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Abstract— We consider the problem of synthesizing a control
law which minimizes an infinite-horizon discounted quadratic
cost subject to a partially unknown noisy linear dynamical
system. Existing approaches for handling the corresponding
robust optimal control problem resort to either conservative
uncertainty sets or various approximations schemes, and to
our best knowledge, the current literature lacks an exact, yet
tractable, solution. We propose a class of novel uncertainty
sets for the system- and input matrices of the linear system.
We show that the resulting robust linear quadratic regulator
problem enjoys a closed-form solution described through a
generalized algebraic Riccati equation arising from dynamic
game theory. This formulation allows for new structural insights
in the benefits of game theoretic robust control.

I. INTRODUCTION

A broad variety of problems from engineering, machine
learning, and operations research involve optimizing the
behaviour of a dynamical system in the face of inherent
uncertainties in the system model used for design and
decision-making. A vast literature going back several decades
has studied various aspects of this robust control problem,
including substantial work on system identification; adaptive,
robust, and optimal control, e.g., see [1]–[3].

In this work we consider the discrete-time Linear
Quadratic Regulator (LQR) problem under parametric uncer-
tainties. Ever since the LQR problem originated, robustness
was questioned. It is known that the discrete-time LQR can
suffer from the lack of a stability margin [4], or if any,
it is typically a noticeably worse margin in comparison
with the continuous-time counterpart [5]. Moreover, our
understanding of the corresponding perturbation theory is
limited [6], [7]. The inherent presence of uncertainties in
practice indeed reinforces the need to address these issues.
A classical µ-synthesis approach is generally intractable [8],
[9] while a tractable LMI approach like proposed in [10]
may be conservative. This work investigates to what extend
dynamic game theory can be a middle-ground.

A. Related Work

This paper is centered around quantifying the robustness
resulting from a dynamic game with quadratic cost and linear
dynamics. Early accounts of this viewpoint can be found
on for example page 90 of the monograph by Whittle [11].
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There, the remark is made that extremizing a risk-sensitive
multi-stage optimal control cost function can be interpreted
as another, yet now constrained, optimal control problem.

There is a large body of work in this direction.
The celebrated paper [12] provides necessary and suffi-
cient conditions for the continuous-time system ẋ(t) =
(A + ∆A(t))x(t) + (B + ∆B(t))u(t), (∆A ∆B) =
DF (t)(E1 E2), ‖F (t)‖ ≤ 1 to be stabilizable. This
result was later generalized to the discrete-time case in [13].
Although these results are more than 20 years old, describing
parametric uncertainties in the pair (A,B) via some matrix-
norm-balls is still the prevalent method, however currently
driven by measure concentration results, e.g., see [14], [15].
In the stochastic case, distributional uncertainties in the form
of relative entropy constraints are considered [16], [17].

Although these problems are well understood, the catch
within this game theoretic framework is that, the uncertainty
set typically depends on the extremizing parameters. There-
fore, it is not clear, a priori, over which set of models
the robust control problem is solved, this is effectively
only known a posteriori. Moreover, most results do not
consider the full uncertainty set their optimization problem
can handle, but rather focus on some “inscribed ball”, see
[17, ch 10] on how to fit an ellipsoid to data. Motivated by
renewed interest in tractable reformulations of (Robust) LQR
problems (cf. [18]–[22]), we investigate which lessons can
be drawn from the readily available dynamic game theory.

B. Contribution and Outline

This work focuses on a novel formulation and solution of
a robust LQR problem. In short, we present the proofs from
[23] and shed some light on a scenario where our framework
appears to be beneficial. To be specific, our contributions are
as follows:

(i) We propose a novel family of uncertainty sets for the
system- and input matrices (section III-C), and show
that the worst-case cost over these sets can be solved
efficiently (Proposition III.5).

(ii) Given the proposed uncertainty sets, we develop an ex-
act, up to an algebraic Riccati equation, solution to the
corresponding Robust LQR problem (Theorem III.6).
Here, we extend the setting from [23], allowing for
uncertainties in B as well.

(iii) At last, using structural properties of our worst-case
model (Lemma III.9) we give theoretical- and empirical
evidence (see section IV-A) that our robust control law
is a natural and computationally attractive alternative



for the nominal control law when the pair (A,B) is
identified under `2-regularized linear least-squares.

The article is structured as follows. In section II, we
formally introduce several key definitions along with the
robust optimal control problem that will be addressed. The
key difference with [23] is that now B can be uncertain as
well. The new uncertainty set and the corresponding main
results are presented in section III. In section IV, we illustrate
the presented results through several numerical simulations.
In section V we conclude the work and highlight potential
future work. Section VI contains all technical proofs plus
some supporting material.

Notation: We use standard notation, but to be clear. Let
R≥0 denote the set of non-negative real numbers, whereas
In is the identity element of Rn×n. Let Sn+ be the cone
of symmetric positive semi-definite matrices on which the
ordering is denoted by A � B. The largest singular-value of
a matrix A equals ‖A‖2. Let Tr(·) be the trace operator,
then the inner-product between A ∈ Rm×n, B ∈ Rm×n
is defined as 〈A,B〉 = Tr(A>B) such that 〈A,A〉 =
‖A‖2F for ‖ · ‖F the Frobenius-norm. Similarly, ‖X‖2F,Q
is used to denote Tr(X>QX) for Q � 0. Furthermore,
when A is said to be exponentially stable its spectrum
is fully contained in the open unit disk. The expectation
operator is given by E[·] and X ∼ P(µ,Σ) is a random
variable with mean µ and covariance Σ for a distribution P .
Optimality is indicated with a ?, so x? is for example the
minimizer of a function f(x) with f? = f(x?). Also, in the
context of an optimization program, s.t. stands for subject to.
Moreover, let f be some linear endomorphism, e.g., Ax, then
W+(f) is the non-trivial exponentially stable eigenspace,
i.e., W+(f) =

⊕
0<|λ|<1Eλ(f). Similarly, W∞(f) =⊕

λ=0Eλ(f). At last, GL+(n,R) denotes the connected
component of the general linear group, containing all real-
valued n × n-dimensional matrices with strictly positive
determinant. Precisely this part of GL preserves orientation.
See [24, ch.6] for a formal discussion on orientation. We
call a linear automorphism (invertible endomorphism) f
orientation preserving when the sign of the determinant of
the unit cube is invariant under the map f . This preservation
is denoted by Or(f) = 1, otherwise Or(f) = −1.

II. PRELIMINARIES

In this section the problem at hand is introduced. Here,
we elaborate on [23] and consider uncertainties in the pair
(A,B).

A. Robust LQR problem

Given the matrices Q ∈ Sn+, R ∈ Sm++, discount factor
α ∈ (0, 1) and Â ∈ Rn×n, B̂ ∈ Rn×m, Σ0,Σv ∈ Sn++,
and {vk}k∈N being a - usually Gaussian - white noise
sequence of independent random variables with zero mean
and a time-invariant covariance matrix Σv , i.e., E[vi] = 0
and E[viv

>
j ] = δijΣv for all i, j ∈ N. Then we seek an

optimal policy π? = {µ?0, µ?1, . . . } that solves the discounted
Robust Linear-Quadratic Regulator (RLQR) problem over

some uncertainty set �:

inf
{µk}∞k=0

sup
(∆A,∆B)

E
x0,v

[ ∞∑
k=0

αk
(
x>k Qxk + u>k Ruk

)]
,

s.t. xk+1 = (Â+ ∆A)xk + (B̂ + ∆B)uk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

uk = µk(xk), (∆A,∆B) ∈ �.
(1)

Hence, we consider the LQR problem where the pair (A,B)
is not precisely known, but known to be described by A =
Â+∆A and B = B̂+∆B . Here our prior estimate of (A,B)
is denoted by (Â, B̂), whereas (∆A,∆B) ∈ � is the pair of
uncertainties. This settings natural emerges in identification,
where the pair (Â, B̂) resembles the nominal model and � is
some set where the pair (∆A,∆B) is known to live in with
high probability.

Towards solving (1) we make an assumption on {µk}k:

Assumption II.1 (Linear time-invariant policy): In problem
(1), we restrict the class of control policies µk to linear time-
invariant (LTI) state feedback, i.e., µk(x) = Kx where K ∈
Rm×n.

Also, instead of writing the full program (1) over again,
introduce a compact notation:

Definition II.2 (Discounted LQ cost): Consider the dynami-
cal system xk+1 = Axk+vk where the noise process and the
intial condition follow vk

i.i.d.∼ P(0,Σv) and x0 ∼ P(0,Σ0).
Then we define the linear quadratic (LQ) cost function
J : Rn×n × Sn+ → R≥0 ∪ {∞} by

J (A,Q) := E
x0,v

[ ∞∑
k=0

αkx>k Qxk

]
.

Since we consider a discounted LQ cost, it is helpful to
also introduce a respective notion of stability.

Definition II.3 (
√
α-stability): Let α ∈ (0, 1], then the

matrix A is
√
α-stable when its spectrum is fully contained in

the open disk with radius α−1/2, i.e.,
√
αA is exponentially

stable.

One can observe that the classical exponential stability
notion in system theory is a sufficient condition, and not
necessary, for the

√
α-stability of Definition II.3.

III. MAIN RESULTS

The main objective of this section is to study implications
of a closed-form solution to the RLQR problem (3), as
introduced in [23].

A. Introduction of a new uncertainty set

To keep to work self-contained we repeat some definitions
and results from [23].

Definition III.1 (Uncertainty set): Given a tuple
(Â,D,Σ0,Σv, α) and some γ ∈ R≥0, let W0,v :=



Fig. 1: The set (2) can be interpreted as some ball around
Â(i). However, for a fixed γ the shape of Aγ(Â(i)) depends
on its center Â(i).

Σ0 + α(1 − α)−1Σv and define a set of models around Â
by the set:

Aγ(Â) :=

A ∈ Rn×n :

A = Â+D∆A,

Σx = αAΣxA
> +W0,v,

Σx � 0,〈
∆>A∆A,Σx

〉
≤ γ

 .

(2)

For notational convenience, we shall refer to the collection
of ∆A by �γ(Â). Using this notation, we therefore have
the following simple relation between these sets: Aγ(Â) =

Â+D�γ(Â)1.

Remark III.2 (Absence of translation invariance): Let
Br(x) be an Euclidean ball with radius r and center x.
Then one can think of Aγ(Â) as a ball with radius γ and
center Â. However, in contrast to an Euclidean ball, our
set is not translation invariant and depends on the center
Â (see Figure 1). Moreover, since W0,v � 0, for ∆A to be
in �γ(Â) is the same as being part of the set {∆A ∈ Rd×n :
‖∆>A‖2F,Σx ≤ γ} for Σx as in (2). This further explains why
γ is referred to as a “radius”.

Remark III.3 (Structural information): The matrix D in
Definition III.1 may be used to incorporate a form of prior
structural information into the uncertainty set. Without any
prior structural information, one should choose D = In.

Before addressing (1) under (2), we provide, inspired by
Lemma 2 from [22], some insights about the set Aγ .

Proposition III.4 (On the shape of Aγ): The set Aγ(Â) as
defined in Definition III.1 has the following properties:

(i) For n ≥ 3 there are sets Aγ(Â) which are non-convex.

(ii) For γ > 0, the set Aγ(Â) is semi-algebraic.

Further extending the tools from [22] to the game theoretic
regime, allows for showing that the set is path-connected.

At last, when only A is unknown, then using the shorthand
notation, the problem (1) over (2) is written as

inf
K∈Rn×m

sup
Ac`∈Aγ(Â+BK)

J (Ac`, Q+K>RK) . (3)

1With slight abuse of notation, by + between two sets we mean the
Minkowski sum: A+B = {a+ b : a ∈ A, b ∈ B}.

It is worth noting the dependence on K in the inner maxi-
mization step. A solution to (3) is given by

(
K?(γ), A?c`(γ)

)
.

B. Solving a Robust LQR Problem

In the first step, we tackle the worst-case LQ problem over
Aγ , being the inner maximization of the RLQR problem (3).
This problem is defined as

sup
Ac`∈Aγ(Âcl)

J (Ac`, Qc`), (4)

for some given controller K
√
α-stabilizing Âc` := Â+BK

and Qc` := Q+K>RK being the closed-loop cost matrix.
Denote the solution to (4) by by A?c`(γ) := Âc` +D∆?

A(γ).

Proposition III.5 (Worst-case LQ cost): Consider prob-
lem (4) with nominal closed-loop model Âc`, structural
matrix D, some α ∈ (0, 1), initial data Σ0,Σv ∈ Sn++, and
closed-loop cost matrix Qc` ∈ Sn+. Given some δ ∈ R≥0, let
us assume that (δ−1Id − αD>SD) � 0 is satisfied for the
(minimal) positive semi-definite solution S to the algebraic
equation

S =Qc` + αÂ>c`
(
S + αSD(δ−1Id − αD>SD)−1D>S

)
Âc`.

Then define

∆?
A(δ) = (δ−1Id − αD>SD)−1D>SÂc`. (5)

Further, define Σ̃x as the positive-definite solution to the
Lyapunov equation

Σ̃x = α
(
Âc` +D∆?

A(δ)
)
Σ̃x
(
Âc` +D∆?

A(δ)
)>

+W0,v

(6)

which in its turn defines the function

h̃(δ) =
〈(

∆?
A(δ)

)>
∆?
A(δ), Σ̃x

〉
. (7)

Then, ∆?
A(γ) = ∆?

A(δ) and J ? =
〈
Σ̃x, Qc`

〉
are the

optimizer (worst-case uncertainty) and the optimal value of
the problem (4) with the parameter γ = h̃(δ).

Now we are at the stage to address (3). See [16], [25] for
more multiplier interpretations in game theory.

Theorem III.6 (Optimal Robust LQ regulator): Consider
the RLQR problem (3) with the nominal

√
α-stabilizable

model (Â, B), the structural matrix D, α ∈ (0, 1), the cost
matrices Q ∈ Sn+, R ∈ Sm++ and the covariance matrices
Σv,Σ0 ∈ Sn++. Given the parameter δ ∈ R≥0, assume that
the algebraic equation

P = Q+ αÂ>P
(
In + α(BR−1B> − δDD>)P

)−1
Â (8)

in P admits a minimal2 positive semi-definite solution
denoted P (δ) and define Λ(δ) correspondingly via Λ :=
In + α(BR−1B> − δDD>P . Furthermore, define

∆?
A(δ) = αδD>P (δ)

(
Λ(δ)

)−1
Â (9)

and let Â?c`(γ) := Â+D∆?
A(δ)+BK?(γ). Next, consider the

expressions for Σ̃x and h̃(δ) as in (6) and (7) respectively,

2See chapter 3 from [26] for the definition and more information.



which are now functions of K as well, to emphasize the
difference, the tildes are dropped, i.e., define:

Σx = αÂ?c`(γ)Σx
(
Â?c`(γ)

)>
+W0,v (10)

h(δ) =
〈(

∆?
A(δ)

)>
∆?
A(δ),Σx

〉
. (11)

Then,
(i) the controller uk = K?(γ)xk defined by

K?(γ) = −αR−1B>P (δ)
(
Λ(δ)

)−1
Â (12)

is (the minimizing part of) the solution to the RLQR
problem for γ = h(δ).

(ii) Furthermore, the maximizing solution is Â?c`(γ), dif-
ferently put, the worst-case system matrix is given by
A?(γ) = Â+D∆?

A(δ).
(iii) At last, the map h(δ) is analytic and non-decreasing

over some interval [0, δ) ⊂ R≥0 for δ <∞.

Indeed δ relates to the classical “breakdown point” from
[11], [16].

Note that we have chosen to interpret (9) as an additive
uncertainty, but by construction, we could have interpreted
the adversarial disturbance as an multiplicative uncertainty
as well, e.g., A?(γ) =

[
In + αδD>P (δ)

(
Λ(δ)

)−1]
Â =

∆ · Â. The implications of this observation are discussed
in section III-D.

It is also important to stress again that although problem
(1) is well-defined for all γ ∈ R≥0, Theorem III.6 does not
simply hold for any γ ∈ R≥0 but rather for some range
[0, γ) ⊆ R≥0 where h(δ) = γ. See [27, sec. 3-4-2] for
a discussion on the properties of this map h, we do not
necessarily have limδ↑δ h(δ) =∞. This explains the implicit
formulation of the Theorem.

C. Uncertainty in the Pair (A,B)

Proposition III.5 and Theorem III.6 are concerned with an
uncertainty in the system matrix A. In this section we will
show to what extend we can handle uncertainties in B as
well, thereby continuing where [23] left off.

1) Classic Approach to Incorporate B: The first ap-
proach, as taken in [13], hinges on extending the state space
as proposed in [28]. Consider a deterministic dynamical
system xk+1 = Axk + Buk and write it in the extended
form xek+1 = Aexek +Beuek given by:(

xk+1

uk+1

)
=

(
A B
0 0

)(
xk
uk

)
+

(
0
Im

)
uek.

Now we can appeal to Theorem III.6 with an uncertainty just
in Ae, since this block includes uncertainties in both A and
B.

To see why this approach is not preferred, let Qe =
diag(Q,R) and Re = εIm � 0 for some ε > 0. Assume
that the extended system allows for finding the optimal
control gain for limε→0 and let the solution be denoted Ke

such that uek := Kexek. Back to the original problem, let
uk := Kxk for some K. Then from uk+1 = Ke

xxk +Ke
uuk

and uk+1 = KAxk + KBuk we find K = KxA
−1 as the

solution to the original problem. Although the idea is elegant,
this approach has obvious practical obstructions, for example
demanding the system matrices to be non-singular.

2) Decompositions of ∆A: There is another approach to
include B within the framework. Let us be given some
controller K

√
α-stabilizing Âc` , Â+ B̂K and Qc` , Q+

K>RK, being the closed-loop cost matrix. Then consider
the problem

sup
Ac`∈Aγ(Âc`)

J (Ac`, Qc`), (13)

Denote the solution to (4) by A?c`(γ) , Âc` + D∆?
Ac`

(γ).
Now we can directly apply Proposition III.5 and obtain the
next Corollary to it.

Corollary III.7 (Decomposition of ∆?
Ac`

(γ)): If (13) is
feasible and h̃(δ) = γ, then worst case uncertainties ∆?

A(γ)
and ∆?

B(γ) are given by

∆?
A(γ) = α(δ−1Id − αD>SD)−1D>SÂ

∆?
B(γ) = α(δ−1Id − αD>SD)−1D>SB̂.

This follows directly from (5) and Âc` = Â + B̂K and
∆Ac`

, ∆A + ∆BK, but note, this decomposition is not
unique.

Under the observation from Corollary III.7 we can write
the worst-case closed-loop system as (In+D∆?)(Â+ B̂K)
for ∆? := α(δ−1Id−αD>SD)−1D>S which is indeed very
much in line with equation (36) from [29], although for the
infinite-horizon case. The same idea holds for Theorem III.6,
consider the problem

inf
K∈Rn×m

sup
Ac`∈Aγ(Â+B̂K)

J (Ac`, Q+K>RK). (14)

Assume that (14) is feasible in the sense of Theorem III.6.
Then the worst-case model uncertainty, i.e., the maximizing
solution to RLQR is A?c`(γ) = Â + B̂K?(γ) + D∆?

Ac`
(δ).

It turns out that the decomposition of Corollary III.7 carries
through:

Lemma III.8 (Decomposition of minimax ∆?
A(δ)): The

worst-case uncertainty ∆?
A(δ) can be decomposed as

∆?
Ac`

(δ) = ∆?
A(γ) + ∆?

B(γ)K?(γ) for

∆?
A(γ) = α

(
δ−1Id − αD>P (δ)D

)−1
D>P (δ)Â,

∆?
B(γ) = α

(
δ−1Id − αD>P (δ)D

)−1
D>P (δ)B̂.

(15)

Using Lemma III.9.(iii) and VI.5 from below, we clearly
see the “growing” effect of δ, and by monotonicity in h, of
γ. Indeed, γ functions as a radius.

3) An Uncertainty Set for (A,B): Corollary III.7 and
Lemma III.8 describe how we can easily decompose closed-
loop models and obtain worst-case uncertainties for both the
system- and input matrix. The crux is that one can think of
D∆Ac`

as a perturbation to the nominal system matrix Â,
due to having the same dimension, or as sum of perturbations
to Â and B̂, e.g. via D∆Ac`

= D(∆A + ∆BK). Of course,
one could take ∆A ← ∆A + (1 − θ)∆BK, ∆B ← θ∆B ,



for any θ ∈ [0, 1]. This interpretation is taken in Example
III.5 from [23] for θ = 0, effectively making ∆Ac`

, ∆A.
In a special case we also consider some uncertainty only
in B. If ∃ ∆B 6= 0 : ∆BK

? = L? we can define an
uncertainty set similar to (2) since the worst-case closed-
loop dynamics become A+ (B̂+D∆B)K. For example, let
D = B̂, then it follows directly from the expressions for K?

and L? (see Lemma VI.2) that ∆?
B = −δR. Note however

that this construction is usually not possible since commonly
m < n, while D = In and L is not rank-deficient.

A final remark on this decomposition is that since we
parametrize a dn-dimensional object with d(n+m) parame-
ters, we lose compactness. Moreover, instead of decomposing
the solution of Theorem III.6, we could also introduce an
uncertainty set for the pair (A,B) directly. Let this set
Uγ ⊂ Rn×n × Rn×m be defined as

Uγ
(
(Â, B̂);K

)
=
{

(A,B) : A+BK ∈ Aγ(Â+ B̂K)
}
.

Then a solution to

inf
K∈Rm×n

sup
(A,B)∈Uγ((Â,B̂);K)

J (A+BK,Q+K>RK) (16)

is given by (12) and (15). Of course, this description is rather
implicit, but it generalizes all the (arbitrary) decompositions
from above.

D. Qualitative Properties of the Worst-Case Model

As indicated before, the type of uncertainty set we con-
sider is difficult to quantify due to the dependence on
K?(γ)3. We can however observe several qualitative fea-
tures.

Lemma III.9 (Qualitative features of extremizers in (3),
implications of Theorem III.6): For simplicity assume D =
In, then

(i) The worst-case closed-loop system can be written as
Λ−1Â for some Λ−1 ∈ GL+(n,R), such that the kernel
of Â is preserved under optimal robust feedback and
worst-case uncertainty. Moreover, when Σ0 � 0 we
must have �γ

(
Â + BK?(γ)

)
⊆ {∆A ∈ Rn×n :

Ker(Â) ⊆ W+(
√
α(Â + ∆A))} (see Example III.10

below).
(ii) Consider only uncertainty in A, then the automorphic

part of the nominal and worst-case drift have the same
orientation, i.e. Or(Âx|a) = Or

(
(Â + ∆?

A(γ))x|a
)
.

Moreover, there is a symmetric positive-definite matrix
T such that TÂ = (Â + ∆?

A(γ)) = A?(γ), which is
stronger than the required T ∈ GL+(n,R) to preserve
orientation.

(iii) For A?(γ) = Â+∆?
A(γ), we have ‖A?(γ)‖F > ‖Â‖F

almost surely. Moreover, using decomposition (15) we
additionally have, a.s., ‖B?(γ)‖F > ‖B̂‖F .

Orientation is just one part of topological equivalence
(cf. [30]), but to put it in simple words, item (ii) tells
us that an adversarial player does not reveal itself that

3See for example (3), we maximize over Aγ(Â+BK).

easily4. Moreover, it means that without loss of generality
we can optimize over some subset of Aγ , preserving the
orientation of Â. What is more, GL(+)(n,R) is an invariant
set5 under Â 7→ Â + ∆?

A(γ) =: A?(γ). In addition,
item (i) and (ii) imply that W∞(Âx) is invariant under the
worst-case perturbation, with our without feedback. Recall
that Least-Squares identification leads (under for example
ergodic or episodic assumptions) to ellipsoidal (sublevel) sets
of estimates. Then, these observations, together with item
(iii), introduce new challenges for unbiased identification
algorithms, one of them is explained6 in Figure 2, whereas
section IV-A highlights benefits in the context of biased
identification.

Fig. 2: Let s represent the real system matrix (vec(A)). Using
unbiased least-squares we can form an ellipsoid around s
given by E := Ein ∪Eout, containing estimates of s, denoted
ŝ. Then since ‖A?‖F > ‖Â‖F a.s., an estimate ŝ ∈ Emin

might lead to a worst-case model close to s, while the worst-
case model related to a ŝ ∈ Emax is even further away from
s than the initial ŝ. Think of the vectors in (b). The critical
observation is however that Vol(Eout) > Vol(Ein) such that
the push in the wrong direction is likely to dominate, hence,
leading to bad performance. This observation will be further
highlighted in section IV-A.

Also, one interpretation for why we have T ∈ Sn++ is
that such a matrix generalizes positive scaling, which is the
cheapest method towards destabilization for an adversary.

Next, inspired by [31], we provide an example illustrating
the influence of Â, and its kernel, on optimal LQ regulators.

Example III.10 (Kernel of LQ regulators): Consider the
matrices

Â =

(
1 −1
0 0

)
, A?

(
1.1 0.1
0 1.2

)
, B = I2.

4See [27] for further topological implications of Lemma III.9
5Hence, setting Â ← A?(γ) implies that “worst-worst-case” models

are again members of GL(+)(n,R). This observation is outside the scope
of this work and more interesting in a N -player, N > 2, game theoretic
framework.

6To see how Vol(Eout)/Vol(Ein) grows with dimension n, consider two
Euclidean balls: Br(0) and Bx(0) with x < r/2. Then from standard
volume formulas for n-balls it follows that Vol

(
Br(0)

)
/Vol

(
Bx(0)

)
>

2n such that Vol(Eout)/Vol(Ein) & Cn, C ∈ (1, 2].



Then c(1 1)> ∈ Ker(Â) ∀ c ∈ R. It is known that any
optimal LQ regulator is of the form K(A,B) = X(A,B)A.
for some non-zero matrix X . Let us design a stabilizing LQR
controller for (Â, B) and observe that for any non-zero c ∈
R:

lim
k→∞

(
A? +BX(Â, B)Â

)k
c

(
1
1

)
=∞.

while a simple controller of the form K = −0.5I2 would
have done the trick for both (Â, B) and (A?, B). The key
observation is of course that Eλ=1.2(A?) = Ker(Â), so that
the control gain cannot counteract the growth of the state.
This example shows that the usual linear optimal control
methods stabilize a very particular subset of systems heavily
relient on Â.

Example III.11 (Vector-Field Interpretation): In practice the
matrix Â might vary based on incoming data. The aim of
this example is to make Figure 2 more concrete and show
how the worst-case system matrix uncertainty depends on its
center Â.

Consider for (x, y) ∈ [−5, 5]2 the pair (Â, B) and the
structural matrix D defined as

Â(x, y) =

(
x y
0 0

)
, B =

(
0
1

)
, D =

(
1
0

)
. (17)

Again, also define the covariance matrices Σv = 0.1I2, Σ0 =
I2, the cost matrices Q = I2, R = 1, and the discount factor
α = 0.95. Now, we compute ∆?

A(δ = 10−3) (9) for each
grid-point (x, y) and show the emanating vector (from the
first row of Â towards the first row of A?(δ)). This is done
in Figure 3a, where it should be remarked that the arrows
solely visualize direction, not tangent vectors of some flow.
Around y = 0, we lose control, hence no arrows are drawn.
More interestingly, see that the vector field is reminiscent of
ż = z, (x, y) =: z ∈ R2, always pointed away from 0. This
follows readily from Lemma III.9 since in this particular
case, although D 6= In, both x and y preserve their sign
under being mapped to the worst-case model since

A?(δ) '
[
I2 +

(
c 0
0 0

)
Y

](
x y
0 0

)
, c ∈ R>0, Y ∈ Sn+,

and the diagonal elements of a symmetric positive semi-
definite matrix are non-negative themselves. This has of
course practical implications. For example, in Figure 3b
we show 1000 Least-Squares estimates7 for A = Â(z?),
z? := (x, y) = (1.5, 0.5), with the main observation being
that indeed the estimates form an ellipsoidal set around this
point. Locally, the vector-field is clearly pointing in one
direction, which means that if your estimate is for example
in the shaded half-space, then the robust control scheme is
likely to be ineffective (compare to Figure 2).

In Figure 3c we show that there are indeed a few cases
where a robust controller K?(γ) − for particular γ −
improves performance compared to K?(0), imagine being in

7We used the same procedure as in section IV-A, but with λ = 0, N = 10
and B being known.

the left halfspace of Figure 3b, moving towards (1.5, 0.5).
Nevertheless, on average the performance deteriorates. As
will be shown in section IV-A, there are systems and iden-
tification settings for which the Least-Squares estimates in
combination with our framework do improve upon nominal
performance.

IV. NUMERICAL EXAMPLES

In this section we highlight via several numerical examples
where our framework might be of use. The appendix (sec-
tion VI-B.2) contains a brief discussion on how to actually
carry out the computations involved.

A. Data-Driven Example

Intuitively, it is expected that the robustness coming from
a game theoretic approach is useful when one is pessimistic
about an estimated model. In other words, the real system
should be worse in some sense, to be precise, with respect to
the cost. In physical systems this occurs for example when
inertia is estimated too optimistically, say, when controlling
a robotic arm using a model with overestimated inertia. In
an abstract setting one can think about marginally stable
and sparse models. An estimation scheme might fit stable
or dense systems, giving the impression that the controller
can relax or has a lot of knobs at its disposal, while in fact,
it does not.

To put our framework to the test, we consider almost
the same (n = 3)-dimensional model as in [32, sec.
4] with Σ0 = I3, Σv = 0.12I3, α = 0.95, A =
tridiag(0.01, 1.01, 1.01), B = I3, Q = I3, R = I3,
and give some empirical evidence that our framework can
handle these kind of situations. The general setting is as
follows: we will do Z experiments, for each experiment
z, we let the controlled system run for N steps where we
have set8 u

(z)
k

i.i.d.∼ N
(
K?(0), 0.12I3

)
. The resulting data

{x(z)
k , u

(z)
k }Nk=0 is the input to a (possibly regularized) Least-

Squares problem

(Â(z), B̂(z)) := argmin
A∈Rn×n
B∈Rn×m

N−1∑
k=0

‖x(z)
k+1 −Ax

(z)
k −Bu

(z)
k ‖

2
2

+ λ‖A B‖2F
which yields a nominal model used for (robust) controller
design. Since we have no further structural information, D =
I3.

1) Robustness “Sweet-Spot”: First, the hope is that if
we vary γ ∈ [0, γ), then at some “radius”, say γ̃, we
start including the real system in our uncertainty set, i.e.,(
A+BK(z)?(γ̃)

)
∈ Aγ̃

(
Â(z) +B̂(z)K(z)?(γ̃)

)
and tame the

real cost, while surpassing performance induced by K?(0).
Here we let Z = 200, N = 25 and λ = 10−3. It is

shown in Figure 4a that we observe precisely this behaviour
around γ = 0.08. When we however increase γ far beyond
10−1, the robust scheme becomes too conservative. We
took in total 11 γ ∈ [0, 2.5] and observed that for each

8The noise is added to force the input to become persistently exciting.



(a) (b) (c)

Fig. 3: (a) Vector-field corresponding to Example III.11. (b) Zoomed-in version of Figure 3a, together with 1000 Least-
Squares estimates of Â(1.5, 0.5). (c) Take 20 of the 1000 experiments and let f? be the best achievable cost, let f(0) be
the empirical mean of the induced cost under K?(0) (not a function of γ, merely a reference line) and f(γ) the empirical
mean of the induced cost under K?(γ). Moreover, show the 20 individual cost trajectories.

value of γ there is 1 experiment where K?(γ) fails to√
α-stabilize the real system. For γ = 2.5, this value is

increased to 3 experiments, the controller became overly
pessimistic. Removing the regularization does not change
the result structurally, it merely makes the dent (even) less
pronounced.

This simple example highlights the potential of our
method. Although it must be mentioned that this behaviour
is not generic, usually, the robust framework is a lot more
conservative. For example, when we reconsider the setup and
make B known, then the “sweet-spot” disappears (see Figure
4b).

Can this behaviour be explained? To that end we recall that
in this section we have D = In and that Lemma III.9.(iii)
pointed out that the worst-case model must be further away
from 0 (in Frobenius-norm) than the nominal model. Also re-
call that from section III-C we know that we can interpret the
worst-case system in many was, e.g., as A? = Â+ ∆?

A, but
we can also think of ∆?

A as ∆?
Ac`

= ∆?
A + ∆?

BK
?. Towards

understanding the cause of the difference between Figure 4a
and Figure 4b let gA := Z−1

∑Z
z=1 ‖A‖F − ‖Â(z)‖F and

gA,B(γ) := Z−1
∑Z
z=1 ‖A +

(
B − B̂(z)

)
K(z)?(γ)‖F −

‖Â(z)‖F . Then, it can be shown that for our problem
gA,B(γ) > 0 for all considered γ while gA < 0. Hence,
it appears that for our framework to perform well, we need
to hope for ‖A‖F −‖Â(z)‖F ≥ 0, which is precisely in line
with the observation made in Figure 2.

Of course, there is a heuristic to enforce ‖A‖F ≥ ‖Â‖F :
sufficiently increasing the `2-regularization parameter λ ∈
R≥0 to introduce a − for us − favourable bias. However
how to select λ? Too small is useless and too big is as if we
solve a completely different problem.

The result of increasing λ = 10−3 to λ = 10−1 is shown
in Figure 4c, and indeed, for a sufficient increase in λ, our
framework can still outperform the nominal controller, even
when B is known. A remark should be made, introducing
(more) regularization does introduce an offset and indeed a
higher average nominal cost (and in some examples thereby

a higher probability to fail). Nevertheless, it is frequently
used in practice to provide some numerical stability (when
the normal equations are ill-defined) such that demanding
λ > 0 is far from unrealistic.

These are marginal improvements, yet based on heuris-
tics, next we investigate the full potential using an optimal
selection method.

2) Optimal Selection of γ: Finally, to upper-bound pos-
sible performance, we select γ ∈ Γ such that K(z)?(γ)
achieves the smallest cost on the real system and compare
that again to the nominal scenario. Such a γ will be denoted
by γ(z)?. To start, we let B be known, λ = 0 and take
N ∈ {25, 35, 60, 95, 155} since that is where we expect
potential improvement (selecting a smaller N without regu-
larization results in frequent failures and hence a meaningless
comparison). The results are shown in Figures 5a,5d and
are in line with all simulations before. In fact, when B
is known and λ = 0, then the optimal selection method
outperforms the nominal controller just slightly, for N = 20,
the improvement is exactly 0.15% (J = 0.99985·J0), which
decreases along N . Moreover, again in line with Figure 2,
γ(z)? = 0 is selected for more than 55% of the cases.

However, as before, we can consider some regularization.
When we let λ = 10−1 then the optimal selector can achieve
up to 12% cost improvement with respect to the nominal
control law, see Figures 5b,5e. Indeed, here we select γ(z)? =
0 less than 7% of the time. Note, we zoomed in on a smaller
range of N . Also, it is important to recall that we improve
with respect to K?(0) based on Â via regularized Least-
Squares, we do not necessarily improve upon K?(0) based
on non-regularized Least-Squares.

Similarly, we can make B unknown again. These simula-
tion results are shown in Figures 5c,5f. Here, the improve-
ment is at most 2.7% plus we select γ(z)? = 0 for more
than 55% of the time. Just like before, it is not completely
understood why, and when, an uncertain B seems to help,
the picture is structurally different than Figure 5b.

Overall, we see that using an unbiased estimator like
Least-Squares does not greatly benefit from a clearly biased



(a) Unknown (A,B), λ = 10−3. (b) Unknown A, λ = 10−3. (c) Unknown A, λ = 10−1.

Fig. 4: For the Least-Squares procedure from section IV-A.1, discard the best- and worst 5% of the data. Let f? be the best
achievable cost, let f(0) be the empirical mean (over z) of the induced cost under K?(0) (not a function of γ, merely a
reference line) and f(γ) the empirical mean (over z) of the induced cost under K(z)?(γ). The shaded area is the hull of the
remaining 90% of data.

scheme like proposed in this work. Only under sufficient
regularization we see some significant improvements.

V. CONCLUSION AND FUTURE WORK

“Systems Identified Under `2-Regularization Benefit from
Game Theoretic Controllers.” Introducing `2-regularization
into the linear Least-Squares System Identification procedure
can have favourable numerical and statistical implications.
Especially in the small data-regime is the introduction of
λ ∈ R>0 preferred. However, once we use λ > 0, then
the estimates for (A,B) are biased, such that the nominal
K?(0) is by no means the most natural controller selec-
tion anymore. What should we do? By construction we
have ‖Â|λ=0 B̂|λ=0‖F ≥ ‖Â|λ>0 B̂|λ>0‖F . Thus, we
would like to select some control law which anticipates
on this statistical under-estimation of the Frobenius-norm.
Using Lemma III.9.(iii), we see that our robust control law
K?(γ)|γ∈(0,γ) is fit for the job since it anticipates on a model
being bigger in Frobenius-norm. This concept is summarized
in Figure 6 (see Figure 7 for a remark on the direction of
the arrows).

And indeed, in Figure 5b we observed that regularization
helps in the small data regime, in general, regardless of a
robust controller. However, the figure also shows that K?(γ?)
outperforms the nominal controller on average in the small
data-regime, which is the most interesting regime9.

Hence, when the pair (A,B) is identified using `2-
regularized linear Least-Squares, which is common practice
(see [34] for a wind turbine identification example), then a
game theoretic control law K?(γ) has favourable properties
over the nominal K?(0) and due to its computational attrac-
tive formulation, provides a realistic alternative.

9In [33] it is shown that for sufficiently small spectral errors in (A,B)
(hence, not the small data-regime), say ‖A−Â‖ ≤ ε, the nominal controller
is a good choice since the error between the induced cost under the nominal-
and best controller scale as O(ε2) (while their robust law scales as O(ε)).
Of course, we saw this performance of K?(0) throughout section IV-A.

A. Future Directions

Even in our simple setting there remain many open prob-
lems and interesting future research directions. Most notably,
can our set be introduced and studied in a full end-to-end
framework (cf. [20])? In other words, can we gain further
insights from adaptive schemes for γ? For example, find a
map from λ := λ′/

√
N to γ and robustly control a system

identified under `2-regularized least-squares. In correspon-
dence with contemporary measure concentration results, we
can provide expressions for inscribed norm-balls [27, ch.3],
but note again that they are usually inherently small. In line
with previous remarks, it might however be more beneficial
to first look into the identification algorithms, obtain a better
understanding of regularization in our context or look beyond
Least-Squares in the first place. Can the observations from
section IV-A, especially regarding an uncertain B matrix (see
Figure 5c), be further formalized? Recall however that our
results are not just empirical, it is especially interesting to
note that we sample from a curve (path p(γ)) in Rm×n,
not some ball around K?(0) (see Figure 7). Hence, the
fact that we improve, on average, cannot be statistical luck.
Yet, a map ψ : (λ,N,Σ, Q,R, α) 7→ γ is missing and
would provide significant insights. Additionally, we need a
better understanding of the direction of the worst-case path;
see Figure 7 (b) for an explanation. This strict-halfspace
interpretation does not change the previous intuition, but
improving upon it lead to a better understanding of the
framework.

What is more, can the class of systems giving rise to
Aγ
(
Â + B̂K?(γ)

)
be further formalized as a function of

γ (see [27, sec 3.4] for additional examples)? Even more
so, it is not investigated, but it is postulated that extensions
to the continuous-time, partial-information and distributional
regime will bring about new insights. At last, can our
approach be of use in other fields relying on (dynamic)
game theory, like Reinforcement Learning and Generative
Adversarial Networks?

The authors believe further investigations are worthwhile,



(a) Unknown A, λ = 0. (b) Unknown A, λ = 10−1. (c) Unknown (A,B), λ = 10−3.

(d) Unknown A, λ = 0. (e) Unknown A, λ = 10−1. (f) Unknown (A,B), λ = 10−3.

Fig. 5: Select γ optimally (section IV-A.2), discard the top- and bottom 10% of the cost data for K?(γ?) (J ) and show,
γ?, the best achievable cost (J ?) plus the cost for K?(0) (J0). All thick lines represent the empirical mean over z. The
shaded area is the hull of the remaining 80% of data.

improving our understanding of how to efficiently link
identification- and control algorithms towards safe data-
driven control.

In the next and last part we will briefly present the
technical proofs and corresponding supporting material.

VI. APPENDIX: PROOFS AND SUPPORTING MATERIAL

A. Proofs

First we prove Proposition III.4, which is split up in two
parts.

Proof: [Proof of Proposition III.4 (i)] Let Âc` , Â +
B̂K ∈ R3×3 and ∆Ac`

∈ R3×3 be parametrized by α ∈
(0, 1) and the finite scalars (a, b, c, d) with d ∈ (−1, 1):

Âc` =
1√
α

d 0 0
0 d 0
0 0 d

 , ∆Ac`
=

1√
α

0 0 a
b 0 c
0 0 0

 .

By construction all these Âc` + ∆Ac`
’s are

√
α-stable. Say

we want ∆Ac`
and ∆>Ac`

to be in some �γ(Âc`). Then
for simplicity assume K = D = Σv = Σ0 = I3 such
that we only need to find a valid γ. By stability of both
Âc` + ∆Ac`

and Âc` + ∆>Ac`
, the matrix Σx exists for all

α ∈ (0, 1) such that we can always find a γ ∈ R being
equal to max{Tr(∆>Ac`

∆Ac`
Σx,∆Ac`

),Tr(∆A∆>AΣx,∆>Ac`

)}.
So ∆Ac`

and ∆>Ac`
are members of some �γ(Âc`). Now

let ∆X := θ∆Ac`
+ (1 − θ)∆>Ac`

, θ ∈ [0, 1]. Then for
θ = 0.5 and a = b = c = 4, d = 0.5 we have λ(Âc` +

∆X) = α−1/2{−1.5,−1.5, 4.5} such that ∆X /∈ �γ(Âc`)
since Σx /∈ Sn+. This example can be generalized to higher
dimensions. Since here we have ∆Ac`

= ∆A+ ∆B , one can
easily see that for example when B is known, the admissible
uncertainties in A might live in a non-convex set.

The set (2) has another interesting property indeed

Proof: [Proof of Proposition III.4 (ii)] First, using
the Kronecker product (⊗) we rewrite the expression for
Aγ(Âc`). Let W := α(1 − α)−1Σv + Σ0 � 0, then the
discrete Lyapunov equation can be represented as vec(Σx) =
(In2 − αAc` ⊗Ac`)

−1vec(W ). Secondly, for ∆Ac`
∈ Rd×n

the inner product becomes:

〈∆>A∆A,Σx〉 =

=Tr(∆>Ac`
∆Ac`

Σx) = Tr(∆Ac`
Σx∆>Ac`

)

=vec>(Id)vec(∆Ac`
Σx∆>Ac`

)

=vec>(Id)(∆Ac`
⊗∆Ac`

)vec(Σx)

=vec>(Id)(∆Ac`
⊗∆Ac`

)(In2 − αAc` ⊗Ac`)
−1vec(W ).

Thus the algebraic equation for Σx can be omitted, but note,
at this point we have lost the stability constraint Σx � 0.
For ease of notation let D = In, define Z := In2 −α(Âc` +
∆Ac`

) ⊗ (Âc` + ∆Ac`
) and the mat(·) operator by X =

mat
(
vec(X)

)
. Then for Y := mat

(
Z−1vec(W )

)
the set



Fig. 6: Let σ := vec(A B) be unknown. Using Least-Squares
(λ = 0) obtain an ellipsoidal set around this point. From
Figure 2 and Lemma III.9.(iii) we know that the worst-case
models σ?(γ), growing from some estimate σ̂, move away
from 0. Combining this with Vol(Ein) < Vol(Eout) implies
that, on average, σ?(γ) is not sufficiently close to σ for
the performance to improve upon the nominal control law.
However, after introducing `2-regularization (λ > 0), the
confidence ellipsoid shifts towards 0, plus it becomes more
isotropic, hence significantly increasing the probability that
σ?(γ) is sufficiently close to σ for some appropriate choice
of γ ∈ (0, γ).

Fig. 7: (a) Throughout the selection methods in section IV-
A we select K?(γ) from a grid on p(γ), not some ball
BFr
(
K?(0)

)
. Still, we can outperform K?(0), which is in

favour of the theoretically justified intuition skected out in
Figure 6. (b) Copying Figure 6 (λ > 0) into Figure 7 (b), we
drew a potential σ̂?(γ), but all we know from Lemma III.9
is that this vector could have been any of the other dashed
arrows pointing in H+ := R2 \ {H ∪H−}.

�γ(Âc`) ⊂ Rn×n can be written as{
∆Ac`

:
0 ≤ vec>(In)(∆Ac`

⊗∆Ac`
)Z−1vec(W ) ≤ γ

0 < det(Yi), i = 1, . . . , n

}
(18)

for det(Yi) being the ith principal minor of Y . This addi-
tional strictly-positive determinant constraint asserts selec-
tion of uncertainties leading to

√
α-stable Ac` by enforcing

Z � 0, see e.g. Theorem 7.2.5 in [35]. Differently put, the
principal minor constraints re-enforce Σx � 0 again. Using
Cramer’s rule, i.e. Z−1 = adj(Z)/det(Z), it can be observed

that (18) is indeed semi-algebraic for γ > 0, thus a set of
polynomial inequalities in the elements of ∆Ac`

of the form
S:

S =
{

∆Ac`
∈ Rd×n : 0 ≤ p1(∆A),

0 ≤ γp2(∆A)− p1(∆A), 0 < pi(∆A), i = 3, . . . , 3 + n
}
.

This result is of course closely related to the prominent role
played by polynomials in linear control theory. We can add
that thereby, our set is a disjoint union of a finite number of
connected semi-algebraic sets, which follows directly from
the fact that Aγ is semi-algebraic and Theorem 5.19 in [36].

Proof: [Proof of Lemma III.5] Consider the problem

Pa(γ) : argmax
∆Ac`

∈�γ(Âc`)

J (Âc` +D∆Ac`
, Qc`),

If γ satisfies h(δ) = γ then from the Lemma VI.4 the
solution to Pa(γ) can be directly retrieved from the (negated)
problem

Pb(δ) :



argmin
∆Ac`

∈Rd×n
E
x0,v

[ ∞∑
k=0

αk
(
δ−1w>k wk − x>k Qc`xk

)]
subject to xk+1 = Âc`xk +Dwk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

wk = ∆Ac`
xk.

(19)
Under the conditions from Proposition III.5 the program
Pb(δ) can be solved using Dynamic Programming, e.g. see
chapter 3 from [37], regarding feasibility one can always
select wk = 0 ∀k, moreover (δ−1Id − αD>SD) � 0
asserts boundedness of the cost from below. Let the Value
function (cost-to-go from state x, i.e., without taking the
expectation over x0), corresponding to (19), under a policy
ν := {w0, w1, . . . } be parameterized by V ν(x) = −x>Sx+
q, S ∈ Sn+, q ∈ R. An expression for the optimal policy and
value function follow from the classical Bellman equation

V ν(x) = inf
ν

{
c(x,w) + αEx′∼P(·|x,ν(x)) [V ν(x′)]

}
,

which yields in the context of (19)

− x>Sx+ (1− α)q

= inf
w

{
δ−1w>Idw − x>Qc`x

− αE
v

[
(Âc`x+Dw + v)>S(Âc`x+Dw + v)

] }
= inf

w

{(
x
w

)> [(−Qc` 0
0 δ−1Id

)

− α

(
Â>c`SÂc` Â>c`SD

D>SÂc` D>SD

)](
x
w

)
− αTr(SΣv)

}
= x>

(
−Qc` − αÂ>c`SÂc`

− α2Â>c`SD(δ−1Id − αD>SD)−1D>SÂc`

)
x

− αTr(SΣv),

if (δ−1Id − αD>SD) � 0 indeed. Thus, the optimal policy
is

w?k = α(δ−1Id − αD>SD)−1D>SÂc`xk,



where

S =Qc` + αÂ>c`SÂc`

+ α2Â>c`SD(δ−1Id − αD>SD)−1D>SÂc`,

resembles the corresponding Riccati equation. This directly
gives the expression for ∆?

Ac`
(δ) and concludes the proof.

Proof of Theorem III.6: Now this apparent link between
the solution to a robust LQR problem and a dynamic game is
formalized. This is not new, see for example [16], [25], where
in the latter10, the pair (γ, δ) is interpreted via multiplier
theory (cf. [38], [39]) with respect to a constraint of the form∑∞
k=0 α

kw>k wk ≤ γ. We provide a slightly different proof in
terms of (K,L) instead of

(
{uk}k, {wk}k

)
which eventually

allows for numerically finding a solution depending on δ,
given γ (see Lemma VI.3).

Recall Definition III.1 and the RLQR problem (3). Let
a solution to (3) be denoted by the pair

(
K?(γ),∆?

A(γ)
)

whereas a solution to (23), if it exists, is
(
K?(δ), L?(δ)

)
.

Then the next proof allows us to link the solution from the
dynamic game (23) to the solution of the robust LQ regulator
(3). This proof of Theorem III.6 is split up into a few parts.

Proof: [Proof of Theorem III.6 part (i), (ii) and mono-
tonicity of (iii)] Regarding the monotonicity in (iii), first
consider the game (23). By Lemma VI.2 the cost can be
equivalently written as f(K,L)−δ−1g(K,L) for uk = Kxk,
wk = Lxk, xk+1 = Axk + Buk + Dwk + vk and the pair
f(K,L), g(K,L) being defined by

f(K,L) = E
x0,v

[ ∞∑
k=0

αkx>k
(
Q+K>RK

)
xk

]
, (20)

g(K,L) = E
x0,v

[ ∞∑
k=0

αkw>k wk

]
=
〈
L>L,Σx

〉
, (21)

with Σx = E
x0,v

[∑∞
k=0 α

kxkx
>
k

]
11. Then supL{f(K ′, L) −

δ−1g(K ′, L)} corresponds to program P2 from Lemma
VI.4 with the map h from (7) and an additional (fixed)
parameter K ′. The map h(δ) is non-decreasing on some
interval [0, δ) ⊂ R≥0, δ < ∞. To see why we have this
interval, recall that feasibility of the game is defined by a
condition of the form δ : δ−1I − P � 0. Indeed, in [11],
[16] the parameter δ resembles their “breakdown” point θ.

Regarding (i)-(ii), by construction of the result for (iii),
the programs (3) and (23) are of the form

P̃1(γ) :

 inf
K∈Rm×n

sup
L∈Rd×n

f(K,L)

s.t. g(K,L) ≤ γ,

P̃2(δ) : inf
K∈Rm×n

sup
L∈Rd×n

f(K,L)− δ−1g(K,L),

respectively, for f(K,L) and g(K,L) defined by (20) and
(21).

10Specifically, see sec. 2.4 for an introduction and ch.7 and 8 for a formal
discussion.

11This step relies on the Bounded Convergence Theorem (cf. p.57 [40]) in
that implicit in the definition of h(δ) resides feasibility of the game, thereby
boundedness of the two parts of the cost. This justifies the splitting of E[·],
i.e., limn→∞

∫
X fn+gndµ =

∫
X limn→∞ fndµ+

∫
X limn→∞ gndµ.

These programs
(
P̃1(γ), P̃2(δ)

)
correspond to P1(γ) and

P2(δ) from Lemma VI.4 but with an outer minimization step
over K. Let the corresponding solutions to the inner max-
imazition problems be denoted by L?1(γ,K) and L?2(δ,K).
Then by Lemma VI.4 we have L?1(γ,K) = L?2

(
h−1(γ),K

)
.

Moreover, when h(δ) = γ then L?1(γ,K) = L?2(δ,K) and
thereby g

(
K,L?1(γ,K)

)
= g
(
K,L?2(δ,K)

)
.

Now let K?(δ) be the solution to the outer minimization
of P̃2. To show that this K?(δ) is also optimal for P̃1

assume, like in Lemma VI.4 for the sake of contradiction it is
not. For P̃1 we effectively consider infK

{
f
(
K,L?1(γ,K)

)}
where it is known that g

(
K,L?1(γ,K)

)
≤ γ holds.

However, since h(δ) = γ we can equivalently consider
infK

{
f
(
K,L?2(δ,K)

)}
. Then to continue the contradictive

argument assume there is some K̃ such that

f
(
K̃, L?2(δ, K̃)

)
< f

(
K?(δ), L?2

(
δ,K?(δ)

))
.

By construction we have h(δ) = γ, and thus
g
(
K̃, L?2(δ, K̃)

)
= γ = g

(
K?(δ), L?2

(
δ,K?(δ)

))
such that

existence of such a K̃ contradicts optimality of K?(δ) in
P̃2. Therefore, the condition that h(δ) = γ implies that if
the pair

(
K?(δ), L?(δ)

)
exists, it is an optimal solution to

both (23) and (3).
Thus, when there is a δ ≥ 0 : h(δ) = γ, which we have

by construction of the Theorem, then the solution to (3) is
given by the pair

(
K?(δ), L?(δ)

)
, for which the expressions

are given by Lemma VI.2. Moreover, the statement of the
Theorem can be extended to assert that these matrices exist,
as the conditions can be made to be in correspondence with
this Lemma VI.2 (feasibility of (23), e.g., (A,B,C) being a
minimal realization).

At last we characterize the regularity of the map h in the
context of Theorem III.6, which is again very useful with
numerical algorithms in mind. This is done in the spirit of
the work by Polderman [41], [42].

Proof: [Proof of Theorem III.6 (iii) cont.] We will
first show that P

+
(δ)12 is analytic over [0, δ), whereafter

the result easily follows via the dependence of h(δ) on
P (δ). Let C be defined by Q = C>C. Then define for
an arbitrary minimal realization (A,B,C) the matrix valued
map ` : R≥0 × Sn+ → Sn+ by

`(δ, P ) =P −Q− αA>P · · ·

· · ·
(
In + α

(
BR−1B> − δDD>

)
P
)−1

A.
(22)

This map ` is Cω over some open set (0, δ)× V ⊂ R≥0 ×
Sn+ since rational functions are analytic on their domain. To
continue, we will show that in specific neighbourhoods of
(δ̃, P̃ ) ∈ (0, δ)×V , zeroing `, there exist Cω maps P (δ) such
that `(δ, P (δ)) = 0. To that end, define Γ(∆P ) , `(δ̃, P̃ +

∆P ) and consider only the linear terms, denoted by L
=, in

12See Lemma VI.2 for more on this notation.



∆P :

Γ(∆P )
L
=∆P − αA>(P̃ + ∆P ) · · ·

· · ·
(
In + α

(
BR−1B> − δ̃DD>

)
(P̃ + ∆P )

)−1

A

L
=∆P − αA>(P̃ + ∆P )Λ̃−1

∞∑
k=0

(−1)k · · ·

· · ·
(
α(BR−1B> − δ̃DD>)∆P Λ̃−1

)k
A

L
=∆P − αA> · · ·
· · · (In − P̃ Λ̃−1α(BR−1B> − δ̃DD>)∆P Λ̃−1A

L
=∆P − αA>Λ̃−>∆P Λ̃−1A.

These steps hinge on geometric series for matrices, and a few
linear algebraic identities13. Now since we know that Λ̃−1A

is
√
α-stable when P̃ is P

+
(δ̃), the map Γ must be non-

singular (see Lemma 2.3 [41]) for such a point
(
δ̃, P

+
(δ̃)
)
.

Therefore, we can apply the Implicit Function Theorem (cf.
[43]), which asserts (locally) the existence of an unique Cω

map P (δ) such that `(δ, P (δ)) = 0 for all δ ∈ Uδ̃ ⊂ R≥0

plus P (δ̃) = P̃ . Since the pair (δ̃, P̃ ) was arbitrary, up to
being a minimal solution, this holds for any pair (δ, P

+
(δ)),

making P
+

(δ) ∈ Cω
(
(0, δ)

)
since P (δ)|δ∈U

δ̃
are unique

(see [44]) and stabilizing by continuity. This implies that
L?(δ) is Cω in δ and by Theorem E.1.414. from [46], so
is Σx, such that indeed the map h(δ) is analytic over some
bounded interval. Finally, to extend (0, δ) to [0, δ) observe
that limδ↓0 h(δ) = 0, which concludes the proof.

Proof: [Proof of Lemma III.8] This follows directly
from Theorem III.6 whereas the decomposition follows from
any standard proof of Lemma VI.2, e.g., solving the first step
in the corresponding Bellman-Isaacs equation (cf. [26]).

To prove Lemma III.9 we need one useful property of
Λ(δ):

Lemma VI.1 (Λ(δ) is an orientation preserving map):
The matrix Λ(δ) has positive eigenvalues and thus
det
(
Λ−1(δ)

)
> 0.

Proof: The map Λ(δ) =
(
In + α(BR−1B> −

δDD>)P (δ)
)

has positive eigenvalues for δ ↓ 0 since
limδ↓0 Λ(δ) = (In+αBR−1B>P ) and any product of (sym-
metric) positive semi-definite matrices has again positive
eigenvalues (although it might fail to remain positive semi-
definite). Then recall the fact that GL(n,R) has two con-
nected components denoted GL+(n,R) and GL−(n,R) for
the orientation preserving and -reversing maps, respectively.
Then the result follows from limδ↓0 Λ(δ) ∈ GL+(n,R) and
continuity in δ, i.e., the matrix Λ(δ) cannot leave the set of
orientation-preserving non-singular matrices for δ ∈ [0, δ).

Proof: [Proof of Lemma III.9] We do the proof per item:
(i) The fact that the worst-case closed-loop system can

be written as
(
Λ?(δ)

)−1
Â follows from Lemma VI.2

13Most notably: P (1 + QP )−1 = (1 + PQ)−1P and (I + P )−1 =
I − (I + P )−1P .

14Effectively, by the results from Polderman [45]

and Lemma VI.1 or just by direct computation. This
also holds for γ → 0 since it also holds for the
standard LQR closed-loop system[31]. The last part
follows from (12), K?(γ) is always of the form XÂ
for some matrix X . Of course, the intuition is that
if your goal is regulation, then once xk ∈ Ker(A) it
makes no sense to further inject energy in the system.
Therefore, any additive perturbation ∆A to Â must
obey Ker(Â) ⊆W+

(√
α(Â+ ∆A)

)
when Σ0 � 0.

(ii) Lemma VI.1 has several implications. For example,
it is known that the worst-case closed-loop system is
given by Λ−1(δ)Â, which has thus the same orien-
tation as Â. Moreover, it is known that the worst-
case drift term is given by A?(γ) = Â + D∆?

A(δ) =

(I + δαDD>PΛ−1)Â. Also, it follows from equation
(3.4a′′) in [26] that PΛ−1 � 0, so indeed, now we
do have symmetry. So when for example D = In,
we have that the nominal- and worst-case drift have
the same orientation. To intuitively see why we speak
of orientation-preserving, take the SVD of any T ∈
GL+(n,R) which is T = UΣV >, where both U and
V are rotation matrices, while Σ is a positive scaling
matrix. Then TÂ will be a rotated and scaled version
of Â, no other operations, like mirroring, occur. Note
that actually, the scaling matrix T is an element of
Sn++. When Â is not full-rank, we can without loss of
generality take just the automorphic part.

(iii) We know that A?(γ) is of the form (In+αδPΛ−1)Â =
TÂ, T ∈ Sn++. This means that λmin(T ) ≥ 1 or
λmin(T ) > 1 a.s. when P � 0. Now embed Â into
n2 and such that vec

(
A?(γ)

)
= (In ⊗ T )vec(Â).

The spectrum and symmetry of T are preserved in
(In ⊗ T ) such that we can appeal to inequalities of
the form λmin(Y )‖x‖2 ≤ ‖Y x‖2 ≤ λmax(Y )‖x‖2,
Y ∈ Sn2

++. Hence, the transformation will make
any vector grow in 2-norm. The results follows from
the element-wise interpretation of the Frobenius-norm.
Regarding the decomposition (15), using the identity(
I + (I − P )−1P ) = (I − P )−1 we can write B?(γ)

as
(
In − αδP (δ)

)−1
B̂. Then the result follows from(

δ−1In − αP (δ)
)
� 0, symmetry of P and a similar

line of arguments as above.

B. Supporting Material

1) Dynamic Game Theory: It should be highlighted that
the link between dynamic game theory and robust control is
well studied, see [16], [26] for an accessible and illuminating
introduction.

We first introduce the concept of a dynamic game (cf. [26],
[47]). Define a real-valued map g by g(x, u, w) = x>Qx+
u>Ru − δ−1w>w and consider the stochastic (discounted)



two-player zero-sum dynamic game

inf
{µk}k∈N

sup
{νk}k∈N

E
x0,v

[ ∞∑
k=0

αkg(xk, uk, wk)

]
,

s.t. xk+1 = Axk +Buk +Dwk + vk,

vk
i.i.d.∼ P(0,Σv), x0 ∼ P(0,Σ0),

uk = µk(xk), wk = νk(xk).

(23)

Here, the parameter δ ∈ R≥0 penalizes the input of the µ-
player, which reduces its ability to destabilize the system,
and D ∈ Rn×d determines how the state dynamics are
affected by the input of this ν-player. Note that this game is
“diagonal”15 in the sense that there are no cross-terms in the
cost, thus the program largely relies on the single parameter
δ.

This next Lemma summarizes the key results we need
regarding the dynamic game

Lemma VI.2 (cf. chapter 3 from [26] for the undiscounted
deterministic case): Given a game (23) for α ∈ (0, 1), let
Q � 0, R � 0, (

√
αA,B) be stabilizable and (

√
αA,C)

detectable for Q = C>C. If δ ∈ R≥0 satisfies (δ−1Id −
αD>PD) � 016, where P is the minimal17 positive semi-
definite solution to the Generalized Algebraic Riccati Equa-
tion (GARE):

P =Q+ αA>PΛ−1A,

Λ =
(
In + α

(
BR−1B> − δDD>

)
P
)
,

(24)

then the optimal18 strategies are time-invariant, linear in xk
for K?(δ) ∈ Rm×n, L?(δ) ∈ Rd×n and given by

ν?k(xk) = αδD>PΛ−1Axk = L?(δ)xk,

µ?k(xk) = −αR−1B>PΛ−1Axk = K?(δ)xk.

Moreover, under these strategies the closed-loop system
(Λ−1A) is

√
α-stable and the optimal cost is given by

J ? = 〈P,Σ0〉+ α(1− α)−1〈P,Σv〉.

2) Computational Remarks, Given γ, Find δ: The main
computational question is twofold, given a γ ∈ R≥0, (i) does
there exist a δ ∈ R≥0 : h(δ) = γ and (ii), if so, how to find
it? Regarding question (i), by monotonicity it suffices to find
a upper bounding γ and show that γ ≤ γ (see [27, sec. 3-4-2]
for limiting behaviour of the map h, which can be finite).

This can be done by finding an upper bound to δ. The
idea is that since P (δ) � P (0) the solution to

sup
δ∈R≥0

δ

subject to δ−1Id − αD>P (0)D � 0
(25)

15This form is chosen to keep the exposition simple, but one can consider
more involved adversarial terms, e.g., w>k Swk for some S � 0.

16An equivalent condition as promoted by [16] is to check
logdet(δ−1Id − αD>PD) > −∞

17In the terminology of p.81 ch.3 [26], given the feasible iterative scheme
Pk+1 = Q + A>PkΛ−1

k A, P0 = Q. Then call P+
:= limk→∞ Pk

the minimal solution to the GARE. This distinction between solutions is
important since other solutions might exist, which do not give rise to the
desired stability properties.

18Not a general saddle-point (see e.g. [48])

upper bounds δ. Recall that with P (0) we mean the stabi-
lizing solution to the standard discounted Algebraic Riccati
Equation. Since (

√
αA,B,C) should be a minimal realiza-

tion (see Lemma VI.2), P (0) exists, such that the solution
to (25) is given by δ? = ‖αD>P (0)D‖−1

2 . Of course, for a
meaningful bound we must assume that DP (0) 6= 0.

The crux is, we can come arbitrary close to δ by using
bisection, which also yields a bound on γ. Then by applying
bisection again, we can solve the problem, or conclude
infeasibility. So, to solve any of our robust LQR problems
we have a slow, yet tractable, procedure as summarized in
Figure 8.

Fig. 8: Let us be given a Robust LQR problem for some
γ. First (1), compute δ? from (25) and find δ using any
algorithm similar to bisection. As a byproduct, γ is given
such that feasibility of γ can be readily checked. Note
that in practice one rather wants to find δ from below,
i.e. find some δ being ε-close to δ (denoted δε), such that
δ−δε = ε > 0, guaranteeing feasibility of the corresponding
dynamic game related to δε, leading to the bound γε ≤ γ.
Then secondly (2), using {0, δε} as starting pair, one can
apply any algorithm similar to bisection to find δ : h(δ) = γ
for γ ≤ γε.

Regarding question (ii), as already mentioned, the prop-
erties of the map h allow for bisection algorithms indeed,
but when one has more insights in the shape of h its image,
convergence can be much faster.

Lemma VI.3 (Finding δ): Given a desired γ and assume
it is feasible in the sense of Theorem III.6. Let the (local)
Lipschitz constant of the map h be L > 0 on [0, δ) and select
β ≤ L−1. Then, the algorithm

δk+1 = δk + β
(
γ − h(δk)

)
, δ0 = 0, (26)

converges to δ : h(δ) = γ at a linear rate proportional to the
estimation error of L.

Proof: [Proof of Lemma VI.3] Consider the algorithm

δk+1 = δk + βk
(
γ − h(δk)

)
, δ0 = 0. (27)

To find a suitable sequence of stepsizes {βk}k∈N define the
error ek := δ − δk and consider the Lyapunov candidate
Vk = e2

k. Then we need to find βk such that Vk − Vk+1 > 0
for non-zero errors. It can be easily seen that a satisfactory
constraint on βk is

βk <
2(δ − δk)

γ − h(δk)
.



Since the map h is (locally) smooth, it is definitely locally
Lipschitz, i.e., we have for some constant L > 0

|h(δ2)− h(δ1)| ≤ L|δ2 − δ1|, δ1, δ2 ∈ [0, δ). (28)

Therefore, by (28) and monotonicity of h, the constraint on
βk can be simplified to βk < 2/L ∀k. Therefore, simply
setting βk = L−1 works. Note that we have not yet provided
a method to compute L, thus the constant must estimated,
denote this by L̂ for which L̂ ≥ L must hold. The error
dynamics are given by ek+1 = ek − L̂−1

(
γ − h(δk)

)
=

(1− ε)ek, for some ε ∈ (0, 1] such that, the cruder L̂ is, the
smaller ε and thus the slower ek+1 → 0.

We do emphasize that estimation of the Lipschitz constant
is critical the closer δ : h(δ) = γ is to δ.

3) Auxiliary Tools: The following lemma is the key to
bridge the RLQR problem (1) under uncertainty sets from
Definition III.1 to a dynamic game theory perspective.

Lemma VI.4 (Exact constraint relaxation): Let f, g be func-
tions from X to R ∪ {∞}. Given a parameter γ ≥ 0, we
define the optimization programs

P1(γ) :

{
sup
x∈X

f(x)

s.t. g(x) ≤ γ,
P2(γ) : sup

x∈X
f(x)− γ−1g(x),

where x?i (γ), i ∈ {1, 2}, denote an optimizer of the corre-
sponding program. Then, the following holds:

(i) The function h(γ) := g
(
x?2(γ)

)
is non-decreasing over

γ ∈ R≥0 when P2(γ) admits an optimal solution.
(ii) A solution to the program P1(γ) can be retrieved via

x?1(γ) = x?2
(
h−1(γ)

)
, where h−1 denotes the inverse

function of h defined in (i).19

Proof: Consider the parameters γ1 ≥ γ2, and let x?2(γ1)
and x?2(γ2) be the optimizers of the program P2, respectively.
In view of the optimality of these solutions, one can readily
deduce that

f
(
x?2(γ1)

)
− γ−1

1 g
(
x?2(γ1)

)
≥ f

(
x?2(γ2)

)
− γ−1

1 g
(
x?2(γ2)

)
f
(
x?2(γ2)

)
− γ−1

2 g
(
x?2(γ2)

)
≥ f

(
x?2(γ1)

)
− γ−1

2 g
(
x?2(γ1)

)
.

Adding the two sides of the above inequalities yields

(γ−1
2 − γ−1

1 )g
(
x?2(γ2)

)
≤ (γ−1

2 − γ−1
1 )g

(
x?2(γ1)

)
⇐⇒

g
(
x?2(γ2)

)
≤ g
(
x?2(γ1)

)
which concludes the assertion (i).

For (ii), we first argue that any optimal solution to P2(γ) is
an optimal solution to P1

(
g
(
x?2(γ)

))
, i.e., using the notation

of the optimizers, we have x?2(γ) = x?1

(
g
(
x?2(γ)

))
for

any γ ≥ 0. To this end, observe that by the definition the
optimizer x?2(γ) is a feasible solution to the program P1

when the parameter γ is set to g
(
x?2(γ)

)
. It then suffices to

prove the optimality. For the sake of contradiction, assume

19In case the inverse function has more than one solution, any selection
from the set h−1(γ) fulfills the assertion of (ii).

that there exists a x̃1 ∈ X such that f(x̃1) > f
(
x?2(γ)

)
and

g(x̃1) ≤ g
(
x?2(γ)

)
. Under this assumption, we then have

f(x̃1)− γ−1g(x̃1) > f
(
x?2(γ)

)
− γ−1g

(
x?2(γ)

)
,

which contradicts the optimality condition of x?2(γ) in
the program P2. Thus, we conclude that x?2(γ) =

x?1

(
g
(
x?2(γ)

))
. Finally, in the light of the inverse function

definition (i.e., γ̃ = h(γ) if and only if γ ∈ h−1(γ̃)), we
arrive at the desired assertion x?2

(
h−1(γ̃)

)
= x?1(γ̃). This

concludes the proof of (ii).

Lemma VI.5 (Monotonic Factor): Given δ1 ≥ δ2, both in
(0, δ) and corresponding to a feasible game. Then

δ−1
1 (δ−1

1 Id − αD>P (δ1)D)−1 � δ−1
2 (δ−1

2 Id − αD>P (δ2)D)−1.

Proof: [Proof of Lemma VI.5] Since δ1 ≥ δ2 > 0 we
have P (δ1) � P (δ2) such that

(Id − δ2αD>P (δ2)D) � (Id − δ1αD>P (δ1)D) ⇐⇒
δ−1
1 (δ−1

1 Id − αD>P (δ1)D)−1 � δ−1
2 (δ−1

2 Id − αD>P (δ2)D)−1.
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