤.



The additional constraint (5d) can be regarded as a linear lo-

gistic constraint, which is useful to model preferred activation

or deactivation of SaA on particular nodes and to define the

desired minimum and maximum number of active SaA. This

constraint is also useful in multi-period selection problems

where certain actuators and sensors are deactivated due to

logistic constraints.

Upon solving (5), the SaA selection is obtained and

represented by {π∗, γ∗} with static output feedback gain F

to be computed as M−1N , assuming that M is invertible.

Note that, (5) is nonconvex due to the presence of MI-NMI in

the form of ΠNΓ and mixed-integer bilinear matrix equality

in (5c). Thus, problem (5) cannot be solved by any general-

purpose mixed integer convex programming solver. To that

end, two different approaches that solve or approximate (5)

are developed. The first approach is based on disjunctive

programming, while the other approach is based on a binary

search algorithm. The next section presents the first approach.

IV. DISJUNCTIVE PROGRAMMING FOR SAA SELECTION

The first approach is developed based on disjunctive

programming principles [23], [24]. The following theorem

presents this result.

Theorem 1. The optimization problem (5) is equivalent to

minimize

N
∑

k=1

πk + γk (6a)

subject to

A⊤P + PA+C⊤
Θ

⊤B⊤ +BΘC ≺ 0 (6b)

Ω = (B⊤B)−1B⊤PB (6c)

Ξ = (I −B(B⊤B)−1B⊤)PB (6d)




Ψ1(N ,Θ)
Ψ2(M ,Ω)
Ψ3(Ξ)



 ≤





L1∆1(Γ,Π)
L2∆2(Π)
L3∆3(Π)



 (6e)

(5d), (5e), (6f)

where

Ψ1(N ,Θ) =















Vec(Θ)
−Vec(Θ)
Vec(Θ)
−Vec(Θ)

Vec(Θ−N )
−Vec(Θ−N )















∆1(Γ,Π) =















Diag(Iny ⊗Π)
Diag(Iny ⊗Π)
Diag(Γ⊗ Inu)
Diag(Γ⊗ Inu)

Diag(2Inu×ny − Iny ⊗Π − Γ⊗ Inu)
Diag(2Inu×ny − Iny ⊗Π − Γ⊗ Inu)















Ψ2(M ,Ω) =















Vec(M)
−Vec(M)
Vec(Ω)
−Vec(Ω)

Vec(M −Ω)
−Vec(M −Ω)















∆2(Π) =

















Diag(I
n
2
u
− Inu ⊗Π+Π⊗ Inu)

Diag(I
n
2
u
− Inu ⊗Π+Π⊗ Inu)

Diag(I
n
2
u
+ Inu ⊗Π−Π⊗ Inu)

Diag(I
n
2
u
+ Inu ⊗Π−Π⊗ Inu)

Diag(2I
n
2
u
− Inu ⊗Π−Π⊗ Inu)

Diag(2I
n
2
u
− Inu ⊗Π−Π⊗ Inu)

















Ψ3(Ξ) =

[

Vec(Ξ)
−Vec(Ξ)

]

∆3(Π) =

[

Diag(Inx×nu −Π⊗ Inx)
Diag(Inx×nu −Π⊗ Inx)

]

,

with Θ ∈ R
nu×ny , Ω ∈ R

nu×nu and Ξ ∈ R
nx×nu are

additional variables and L1, L2, L3 ∈ R++ are sufficiently

large constants.

The proof is omitted from this version of the work, and

will be included in the extended version of the manuscript

[26].
Although (6) is equivalent to (5), the quality of the solution

that comes out of (6) depends on the choice of L1 and

L2. Theorem 1 allows the SaA selection for static output

feedback stabilizability to be solved as a MI-SDP. The next

section presents a departure from MI-SDP to an algorithm

that solves (5).

V. BINARY SEARCH ALGORITHM FOR SAA SELECTION

A. Introduction

In this section, we present an algorithm that is similar in

spirit to binary search routines. In what follows, we provide

the definitions and examples that are important to understand

the algorithm.

Definition 2. Let Sπ and Sγ be two N -tuples represent-

ing the selection of actuator and sensor. That is, Sπ ,

(π1, . . . , πN ) and Sγ , (γ1, . . . , γN ). Then, the selec-

tion of SaA can be defined as S , (Sπ,Sγ) such that

{Π, Γ} = G(S), Π = Gπ(S), and Γ = Gγ(S) where

G(·) : S → R
nu×nu × R

ny×ny , Gπ(·) : S → R
nu×nu , and

Gγ(·) : S → R
ny×ny are linear maps. The number of nodes

with active SaA can be defined as H(S) ,
∑N

k=1
πk + γk

where H(·) : S → Z+.

Definition 3. Let S , {Sq}σq=1 be the candidate set such

that it contains all possible combinations of SaA where σ
denotes the number of total combinations, i.e., σ , |S|. Then,

the following conditions hold:

1) For all S ∈ S, {Π, Γ} = G(S) is feasible for (5d), and

2) S is ordered such that H(Sq−1) ≤ H(Sq).

Example 1. Suppose that the dynamical system consists of

two nodes with one input and one output on each node. If

the logistic constraint dictates that 1 ≤ H(S) < 4 for all

S ∈ S, then the candidate set S can be constructed as

S =
{

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0),

(0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1),

(1, 0, 1, 1), (0, 1, 1, 1)
}

.



B. Binary Search Algorithm to Solve (5)

The objective of this algorithm is to find an optimal

solution S∗ ∈ S such that H(S∗) ≤ H(S) for all S ∈ V

where V , {S ∈ S | {Π, Γ} = G(S) is feasible for (4)}.
Realize that S∗ might be not unique∗ and finding one is

adequate for our purpose.

The routine to solve SaA selection with static output

feedback is now described as follows. Let p be the index

of iteration and q be the index of position in the ordered

set S. Hence at iteration p, the candidate set that contains

all possible combinations of SaA can be represented as Sp,

with σ = |Sp|, and any element of Sp at position q can be

represented by Sq . Also, let S∗ be the current solution, which

is initialized as S∗ = (0)2N .

Next, obtain Sq where Sq ∈ Sp and q = ⌈σ/2⌉. At this

step, we need to determine whether system (2) is output

feedback stabilizable with a certain combination of SaA

{Πq, Γq} = G(Sq). To that end, we use the LMIs from

Proposition 1. When solving (4) for given {Πq, Γq}, let

B and C in (4) be substituted with Bq and Cq so that

both represent the nonzero components of BΠq and ΓqC

that correspond to activated SaA. If Bq and Cq are feasible

for (4), then S∗ is updated such that S∗ = Sq . Since Sq
is feasible, then we can discard all combinations that have

more or equal number of active SaA. Otherwise, if Bq and

Cq are infeasible for (4), then we can discard Sq and all

combinations that (a) have less number of active SaA than

Sq and (b) the active SaA are included in Sq .

Realize that the above method reduces the size of Sp

in every iteration because one or more elements of Sp

are discarded. Let Sp+1 be the new set of all possible

combination of SaA after all unwanted combinations of SaA

are discarded. Then, we can update the number of possible

combinations of SaA as σ = |Sp+1|. The algorithm now

continues and terminates when Sp = ∅. The detail of this

algorithm is given in Algorithm 1. Example 2 gives an

illustration how Sp is constructed in every iteration.

Example 2. Consider again the dynamic system from Ex-

ample 1. Let (1, 0, 0, 1) be the starting combination and,

for the sake of illustration, assume that (4) is infeasible

for this combination. Then, by Algorithm 1, combinations

(1, 0, 0, 0) and (0, 0, 0, 1) are discarded. The candidate set

now comprises the following elements

S2 =
{

(0, 1, 0, 0), (0, 0, 1, 0), (1, 1, 0, 0), (1, 0, 1, 0),

(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 0),

(1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)
}

.

Let (0, 1, 0, 1) be the new starting point and assume that this

combination is feasible for (4). Then, all combinations that

∗The solution might not be unique since there could be more than one
combinations of SaA that yield minimum number of activated SaA, while
still generating feasible solution to the LMIs for static output feedback
stabilizability.

have greater or equal number of active SaA can be discarded.

The remaining possible candidates on the candidate set are

S3 =
{

(0, 1, 0, 0), (0, 0, 1, 0)
}

.

This algorithm continues in a fashion similar to the above

routine. If none of these combinations in S3 is feasible, then

Algorithm 1 returns S∗ = (0, 1, 0, 1) as the solution.

Algorithm 1 Binary Search Algorithm

1: initialize: S∗ = (0)2N , p = 1
2: input: Sp

3: while Sp 6= ∅ do

4: compute: σ ← |Sp|, q ← ⌈σ/2⌉, Sq ∈ Sp

5: if (4) is feasible then

6: S∗ ← Sq , Sp ← Sp \ {S ∈ Sp | H(S) ≥ H(Sq)}
7: else

8: Sp ← Sp \ {S ∈ Sp | Sq ∨ S = Sq}
9: end if

10: p← p+ 1
11: end while

12: output: S∗

Theorem 2. Algorithm 1 returns an optimal solution of (5).

The proof is omitted from this version of the work, and

will be included in the extended version of the manuscript

[26]. The reason why Algorithm 1 returns an optimal solution

of (5) is due to the fact that two SaA configurations can

return the same objective value of (5). However, one SaA

configuration can yield a more stable closed loop system in

terms of the distance from the jω-axis. This is shown in the

numerical tests (Section VI).

C. Modified Binary Search Algorithm

In Algorithm 1, the LMI (4) is solved in every iteration

to determine whether a particular combination of SaA yields

a feasible or infeasible solution to the static output feed-

back problem. In this section, we provide a modification to

Algorithm 1 so that it no longer requires solving the LMI

feasibility problem at each iteration—potentially resulting in

a reduction in the computational time.

This simple modification is carried out by replacing Step

5 in Algorithm 1 with stabilizability and detectability tests

of linear dynamic systems. To this end, the following propo-

sitions are useful.

Proposition 2. Let S be an arbitrary combination of SaA. If

system (2) is stabilizable for S, then activating one or more

actuators from S will keep system (2) stabilizable. Similarly,

if system (2) is unstabilizable for S, then deactivating one or

more actuators from S will keep system (2) unstabilizable.

Proof. We first prove the first part of the proposition. Let

S ∈ S with Π = Gπ(S). Let B1 ∈ R
nx×m1 be a matrix that

represents the nonzero components of BΠ that correspond

to activated actuators. Since the pair (A,B1) is stabilizable,

then we have v⊤B1 = u where u⊤ ∈ R
m1 and u 6= 0 [27,

Theorem 1] for all v ∈ {v ∈ R
nx |v⊤(A − λI) = 0, ∀λ ≥



0, λ ∈ Λ(A)}. Now, define B ∈ R
nx×m and B2 ∈ R

nx×m2 ,

with m = m1+m2 and m ≤ nu, such that B2 represents the

addition of activated actuators and B =
[

B1 B2

]

. Then,

v⊤B = v⊤
[

B1 B2

]

=
[

v⊤B1 v⊤B2

]

=
[

u v⊤B2

]

.

Since u 6= 0, the pair (A,B) is also stabilizable, proving

the first part of the proposition. Since the second part of the

proposition is the contraposition of the first part, then the

proof is complete. �

Proposition 3. Let S be an arbitrary combination of SaA. If

system (2) is detectable for S, then activating one or more

sensors from S will keep system (2) detectable. Similarly, if

system (2) is undetectable for S, then deactivating one or

more sensors from S will keep system (2) undetectable.

Proposition 3 is the detectability equivalence of Proposi-

tions 2 and thus the proof is omitted for brevity. These two

propositions allow discarding some combinations of SaA that

are either unstabilizable and/or undetectable, or stabilizable

and detectable but have more active SaA. Since stabilizability

and detectability tests provide no guarantee of static output

stabilizability for system (1), we save all combinations of

SaA that pass the tests according to the routine in Algo-

rithm 1. This allows the now-modified algorithm to consider

the remaining combinations of SaA that contain more active

SaA in the case when the best combination that passes

the tests cannot give a stabilizing feedback gain. After all

combinations of SaA that pass the tests have been stored, we

solve (4) starting from the combination with least number

of SaA. If a feasible solution exists given this least-cost

combination, the modified algorithm terminates. Otherwise,

a stored combination having more active SaA is tested until

(4) is successfully solved.

The modified algorithm offers flexibility in assessing sta-

bilizability/detectability of dynamic networks, although it

no longer yields an optimal solution of (5) as the stabi-

lizability/detectability tests are not enough to guarantee the

existence of stabilizing, static output feedback control gain.

Specifically, either the PBH or the eigenvector tests [27]

can be used. If the pairs (A,BΠ) and/or (A,ΓC) have

large condition number, then the eigenvector test is preferable

to be used since MATLAB’s rank function tends to return

unreasonable results for pairs with large condition number

[11].

VI. NUMERICAL EXPERIMENTS

We test the developed methods on a mass spring sys-

tem [28], [29] that consists of N = 10 subsystems with C =
I. All the simulations are performed using MATLAB R2017b

running on a 64-bit Windows 10 with 2.5GHz Intel Core i7-

6500U CPU and 8 GB of RAM, where each optimization

problem is solved using YALMIP [30] with MOSEK version

8.1 [31]. Here, we impose a logistic constraint so that there

are at least 2 activated sensors and 2 activated actuators.

In this simulation, we consider three different scenarios

that follow from the developed approaches in the previous

sections:

0 2 4 6 8 10
103

104

105

106

107

Fig. 1. The reduction of the number of possible combinations. The algorithm
terminates when σ = 0.

• The first scenario (MI-SDP) is carried out by solving prob-

lem (6) via YALMIP’s MI-SDP branch and bound [30]. We

choose L1 = 105, L2 = 105, L3 = 105, ǫ1 = 10−9, and

ǫ2 = 10−6 such that the left-hand side of (6b) is upper

bounded by −ǫ1I and P � ǫ2I. Smaller values for L1

and L2 resulted in large computational time.

• The second scenario (BSA-SDP) directly follows Algo-

rithm 1 and solves (4) in each iteration to check the

feasibility of the given combination of SaA, while also

computing the static output feedback gain matrix simulta-

neously from the solution of LMIs (4).

• The third scenario (BSA-PBH) uses the modified version

of Algorithm 1, as explained in section V-C, along with

the PBH tests. When the algorithm terminates, the obtained

SaA solutions are tested to solve (4). The combination that

is feasible for (4) and has the least number of active SaA

is then reported as the solution.

The results of this numerical tests are presented in Table

I. All scenarios successfully return optimal solutions: 2

sensors and 2 actuators. Among these scenarios, the MI-

SDP takes the longest time to compute an optimal solution.

The BSA-PBH outperforms the other two scenarios in terms

of computational time, while also taking fewer iterations

compared to the BSA-SDP. This occurs because in BSA-SDP,

problem (4) is solved in each iteration, whereas BSA-PBH

only checks the stabilizability and detectability of a given

combination of SaA, a process that does not require much

computations compared to solving SDPs. The reduction of

the number of possible combinations of SaA between BSA-

SDP and BSA-PBH is depicted in Figure 1. Note that the

algorithm terminates when the candidate set is empty.

VII. SUMMARY AND FUTURE WORK

Two general approaches to minimize the number of se-

lected SaA for static output feedback stabilization are pro-

posed. The first approach is based on solving a MI-SDP,

while the second one uses a simple algorithm based on the

binary search algorithm. The numerical tests on a mass spring



TABLE I
NUMERICAL TEST RESULTS FOR THE THREE SCENARIOS/METHODS.

Scenario Max(Re(Λ(A+BΠ
∗FΓ

∗C)))
∑N

k=1
πk + γk ∆t(s) Iterations γ∗ and π∗

MI-SDP -3.44×10−3 4 14.13 —
γ∗ = {0, 0, 1, 0, 1, 0, 0, 0, 0, 0}
π∗ = {1, 0, 0, 0, 1, 0, 0, 0, 0, 0}

BSA-SDP -2.92×10−3 4 6.77 11
γ∗ = {0, 0, 1, 0, 0, 0, 0, 0, 1, 0}
π∗ = {0, 0, 0, 1, 0, 0, 0, 0, 1, 0}

BSA-PBH -1.41×10−2 4 2.68 6
γ∗ = {0, 0, 1, 0, 0, 0, 0, 0, 1, 0}
π∗ = {0, 0, 1, 0, 0, 0, 0, 0, 1, 0}

system show that both approaches are able to give optimal

solutions for the SaA selection problem.

Our future work will focus on investigating the scaling

of the proposed methods into larger dynamic networks.

Solving the MI-SDP of problem (6) might consume large

computational resources for larger systems. Also, a limitation

of Algorithm 1 is that it requires traversing the database of all

possible SaA combinations. To that end, we plan to develop

heuristics so that SaA selection problem can be applied for

larger dynamic networks.
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