
Shared Reality: Detecting Stealthy Attacks
Against Autonomous Vehicles

Raul Quinonez

The University of Texas at Dallas

Richardson, Texas, USA

raul.quinonez.t@gmail.com

Sleiman Safaoui

The University of Texas at Dallas

Richardson, Texas, USA

sleiman.safaoui@utdallas.edu

Tyler Summers

The University of Texas at Dallas

Richardson, Texas, USA

tyler.summers@utdallas.edu

Bhavani Thuraisingham

The University of Texas at Dallas

Richardson, Texas, USA

bxt043000@utdallas.edu

Alvaro A. Cardenas

University of California Santa Cruz

Santa Cruz, California, USA

alacarde@ucsc.edu

ABSTRACT

Autonomous Vehicles (AVs), also known as self-driving cars, are

becoming more prevalent in our daily lives. AVs rely on sensor in-

formation to evaluate their environment and make crucial decisions

in real-time, however, new attacks can create false sensor and actu-

ation commands. As technological advancements expand the usage

of AVs to perform more complex tasks, it is imperative to secure the

integrity of these devices against malicious external tampering. In

this paper, we propose a security framework we call Shared Reality,
which consists of verifying that sensors perceive the same physical

reality. We implement our design on a custom hardware platform

that uses the popular Robot Operating System (ROS) software. Our

experiments show that AVs utilizing our proposed security frame-

work ensured security with low overhead while performing several

autonomous tasks.

CCS CONCEPTS

• Computer systems organization → Sensors and actuators;

Embedded software.

KEYWORDS

Autonomous Vehicles (AVs), Extended Kalman Filter (EKF), Data

Fusion, Sensor Redundancy, Security

ACM Reference Format:

Raul Quinonez, Sleiman Safaoui, Tyler Summers, Bhavani Thuraisingham,

and Alvaro A. Cardenas. 2021. Shared Reality: Detecting Stealthy Attacks

Against Autonomous Vehicles. In Proceedings of the 2ndWorkshop on CPS&IoT
Security and Privacy (CPSIoTSec ’21), November 15, 2021, Virtual Event, Re-
public of Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3462633.3483981

1 INTRODUCTION

The Society of Automotive Engineers defines six levels of automa-

tion for ground vehicles, ranging from no automation (level 0) to

fully automated with no human interaction required (level 5) [32].

Currently, consumers are exposed to level 2 vehicles in the market

(partial automation) with manufacturers promising level 3 (con-

ditional automation) and beyond in the near future [27]. Many

industries recognize Autonomous Vehicles (AVs) as an important

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CPSIoTSec ’21, November 15, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8487-2/21/11.

https://doi.org/10.1145/3462633.3483981

component in the future of transportation and are investing heavily

in AV research and development. For example, Uber and General

Motors each have spent over 1 billion dollars on research and de-

velopment in automation technology [8].

As AVs become more ubiquitous, we need to guarantee their se-

curity and safety against increasingly sophisticated attacks because

of the physically hazardous consequences these machines will in-

creasingly impose in the real world. For example, AVs have been

involved in several incidents in which pedestrians were not recog-

nized by the autopilot, or the system interpreted its environment

incorrectly, resulting in fatalities [28, 50].

AVs rely on a wide variety of sensors [25] to evaluate their phys-

ical world including IMUs (Inertial Measurement Unit), cameras,

LiDARs, RADARs, ultra-sonic sensors, and GPS. While these sen-

sors measure different physical properties of the environment, they

are susceptible to malicious tampering and transduction attacks

[20]. Malicious tampering occurs when an attacker injects data into

the system with the goal of causing disruptions or even hijacking

the system. On the other hand, transduction attacks leverage the

physical properties of sensors (e.g., accelerometers are susceptible

to acoustic injection attacks [46]) to tamper their measurements.

This reliance on sensor information to perform critical tasks with-

out verification can cause AVs to become vulnerable to targeted

attacks.

Researchers have demonstrated the feasibility of these types of

attacks against consumer vehicles on the market. Mobileye 630

PRO and Tesla Model X (HW 2.5) autopilots can be manipulated to

incorrectly recognize phantom projected images as street signs and

pedestrians, thereby triggering the automatic breaking system or

diverting the vehicle into the oncoming traffic lane [34]. Further-

more, Tesla’s autopilot has also been demonstrated to be vulnerable

to attacks targeting the activation of the windshield wipers and

lane recognition system [26].

To solve these problems, there has been extensive research to

avoid, detect, and prevent sensor tampering in real-time. Physics-

Based Attack Detection algorithms [22] represent a promising way

to detect sensor and actuator tampering attacks against autonomous

vehicles. The main idea behind these techniques is to check the

consistency between the control actions sent to actuators, and the

received sensor measurements. Any discrepancy between expected

vs. observed behavior is then tested statistically over time and if

the deviations are statistically significant, then the anomaly de-

tector raises an alarm. While Physics-Based attack detection has

several benefits, they are not infallible since they can be attacked

by injecting a small perturbation that is not significant at each time

step, and are therefore undetectable, but that over time they cause

https://doi.org/10.1145/3462633.3483981
https://doi.org/10.1145/3462633.3483981
https://doi.org/10.1145/3462633.3483981

significant deviations to the operation of the system. We call these

types of attacks small but persistent attacks.
In order to address these concerns, this paper introduces a frame-

work called Shared Reality, which focuses on verifying that different
sensors are perceiving the same physical world. Our solution is

able to detect slow attacks that are able to bypass current state-of-

the-art physics-based anomaly detection systems for autonomous

vehicles [17, 38]. To demonstrate its effectiveness, we implement

our approach in an advanced automation application called vehicle

platooning (leader-follower).

Our contributions include,

• We demonstrate how slow but persistent attacks on individual
sensors can bypass physics-based anomaly detection systems

in AVs like SAVIOR [38].

• We present our Shared Reality concept as a computationally

light anomaly detector for small but persistent attacks that
monitors physical data across multiple sensors to detect

attacks.

• We propose an augmented secure pipeline that leverages the

individual strengths of SAVIOR [38] and our Shared Real-
ity proposal to secure a vehicle to a wider range of attack

patterns from slow but persistent to fast and abrupt.
• We demonstrate the operation of our Shared Reality pro-

posal in a platoon system, using open-source hardware and

software, where each vehicle detects the lane and vehicle

ahead of it and adjusts its steering and throttle to maintain

a constant distance.

• We analyze the performance of SAVIOR and Shared Reality
modules to highlight the strengths of each method and the

advantage of combing them.

The rest of the paper is organized as follows. Section 2 provides

background information on mathematical models for ground vehi-

cle movement, platooning, and threat modeling. In Section 3, we

describe the overall design of Shared Reality. Section 4 discusses the

implementation of Shared Reality in a set of platooning autonomous

vehicles. Section 5 provides an evaluation of the secure platoon

algorithm. Finally, section 7 concludes our work.

2 BACKGROUND

2.1 Threat Model and Assumptions

We assume an adversary that can inject false signals in one of

the sensors used by AVs. For example, AVs typically use sensors

like Cameras, IMUs, GPS receivers, RADARs, LiDARs, or ultra-

sonic sensors. Unfortunately, all of these sensors are vulnerable

to transduction attacks including IMU [43, 46, 48], RADAR [55],

LiDAR [12, 37, 42], ultrasonic [55], and camera [18, 37, 55] sensor

measurements. The threat model in our paper is similar to the threat

model in all of these previous research efforts.

In this paper, we focus on attacks against two of the most im-

portant sensors for autonomous vehicle navigation, cameras, and

LiDAR. The camera is the primary sensor involved in the navigation

of the vehicle and it is also used for detection and recognition tasks

as well. A LiDAR consists of an infrared (IR) emitter and receiver

rotating about a vertical axis. The sensor measures the time it takes

to receive an emitted signal after it bounces back from an object

and calculates the distance to that object. This allows the vehicle

to acquire distance information about its surroundings at a specific

height but in a range of directions.

Attacks against cameras and LiDAR sensors can range from phys-

ically placing stickers on the road, to driving an attack vehicle near

to the target. For example, a dirty road patch can be a physical-world

attack against the camera being used for lane-keeping assist [41]: in

this setting, the attacker prints a malicious perturbation on asphalt,

rubber, or posters, and then places it on the road, causing a vehicle

to drive off lane boundaries [41]. Similarly, a vehicle in front of

the target vehicle can spoof LiDAR signals causing the vehicle to

perceive nonexisting obstacles or ignore existing ones [12].

Our goal is to detect slow but persistent attacks: where the fake
sensor signal will drift slowly over time. Our work combines a Shared
Reality and a physics-based attack detection system based on SAV-

IOR [38] (our previous work) as the combination of both can secure

anomaly detection to slow but persistent as well as abrupt attacks.
We do not replace sensor fusion by our Shared Reality. Our goal

is to use Shared Reality alongside sensor fusion algorithms to detect

attacks and improve the vehicle’s performance.

2.2 Platooning

We implement and test our Shared Reality proposal in the setting

of vehicle platooning. Vehicle platooning, or simply platooning, is

the concept of systematically interconnecting two or more vehi-

cles. This vehicle-to-vehicle (V2V) connectivity allows for vehicles

to drive at the same speed with minimal distance in between—

distances so small that only autonomous vehicle technology can

achieve them while still being safe. The average human driver takes

1.5 seconds to detect and react to road hazards [33]; such delays are

minimized when automation is involved allowing to reduce this

inter-vehicular distance. The interactions of vehicles in platoons

are depicted in Fig. 1.

Another important benefit of platooning is the reduced consump-

tion of fuel for vehicles. These savings are attributable in part to the

wind drag that is offset by the leading vehicle in the platoon nexus.

By following the leading vehicle closely, the following vehicles

reduce the impact of wind resistance that they would otherwise

have to combat and therefore consume less fuel. The fuel reduction

is significant especially for larger vehicles [5, 30]; for a platoon of

trucks, it improves fuel consumption by 10% on average [47]. The

increase in safety and efficiency becomes more notable consider-

ing that it could be expanded to over 65% of haul transport [1].

With surface freight transport expected to increase dramatically in

the coming decades, platooning can have a major impact on fuel

savings for large vehicle fleets and on transport capacity [5].

There are several use-cases of platooning currently under de-

velopment, like package delivery and supply chain (UPS is testing

truck platooning technologies on highways [9]), next-generation

combat vehicles to reduce exposure of soldiers in unsecured cor-

ridors, driver-assisted buses with shorter following distances to

meet the demand for transportation in congested areas such as the

Lincoln tunnel between New York and New Jersey, and platooning

for timber transport on back-country roads, as the forest industry

suffers from driver shortages in moving cut timber to mills [9].

Platooning in its simplest form can be decoupled into two sub-

tasks: 1) detect and follow a path, and 2) detect and maintain a

constant distance to the vehicle ahead. We thus divide the actua-

tion between these two tasks. The path detection task determines

where the vehicle is relative to a path and controls the steering of

the vehicle, while the distance control task measures the distance

between vehicles and adjusts the speed.

2.3 Physical Model of Vehicle

Physics-based attack detection systems need accurate models of the

behavior of a physical phenomena [22]. While extracting models

of physical phenomena is complicated and sometimes requires ad-

vanced system identification tools, the physical behavior of ground

Figure 1: Vehicle Platooning. Communication and sensing

between vehicles allow them to drive closely together mini-

mizing fuel consumption and road space usage.

Y

X

(𝑥, 𝑦)

𝑙!

𝑙 "

𝛿

𝜓
𝛽𝜐

Figure 2: Bicycle model for ground AV.

vehicles is a fairly well-understood process. In particular, we use

the well-known bicycle model that captures the behavior of a four-

wheel vehicle by the following non-linear equations [39]:
¤𝑥 = 𝑣 cos(𝜓 + 𝛽)
¤𝑦 = 𝑣 sin(𝜓 + 𝛽)
¤𝜓 = 𝑣

𝑙𝑟
sin(𝛽)

¤𝑣 = 𝑎
𝛽 = tan

−1 (𝑙𝑟
𝑙𝑓 +𝑙𝑟 tan(𝛿))

(1)

where (𝑥,𝑦) is the position of the vehicle’s center of mass,𝜓 is the

orientation of the vehicle relative to the 𝑥-axis, 𝑣 is the vehicle’s

speed, 𝛽 is the direction relative to the vehicle’s heading, 𝛿 is the

steering angle relative to the vehicle’s heading, 𝑎 is the acceleration,

and 𝑙𝑟 and 𝑙𝑓 are the distances from the center of the vehicle to the

rear and front wheels respectively (𝑙𝑟 + 𝑙𝑓 is the wheelbase). These

parameters are illustrated in Fig. 2.

The control inputs are the steering angle 𝛿 and the acceleration

𝑎. The values that we need to estimate from the various sensors

include the speed 𝑣 , orientation (yaw angle) 𝜓 , and position pair

𝑥,𝑦. Note that we adopt a frame that moves along the line. The

𝑦-axis always points in the direction of the curve (tangent to it) at

a constant offset from the AV, and the 𝑥-axis is perpendicular to

that (normal to the curve).

2.4 Physics-Based Attack Detection

Classical security mechanisms such as software security, mem-

ory protection, authentication, or cryptography are not enough to

protect sensors against physical and transduction attacks [20]. In

order to identify these new attacks, there is growing interest in

Physics-Based Attack Detection (PBAD) [22].

PBAD consists of two steps: the first step is performed off-line

and extracts physical invariants of the system to create a model that

captures the expected correlations between sensors (also known

as sensor fusion) and between actuators and sensors (i.e., between

the inputs and the outputs to the system). For autonomous ve-

hicles, these physical invariants correspond to Equation (1). The

second step is an online anomaly detection algorithm that com-

pares predictions with observed states and raises an alarmwhen the

accumulated discrepancy between predicted and observed states

exceeds a threshold. PBAD has been explored in water control sys-

tems [4, 23], state estimation in the power grid [19, 31], chemical

processes [6, 13], and in particular, autonomous vehicles [17, 38].

One of the key weaknesses of PBAD is that it is vulnerable to

stealthy attacks [49] (what we call slow but persistent attacks in this

paper). A fundamental reason for the existence of stealthy attacks

is that any control of a physical system would not need sensors if

we knew exactly the physical evolution of the process given the

control commands (this is called open-loop control). Meanwhile,

almost all control algorithms run in “closed-loop” because model

uncertainties and perturbations prevent us from knowing exactly

the evolution of a physical process. This uncertainty allows mali-

cious users to create attacks that behave seemingly like the physical

process under control, but create a small deviation that over time

can be catastrophic. Unfortunately, none of the prior PBAD efforts

on autonomous vehicles has considered a robust solution to detect

these slow but persistent attacks [17, 38]. In this paper we show

how combining a PBAD mechanism with our proposed Shared

Reality algorithms, can detect these slow but persistent attacks and

a wide variety of other attacks.

3 SHARED REALITY DESIGN

While our concept of a shared reality can be applied to a variety

of settings, we focus in this paper on a particular instantiation of

our idea by focusing on how the camera and LiDAR sensors in a

vehicle produce shared information about the environment in a

platooning scenario.

Intuitively, our Shared Reality proposal ensures that all cross-

coupled data remains roughly the same over time. This data cor-

responds to the same physical object if an attack is initiated on

one sensor (e.g. the front vehicle is depicted to drift to the right in

the camera) then the second sensor will not detect this (the LiDAR

should notice this inconsistency), causing the error measurement

across the cross-coupled data to increase. Even if the drift is small,

thanks to the slow but persistent attacks, this error will accumulate

over time if only one sensor is under attack.

We also note that the choice of cross-coupled data is a design

choice. For our platoon system, we chose vertical and lateral offsets

because they are specific to the application and persistent. However,

the choice can be generalized to any other cross-coupled physical

data. A few potential examples include: lane marks detected by

multiple front-facing cameras, estimated vehicle speed from en-

coders and IMU or a SLAM (simultaneous localization andmapping)

algorithm, detected vehicles via LiDAR and RADAR.

Our design is illustrated in Fig. 3. The main idea is to use two

independent physics-based anomaly detection algorithms for each

sensor (camera and LiDAR), and in parallel, compute a metric in

the shared reality node that denotes the similarity and consistency

between the perception of each sensor. We implement SAVIOR [38]

as a reference physics-based attack detection system and adapt it to

LiDAR data (the original work only considered the camera sensor).

Shared reality

LiDAR+
SAVIOR

Camera+
SAVIOR

Improved detectorsData
pre-processing

LiDAR

Camera

Controller

Figure 3: We use an anomaly detector on both LiDAR and

camera data to detect malicious input on either sensor. If

one of the sensors is compromised, the system will ignore it

and navigate using the remaining untampered sensors.

We now describe how we measure this consistency between

sensors in a platooning scenario. Notice that the distance between

a reference vehicle and the leading vehicle (the vehicle in front) and

the lateral offset of the leader relative to the reference vehicle can

be estimated by a camera and a LiDAR. These measurements are

the basis of the Shared Reality module since they describe common

physical data between the two sensors that should be closely related.

These variables are represented by 𝛿𝑙 , 𝛿𝑐 , 𝑙𝑙 , 𝑙𝑐 which corresponds to

the vertical distance measured by the LiDAR and camera, and the

lateral offset measured by the LiDAR and camera respectively (see

Fig 4). Using that information, we define two error measurements

Δ𝑡 = 𝛿𝑙 − 𝛿𝑐 (2)

Δ𝑙 = 𝑙𝑙 − 𝑙𝑐 (3)

which denote the difference in vertical distance and lateral offset

measured by the two sensors respectively.

The Shared Reality module monitors how Δ𝑡 and Δ𝑙 change
to indicate the presence of an attack. As the vehicle moves, the

width may change. However, since we operate on a flat surface,

the height of the front vehicle is invariant to those changes. Since

the left and right sides of the front vehicle vary with rotation,

we define the height as
𝑖ℎ = 𝑎𝑏𝑠 (𝑖𝑈𝐶𝑦 −𝑖 𝐿𝐶𝑦) where 𝑖𝑈𝐶𝑦 is

the height of the center of the top side (
𝑖𝑈𝐶 = (𝑖𝑈𝐿 +𝑖 𝑈𝑅)/2)

and
𝑖𝐿𝐶𝑦 is the height of the center of the bottom side (

𝑖𝐿𝐶 =

(𝑖𝐿𝐿 +𝑖 𝐿𝑅)/2). We also know the height of the vehicle (𝑠𝑖𝑑𝑒𝑚𝑒𝑡𝑒𝑟𝑠).

We can thus calculate the distance between the camera and the

front vehicle as 𝛿𝑐 =
𝑠𝑖𝑑𝑒𝑚𝑒𝑡𝑒𝑟𝑠

𝑖ℎ
𝑓𝑚𝑦 . The distance is regulated to

a desired distance 𝛿𝑑𝑒𝑠 through a proportional controller and the

velocity control is calculated as 𝑐𝑡𝑟𝑙𝑣𝑒𝑙 = 𝐾𝑝𝑣 (𝛿𝑑𝑒𝑠 − 𝛿𝑐). 𝑐𝑡𝑟𝑙𝑣𝑒𝑙
is used in the bicycle model as the acceleration and thus controls

velocity. Note that leader detection can also be done with cameras

using neural networks. The vision-based distance can be estimated

in several ways. These include triangulation using multiple cameras

or exploiting known vehicle width and height data.

In order to keep track of the history of discrepancies over time,

we select the CUSUM algorithm inside of Shared Reality to keep

track of the vertical distance and the lateral offset.

3.1 CUSUM Algorithm

One of the key components in our anomaly detection pipeline is CU-

mulative SUM control chart (CUSUM): an algorithm for monitoring

and change detection. During each iteration at state 𝑘 , the residual

Camera

LiDAR

Figure 4: The follower vehicle detects the plate (orange) us-

ing the camera and LiDARand extracts the vertical distances

𝛿𝑙 , 𝛿𝑐 and lateral offsets 𝑙𝑙 , 𝑙𝑐 of the leader vehicle relative to

itself.

change 𝑟𝑙 (𝑘) and 𝑟𝑡 (𝑘) is calculated from the absolute value of the

lateral and vertical offset. This interaction is described as follows:

𝑟𝑙 (𝑘) = |Δ𝑙 | (4)

𝑟𝑡 (𝑘) = |𝛿𝑡 | (5)

where both residuals are independent of each other. Each residual

is then evaluated by the CUSUM algorithm as described on the

following equation:

𝑆𝑙 (𝑘 + 1) = (𝑆𝑙 (𝑘) + 𝑟𝑙 (𝑘) − 𝑏𝑙)+ (6)

𝑆𝑡 (𝑘 + 1) = (𝑆𝑡 (𝑘) + 𝑟𝑡 (𝑘) − 𝑏𝑡)+ (7)

where (𝑥)+ denotesmax(0, 𝑥), and 𝑆𝑙 (𝑘 +1) and 𝑆𝑡 (𝑘 +1) represent
the total sum of discrepancies over time that will be used for the

next iteration. These values are calculated from the previous accu-

mulation 𝑆𝑙 (𝑘) and 𝑆𝑡 (𝑘) and the addition of its respective residuals
minus biases. The biases 𝑏𝑙 and 𝑏𝑡 are calculated in order to avoid

false alarms when the system is not under attack. Finally, each sum

raises an alarm when either the lateral or vertical sum increases

over a predefined threshold. In particular, we follow the CUSUM

parameter (biases and thresholds) tuning recommendations from

Giraldo et al. [22].

3.2 SAVIOR

SAVIOR [38] is a non-linear physics-based anomaly detection sys-

tem that uses the Extended Kalman Filter (EKF). The EFK generates

a prediction of the system state that accounts for noise on states and

outputs. The predicted states are compared with the actual system

states at the future iteration. If the aggregated difference (via the

CUSUM statistic) is above a threshold, an alert is raised and the

sensor is considered compromised. The underlying logic is that the

predicted and observed states should match up to some threshold

which may vary with the size of the noise. If the CUSUM threshold

is exceeded, then the behavior of the system does not match our

understanding of the physical evolution of the system. Due to the

noisy nature of the sensors, the threshold for triggering an attack

is often relatively high which leaves the system vulnerable to slow
but persistent attacks.

Extended Kalman Filter. In order to estimate the state of the ve-

hicle, we utilize an Extended Kalman Filter (EKF) algorithm [40]

to predict the future states of the camera and LiDAR sensors and

compare them against measured inputs to detect anomalies. This is

required primarily for the SAVIOR algorithm. The EKF algorithm

uses the known system dynamics, accounts for process noise (noise

on the states) and observation noise (noise on the outputs), and

predicts the future system state. We run two separate instances of

an EKF algorithm on each sensor (camera and LiDAR). This allows

us to secure individual sensors and keep track of malicious tam-

pering against them (this secures individual sensors to abrupt and

moderate changes). The behavior of the system can be calculated

using the following equation:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘) (8)

where at time 𝑘 , 𝑓 (𝑥𝑘 , 𝑢𝑘) approximates the behavior of the system

using non-linear equations (1) with 𝑥𝑘 representing the previous

states of the system and 𝑢𝑘 the current input.

The EKF algorithm is divided into two steps: prediction and

update. In the prediction step, the algorithm takes into account

the previous measurements to generate a calculated estimate. This

value is then improved on the update step by calculating the Kalman

gain and updating the estimated value. The prediction equations

are:

𝑥−
𝑘
= 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 (9)

𝑃−
𝑘
= 𝐴𝑃𝑘−1𝐴

𝑇 +𝑄 (10)

Variables 𝑥−
𝑘
and 𝑃−

𝑘
describe the a priori predicted estimation state

and predicted estimated co-variance. These values are then used

in the update stage to improve the estimated state. 𝐴 ∈ R𝑛×𝑛 is

the system dynamics matrix, 𝐵 ∈ R𝑛×𝑚 is the input matrix, and

𝐻 ∈ R𝑝×𝑛 is the output matrix. 𝑥𝑘 ∈ R𝑛 is the states of the system,

while 𝑢𝑘 ∈ R𝑚 is the input. Specifically, 𝑥𝑘 (vector) is the current

vehicle state while 𝑦𝑘 is a vector of observed outputs through the

sensors as a result of applying the input 𝑢𝑘−1. The update stage
consists of the following equations:

𝐾𝑘 = 𝑃−
𝑘
𝐻𝑇 (𝐻𝑃−

𝑘
𝐻𝑇 + 𝑅)−1 (11)

𝑥𝑘 = 𝑥−
𝑘
+ 𝐾𝑘 (𝑦𝑘 − 𝐻𝑥−

𝑘
) (12)

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃−𝑘 (13)

𝐾𝑘 calculates the Kalman gain aim to minimize the error covariance

of the a posteriori estimate 𝑥𝑘 by calculating the actual contribu-

tions of the a priori estimate and the measurements while 𝑃𝑘 states

the error covariance of the a posteriori estimated state.

3.2.1 SAVIOR for Camera Data. We followed the implementations

described in [38]. This allowed us to have an anomaly detector based

on the camera information. The main two pieces of information

that are extracted from the camera sensor are the line angle and

line lateral position offset. This information is then fed into the EKF

algorithm to predict the upcoming state. The historical behavior is

analyzed using a CUSUM algorithm that keeps track of deviations

over time.

3.2.2 SAVIOR for LiDAR Data. The LiDAR detects the location

and orientation of the leading vehicle. Since the leading vehicle is

following the same path, its lateral offset and orientation are thus

indicative of the line’s lateral location and orientation albeit at a

future point in time. This is the same type of information that the

camera generates but with a small offset. Hence, we can implement

an instance of SAVIOR for LiDAR data as well.

We note that since the leading vehicle is executing commands

based on a “future route”, it is not our intention to compare the

measurement that we obtain from the camera against the ones

that we obtain from the LiDAR but to keep track of LiDAR data

as discrepancies to avoid abrupt tampering against that sensor.

The main goal is to enable anomaly detectors on both sensors to

detect sudden and abrupt changes to the sensor data that might be

indicative of a targeted attack.

3.3 Shared Reality Vs Sensor Fusion

It is important to recognize the assumptions and objects of these

algorithms. The goal of sensor fusion is to improve the quality

of detection (end result) beyond what an individual sensor can

deliver. When fusing data about the same object, each sensor has its

own noise and confidence level. However, we know from Bayesian

statistics that the combined result will be no worse than either

individual result. This highlights a key idea: sensor fusion is not
concerned with anomaly detection and flagging attacks; sensor fusion
operates under the assumption of safe but uncertain data that may

be outside of their operating limits. Furthermore, the output of

sensor fusion is an “improved” estimate of features or decisions.

On the other hand for our Shared Reality module, we make two

assumptions about the data: 1) sensors operate in their respective

regions of operation, and 2) sensors may be either safe or under at-

tack. These two assumptions imply that in general, sensors provide

truthful (yet noisy) data when safe; any anomalies or unexpected

deviations and biases with sensor data are indicative of attacks.

Thus, we do not consider issues such as corrupt sensor data due to

their operation limits such as incorrect camera detection (or the

lack of detection) when exposure suddenly changes. The goal or

output of the Shared Reality module is a Boolean check on whether

a sensor is safe or compromised. Thus, we rely on the overlapping

field of view between multiple sensors to compare the properties

of physical objects and cross-validate them.

While sensor fusion assumes safe but uncertain data either in or

out of the region of operation, Shared Reality assumes that sensors

are either safe or under attack but within their region of operation.

Sensor fusion outputs a combined result to improve detection qual-

ity while Shared Reality outputs a Boolean check on the safety of a

sensor and tracks the changes in the difference between data from

different sensors instead of combining it. Furthermore, Shared Re-
ality is designed to be computationally lightweight whereas sensor

fusion can have a larger overhead depending on the implementa-

tion.

As such, Shared Reality does not replace sensor fusion nor is it a

special case of sensor fusion. Ideally, AVs would be equipped with

both Shared Reality and sensor fusion modules to respectively flag

attacks and improve the quality of sensor estimates across the safe

sensors. Realizing any overlaps in the execution of both modules

can be leveraged to reduce the computation overhead by combining

computational steps or sharing data between the two modules.

4 IMPLEMENTATION

To test our proposed pipeline to secure a platoon, we develop an

RC car platform we call COMO, which is a variant of the Berkeley

BARC project [2]. COMO is a low-cost testing platform with a

camera, a 2D LiDAR, an IMU, and wheel encoders. It uses the low-

level control architecture of the BARC project but has a different

build and high-level control components. Each COMO car runs

Ubuntu MATE 16.04 with ROS 1 (Robot Operating System) Kinetic

Kame on an Odroid XU4 [3] compute board. As we explained in

Section 2, we only use the camera, LiDAR, and wheel encoders.

The camera and LiDAR data process as well as the platform will be

discussed in more detail.

ROS follows a publish-and-subscribe architecture for inter-process

communication in which modules publish data to defined topics

(message exchange busses) to which other modules can subscribe.

While this approach is aimed at meeting real-time constraints, it

undermines security and data integrity due to the lack of publish-

and-subscribe policies. Any module can publish on any topic and

the modules are not aware of which module is publishing data.

This allows for the scenario in which a malicious module is able

to publish erroneous data to a crucial topic and disrupt or control

the system. Our aim is to demonstrate the dangers of such a sce-

nario and protect the system against undetected sensor tampering.

We note that ROS 2 features authentication methods to improve

security, however, authentication will not prevent the physical and

transduction attacks we described earlier (e.g., a dirty patch to fool

the camera or a car nearby sending laser signals to fool the LiDAR).

Figure 5: Physical platooning implementation.

The camera and LiDAR processing algorithms are implemented

using ROS on COMO and interface directly with the motor control

topic for specifying steering and throttle. The camera focuses on

following the line and detecting the AprilTag (for vehicle identifica-

tion and distance estimation) and the LiDAR focuses on detecting

the leading vehicle to estimate distances and relative orientation.

Yet, both, the camera and LiDAR, end up capturing aspects of the

same reality hence the name Shared Reality. In our setting, we have

the AprilTag and vertical plat attached to the back of the front AV.

As depicted in Fig. 5, the leading AV detects the line and uses the

line data to navigate while the following AV detects the plate via

the LiDAR and the line and AprilTag via the camera.

4.1 Path Detection

Having a path to follow is critical for any navigation algorithm.

This path is often a lane, or more abstractly, a center curve to follow.

To detect the path in an image, we use the following pipeline: 1)

import an image, 2) mask or crop the image, 3) apply a geometric

transformation to generate a top-down view, 4) convert to a binary

image, 5) detect contours, 6) weigh the contours, and 7) select the

main contour for further processing.

The first step before image processing is camera calibration to

obtain the camera intrinsic (focal length and optical center) and

extrinsic (relative rotation and translation between the camera body

frame and the ground plane) parameters. The intrinsic parameters

are characteristic of the camera and need to be calculated only

once. The extrinsic parameters need to be updated whenever the

camera is moved (relative to the vehicle body). This establishes the

following mapping between a point
𝑤𝑝 := [𝑤𝑥,𝑤 𝑦,𝑤 𝑧]𝑇 in the

world frame and the pixel coordinates
𝑖𝑝 := [𝑖𝑥,𝑖 𝑦]𝑇 :

𝑖𝑥
𝑖𝑦

1

 =

𝑓𝑚𝑥 0 𝑢0
0 𝑓𝑚𝑦 𝑣0
0 0 1

[
1 0 0 0

0 1 0 0

0 0 1 0

]
︸ ︷︷ ︸

𝐴 (Intrinsic)

[
𝑅 𝑇

0 1

]
︸ ︷︷ ︸

𝐻 (Extrinsic)

𝑤𝑥
𝑤𝑦
𝑤𝑧

1

 (14)

where 𝑓 is the focal length in meters,𝑚𝑥 ,𝑚𝑦 are scaling factors

to express the focal distance in pixels, (𝑢0, 𝑣0) is the optical center
or principle point, 𝑅 ∈ 𝑆𝑂 (3) (special orthogonal group of 3 × 3

matrices) is the rotation matrix and𝑇 ∈ R3 is the translation matrix

between the camera frame and the world frame.

There are several ways to obtain these matrices. Intuitively, the

idea is to solve (14) bymatching the detected corners of a chessboard

of known size to the expected pattern (PnP algorithm) [29].

With a binary image, we can apply a contour detection algorithm

based on [45]. Each contour has a number of sides (edges) and

is characterized through the arc parameter, area, and moments

which involve simple pixel counting procedures. Moments𝑚 𝑗𝑘 of

a contour 𝑆 are generated using:

𝑚 𝑗𝑘 = Σ𝑖𝑥,𝑖𝑦∈𝑆 (𝑖𝑥) 𝑗 .(𝑖𝑦)𝑘 (15)

where (𝑖𝑥,𝑖 𝑦) are the pixel coordinate pairs in a contour. We can

then determine the centroid of the contour as:

𝑖𝑥 =
𝑚10

𝑚00

, 𝑖𝑦 =
𝑚02

𝑚00

. (16)

We generate that data for all contours and score each contour

based on how closely it matches the expected characteristics of the

contour for the curve. Among the criteria are the area and parameter

being larger than minimum values determined experimentally, the

number of sides it has, having points on the top and bottom sides

of the image, and finally the closeness of the centroid (𝑖𝑥,𝑖 𝑦) to the
centroid of the previous curve contour (continuity of the curve).

The curve with the highest score is selected as the main contour

and chosen as the target path curve.

4.2 Path Following

The offset in meters of the line from the center of the vehicle is 𝑙𝑙𝑖𝑛𝑒 .

This value is used with a proportional controller and regulated to

zero. The control is generated as 𝑐𝑡𝑟𝑙𝑠𝑡𝑒𝑒𝑟 = 𝐾𝑝𝑠𝑙𝑙𝑖𝑛𝑒 where 𝐾𝑝𝑠 is

a proportional control gain. 𝑐𝑡𝑟𝑙𝑠𝑡𝑒𝑒𝑟 is the input 𝛿 in the bicycle

model. Note that for the leader vehicle (with no vehicles in front of

it), the velocity is not regulated. It is merely set to a constant force

signal (open-loop control). Fig. 6 shows our experimental testbed,

where the second vehicle tracks the position of the first one using

the LiDAR and the camera.

4.3 Additional Sensor Processing

The platoon can operate as such: all vehicles use a camera to follow a

curve; the first vehicle uses an open-loop control for velocity (simply

sets the acceleration to 𝑎 = 𝑎𝑑𝑒𝑠 , where 𝑎𝑑𝑒𝑠 is a constant desired

value chosen experimentally and does not monitor the speed); and

all other vehicles estimate the distance between themselves and

the leading vehicle and maintain a constant value by varying the

acceleration input as described before. In this case, a simple attack

Figure 6: Both vehicles follow the line marked with the ve-

hicle behind maintaining a constant distance.

on the camera could render the platoon useless and potentially

cause costly accidents. To mitigate this, we need additional data

from the camera and other sensors (2D LiDAR in our case).

We use the camera to estimate the lateral offset between the

vehicle and the leading vehicle in a similar way to the vertical

distance. The lateral offset is calculated as 𝑙𝑐 =
𝑠𝑖𝑑𝑒𝑚𝑒𝑡𝑒𝑟𝑠
𝑖𝑙𝑜𝑓 𝑓 𝑠𝑒𝑡

𝑓𝑚𝑥 where

𝑖𝑙𝑜 𝑓 𝑓 𝑠𝑒𝑡 is the pixel offset of the center of the AprilTag
𝑖𝑡𝑎𝑔𝑐𝑒𝑛𝑡𝑒𝑟 =

𝑎𝑏𝑠 (𝑖𝑈𝐶 +𝑖 𝐿𝐶) and the image center along the horizontal axis:

𝑖𝑙𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 320 −𝑖 𝑡𝑎𝑔𝑐𝑒𝑛𝑡𝑒𝑟,𝑥 (320 is the pixel median of the image

width).

Additionally, we use the LiDAR to find similar estimates of lateral

offset 𝑙𝑙 and vertical distance 𝛿𝑙 between the two vehicles. Since

the LiDAR generates a 360-degree scan at one height only, we

have to make the leading vehicle distinguishable. To that end, we

attach a 0.15x0.45 meter plate to the back of the leading vehicles

as seen in Fig. 5. The plate appears in the scan of the LiDAR as a

cluster of neighboring points (typically 3 to 11 points depending

on distance). To detect that cluster, we use the following pipeline:

1) mask LiDAR scan, 2) cluster points, and 3) select the appropriate

cluster. Since the leader will only be within a certain angular and

0°

60°60°

Figure 7: The LiDAR starts at position 90-degrees andmoves

clockwise. We are only using 120 degrees which is divided

equally from the starting position to the left and right sides.

vertical distance from the follower, we mask the LiDAR scan to

include a 120-degree angle centered about the vehicle’s heading as

indicated in Fig. 7 and a range from 0.1 to 2 meters. We then pass

through the remaining points in a counter-clockwise manner and

identify clusters by adding a point to the cluster if its distance to the

previous point is less than 0.1 meters (to account for the naturally

separated points and LiDAR error). A new cluster is identified if

that threshold is exceeded. We can then calculate the location of

each cluster by averaging a cluster’s 𝐶 points’ (
𝑙𝑝 ∈ 𝐶) coordinates

in the LiDAR frame:

𝑙𝑥 =
Σ𝑙𝑝∈𝐶 (𝑙𝑝𝑥)

𝑁
;

𝑙𝑦 =
Σ𝑙𝑝∈𝐶 (𝑙𝑝𝑦)

𝑁
(17)

where𝑁 is the number of points in that cluster𝐶 . The orientation of

the plate is determined through a similar approach as that described

before: the points are combined into a matrix for which the covari-

ance matrix is obtained. The eigenvector with the largest eigenvalue

is the vector representing the orientation of the plate. The angle is

found as the angle between that vector and the horizontal axis.

Similar to the camera curve-detection weighing algorithm, we

deploy a weighting algorithm for all clusters primarily influenced

by the closeness of the cluster centers to the previous center. The

winner is selected as the cluster representing the front vehicle plate

and the values 𝑙𝑙 =
𝑙 𝑥 and 𝛿𝑙 =

𝑙 𝑦 are populated.

That 𝑙𝑐 and 𝛿𝑐 are comparable to 𝑙𝑙 and 𝛿𝑙 respectively. The

lateral offsets are expected to be similar and the vertical distances

are only expected to differ by the camera-LiDAR separation of

about 0.21 meters. Experimentally, however, these values might

not match as exactly as expected due to limitations in resolution

and computational power. Nonetheless, that is accounted for in the

secure platoon design.

Our secure platoon design combines two main components: se-

curing sensor with SAVIOR [38] and securing cross-coupled data

in Shared Reality. As an overview, SAVIOR helps secure individual

sensors by detecting abrupt and moderate changes to the sensor

data, but it fails at detecting slow “realistic” attacks. The Shared Re-
ality module compares cross-coupled sensor data, i.e., similar data

belonging to physical objects detected by multiple sensors. Thus,

even with slow attacks on a sensor, the attack could still be detected

as long as it is not coordinated with attacks on all the sensors and
cross-coupled data that are involved in the shared reality.

4.4 Secure Pipeline

We now implement the design we originally presented in Fig. 3.

We use raw LiDAR and camera data in the form of a distance scan

and image matrix respectively. The data is passed to the data pre-

processing module which performs all the operations on data to be

used by the anomaly detectors. At its output, we get the estimates

for the vertical and lateral distances between the two successive

vehicles, information about the orientation of the line, and the

lateral offset of the follower car relative to it. The inter-vehicular

information is passed to the Shared Reality and the SAVIOR-based

“improved detectors” modules. The latter also receives estimates

of the vehicle’s (follower vehicle) position relative to the line (line

information) and the speed estimated by wheel encoders. The two

modules operate as discussed in the previous subsections.

At the output of each module, we have boolean decisions on

whether or not the module has detected an attack. The Shared
Reality module flags an attack when the cross-coupled (shared)

information between the sensors passes a certain threshold. The

improved detectors module flags an attack when the data of one or

both of the sensors is inconsistent with the prediction and passes

a certain threshold. The modules inform which of the sensors is

under attack as well. The last step is the controller which takes the

boolean attack flags and selects the appropriate control sequence.

The controller is designed with many factors in mind. For ex-

ample, suppose that a system has five sensors all of which have

cross-coupled components checked by Shared Reality. If one sensor
is flagged as under attack, the controller may ignore data coming

from the flagged sensor, continue normal navigation, but initiate

an attack confirmation sequence to reaffirm the attack status. If

two sensors are flagged, the controller may do the same thing but

also alert a human operator or an AV security company that the

system might be under attack. However, if three of the five sensors

are flagged, the controller may direct the vehicle to the nearest safe

emergency parking space and completely shut down the vehicle.

Thus, the controller is designed based on the available sensors, the

sensors, and data involved in Shared Reality, and the level of safety

desired.

In our case, we have only two sensors for this demonstration.

Since the controller decision-making is not our main focus, we

designed a simple controller decision-making sequence: if either

one of the sensors is under attack, halt the system immediately; if

no attacks are detected, continue normal platoon operation.

As we stated before, since the Shared Reality module checks for

slow drifting attacks while the SAVIOR modules check for medium

to abrupt changes, either one or both modules might issue an attack

flag. In either case, the existence of at least one flag indicates an

attack. This secures the AVs to a wide range of attacks.

Earlier we discussed sensor fusion and explained the differences

between that and our Shared Reality module. In light of this section,

it should be clear that the two methods have different assumptions,

operations, and goals. Unlike sensor fusion which uses statistical

tools to combine “safe” (but uncertain/noisy) data to improve overall

detection quality, Shared Reality uses CUSUM modules to analyze

the change in the error between cross-coupled data to detect attacks.

Realizing the difference between sensor fusion and Shared Reality
allows for the integration of the two tools. For example, the sensor

fusion algorithm could take the flags from Shared Reality to ignore

sensors under attack. This would improve the fusion quality and

protect it. Further, we speculate that sensor fusion might be used

to indicate whether a sensor is outside of its region of operation

to prevent false-positive alerts in the Shared Reality module. These

are topics of future work.

5 EVALUATION

For our experiments, we place two COMO cars on a circular track.

Both AVs run the line-following algorithm. The first vehicle is con-

sidered the leading vehicle and the second vehicle is considered the

follower vehicle. The follower vehicle additionally runs a version

of the platooning algorithm with the secure platoon pipeline for

anomaly detection. While the vehicles are in charge of following

the line, the second vehicle’s platooning algorithm is also in charge

of keeping track of the leading vehicle and also maintaining a dis-

tance of approximately 60 cm at all times. We proceeded to attack

both sensors, the camera, and the LiDAR, by injecting false data

individually.

5.1 Attacks

We create a malicious node in ROS that publishes bad data at rates

higher than the legitimate sensor. This malicious node can repre-

sent a software attack or a physical attack. Fig. 8 depicts how our

malicious module injects data in ROS.

In order to attack the camera, we first recorded footage of the

compromised path. Since the vehicle is running the anomaly detec-

tor SAVIOR, abrupt and moderate changes will be detected. In order

to craft this attack, we recorded small movements of the line and

the AprilTag towards the left of the screen. Since these changes are

gradual and small, they could be caused by normal behavior and

therefore SAVIOR will not be able to recognize these changes as

malicious (e.g., during experimentation the vehicle started turning

to the left accordingly to account for the changes). Fig. 9 shows

Camera

Publish
Subscribe

Sensor data

Malicious
module

Publish

Depending
modules

Figure 8: A malicious node can publish data to any topic in

the system once an attacker has gained access. Underlying

modules that depend on critical data will act uponmalicious

tampered data due to a lack of verification.

how the vehicle is interpreting the attack. From image a) to c), the

line and leading vehicle are gradually moving towards the left side

of the screen. Despite our improvements to the camera by adding

the AprilTag detector, an attacker can inject images of the line and

the AprilTag and still remain undetected.

Injected
image

Line
recognition

a)

b)

c)

Figure 9: The injected image is shownon the left column and

the line being recognized is shown on the right column. a)

shows the initial injected image and how the system is rec-

ognizing it. b) and c) show slow movement towards the left

side of the screen. The line detected shows gradual move-

ment that will not be detected by previous approaches

Similarly, the LiDAR sensor is also vulnerable to the same type of

attack. Since we implemented an anomaly detector using the LiDAR

data, abrupt and moderate changes will be detected as well but

subtle consistent movements will not. Fig. 10 shows how we were

able to inject LiDAR data by moving the leading vehicle gradually

to the right while the line remained in the middle. This attack is

also not detected by the previous implementation due to the fact

that changes are very minimal.

b)a) c)

Figure 10: LiDAR attack. From a) to c), the line remains in

the middle while the leading vehicle is moving gradually to

the right. Since the movement is not abrupt or moderate, it

will not be detected by our LiDAR anomaly detector alone.

Themain reasonwhy these attacks are not detected by SAVIOR is

the fact that the changes are done very slowly which indicates that

its residual is smaller than the expected value that is subtracted from

the CUSUM algorithm (recall that the expected value is subtracted

from each sensor to prevent the algorithm from increasing during

normal execution). Attacks identified by SAVIOR required a sudden

change that would produce a residual that was bigger than the

expected subtracted value and the accumulation eventually resulted

in an alarm being raised. In order to defend against these types

of attacks in which the attacker knows the underlying cumulative

algorithm and he or she is able to constantly inject data that will

cause a deviation not detected by previous work, we leveraged

sensor redundancy (camera and LiDAR) and implemented a solution

in our Shared Reality module.

5.2 Shared Reality Comparison

While the LiDAR and the camera sensors are both used for different

purposes in the vehicle with the camera used for navigation and

the LiDAR used for collision avoidance, we were able to leverage

this sensor redundancy to improve the detection of these types of

attacks. This is due to an added protection in our Shared Reality
module that synchronizes the camera and the LiDAR to ensure that

both sensors are experiencing the same reality. If an attacker is able

to insert malicious inputs into the camera while making sure of

staying within the threshold boundaries (slow attacks), SAVIOR

alone will not be able to detect it. But by using LiDAR data, we

were able to ensure that even small deviations that will normally

not be detected by a single sensor, can be noted and alarm can be

raised. Attacks on each specific sensor, the camera or the LiDAR,

are able to be detected by our Shared Reality module.

Fig. 11 depicts the comparison between SAVIOR and the Shared
Reality module with an attack targeting the camera. The y-axis

represents the residual percentage needed to raise an alarm with

respect to the detector (e.g., one equals an attack has been detected)

and the x-axis represents time. For this experiment, we set our

Shared Reality module to detect anomalies when the camera and the

LiDAR lateral position differ by more than 10cm. Since the changes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
es

id
ua

l P
er

ce
nt

ag
e

Time

Attack Detection with Shared Reality

Shared reality
SAVIOR

Attack launched

Attack detected

Figure 11: The Shared Reality module is able to detect slow

attacks that mimic normal behavior while they still remain

undetected by SAVIOR.

produced by our slow attack are minimal, SAVIOR’s residuals do not

go beyond 20%. On the other hand, once the attack was launched,

our Shared Reality module started accumulating residual until they

reached 100% (meeting our threshold of 10 cm).

D
et

ec
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
0

0.
00

5

0.
01

0

0.
01

5

0.
02

0

0.
02

5

0.
03

0

0.
03

5

0.
04

0

0.
04

5

0.
05

0

0.
05

5

0.
06

0

Shared Reality Vs SAVIOR

Shared Reality
SAVIOR

Bias

Figure 12: Bias attack detection between Shared Reality and

SAVIOR. As the bias is increased, SAVIOR is able to detect

more attacks while Shared Reality is detecting all attacks at

several intensity intervals.

We also evaluate Shared Reality and SAVIOR in terms of granu-

larity. For this experiment, we inject a small bias deviation to the

vehicle position ranging from 0.005 to 0.06 meters. For each bias

injected, we perform 11 experiments with 11 distinct thresholds

ranging from 50 to 150 percent variations with 100 percent being

the normal threshold of the system (e.g., the threshold selected

under normal behavior that does not raise false alarms). When the

bias is zero, both systems do not detect any attacks as the system is

under normal behavior (the detection of an attack under zero bias

would be a false positive). Once we start injecting a bias of 0.005 m,

Shared Reality detects attacks for all 11 threshold variations (0.5 to

1.5). At the same bias, SAVIOR is only able to detect an attack in

45.45% of the 11 variations. While Shared Reality is able to identify

all attacks under all injected biases, SAVIOR gradually increases its

detection as the bias grows. Both systems are able to identify all

attacks when the bias is greater than or equal to 0.055 m. Fig. 12

depicts the results.

5.3 Performance

We tested the efficiency of both SAVIOR and Shared Reality at differ-

ent attack frequencies in order to find the point in which SAVIOR

would start identifying attacks. In order to do this, we injected an

image into the camera sensor with slight pixel movements every

frame. Fig. 13 shows the results of moving an image from 5 pixels to

100 pixels per frame to the left side of the screen. The time shown in

seconds reveals that Shared Reality takes 6.0676 seconds to detect

movement at 5 pixels while it is reduced to 0.17 seconds at 100

pixels. This is due to the fact that the faster the change causes dis-

crepancies to accumulate faster. SAVIOR was able to detect attacks

starting at 70 pixels per frame in 0.04 seconds and stayed relatively

close to detecting 100-pixel changes at 0.07 seconds. While the

Shared Reality module continued decreasing its time to detect the

attack, once SAVIOR started detecting the attacks, it was much

faster at identifying them. This states that while the addition of a

Shared Reality module improves the detection of "small consistent

attacks", it is not a replacement for the presence of an anomaly

detector but a complementary tool.

Ti
m

e
(s

)

Pixels per Frame

0

1

2

3

4

5

6

7

5 10 15 20 25 30 50 60 70 80 90 100

Shared reality Vs Savior Detection Time

Shared reality
SAVIOR

∞

Figure 13: The injected image was moved to the right side at

different pixel rates. Shared Reality starts detecting attacks

at 5 pixels in 6.04 s and gradually decreases detection time to

0.17 s at 100 pixels. SAVIOR starts detecting attacks at 70 pix-

els in 0.04 s with similar detection time as pixels increases.

We also evaluated the overhead introduced to the system by

Shared Reality in terms of CPU utilization. Since ROS operates mod-

ules independently from each other, we opted to record utilization

information from the OS point of view. To achieve this, we recorded

processor utilization for each module (including threads) while the

vehicle executed the platoon algorithm. We collected about 750

measurements of CPU utilization for all modules. This information

is then aggregated using a Python script that computes the average

of all available measurements per module including their threads.

Table 1 summarizes the CPU Utilization for the modules involved

in the implementation.

It is a well-known fact that camera processing is among the most

computationally expensive tasks. This is primarily due to the size

of the data being processed. Even for our small 640x480 image, the

matrix representing the image is 307200 pixels each of which is

Module CPU utilization

camera_preprocessing 14.6716%

LiDAR_pre-processing 11.2368%

lidar_collision_avoidance 10.9354%

process_line 9.05788%

img_preprocessing 6.48217%

shared_reality 4.96333%

Camera+SAVIOR 3.11916%

LiDAR+SAVIOR 3.06290%

arduino_node 2.53407%

elp_cam_bridge 1.17409%

line_follower 1.10546%

lidar_follower 1.00095%

controller_low_level 0.98185%

platoon 0.86881%

ros_launch 0.43253%

rosmaster 0.31747%

rosout 0.29065%

Table 1: CPU utilization of modules inside of the ground ve-

hicle. Shared Reality adds a 4.963% of CPU utilization to the

system while both implementations of SAVIOR remain at

around 3.1%.

an 8-bit value (2.4576 million bits). Compared to that, the LiDAR

consists of 360 data points where each point is a float (32 bits) total-

ing only 11,520 bits. This results in the camera data being over 200

times larger than the LiDAR data. Table 1 reaffirms that result. The

‘camera_preprocessing’ and ‘img_preprocessing’ modules consist

of nodes that perform various image processing tasks before sub-

sequent nodes can extract useful information. These tasks include

identifying regions of interest, cropping them, and performing a

spatial transformation to obtain the top-down image of the line.

These modules use up over 20% of the CPU utilization. Process-

ing the line image (‘process_line’) performs the necessary image

processing on the cropped image containing the line to extract the

path information (relative position and orientation between the

line and the car). Even with a smaller cropped image, the mod-

ule still required about 9% CPU utilization. Shared Reality adds

on CPU utilization of 4.963%. This is slightly higher than SAVIOR.

Both implementations of SAVIOR (camera and LiDAR) utilize about

3.1% of the CPU. The modules with the highest CPU utilization are

the modules in charge of the camera and LiDAR pre-processing.

These modules provide the heavy computations that will be used

later on in the anomaly detector. The process_line module and

image_processing modules perform computations related to the

line following algorithm. The arduino_node module is in charge of

sending the actuator commands to the wheels. The elp_cam_bridge

module receives data from the camera and makes it available to the

system. The line and LiDAR follower modules are instances that

keep track of the movements of the line and the leading vehicle

respectively and calculates the offset between the vehicle and the

center of the line. The controller_low_level module serves as a mes-

sage interface between the computer board and the microcontroller

that communicates with the actuators. The platoon module is in

charge of following the leading vehicle and adding or reducing

speed if the leading vehicle is closer than the defined threshold.

Finally, the ros_launch, rosmaster, and rosout modules perform

operations related to ROS such as launching several modules si-

multaneously, providing communication between modules, and

providing an interface to log information about the system.

6 RELATEDWORK

Attacks on vehicle sensors are becoming increasingly sophisticated.

Researchers concerned with LiDAR spoofing attacks have demon-

strated how this sensor can be tampered with to cause false positive

detection of a front vehicle. The authors of CARLO demonstrated

how LiDAR front-vehicle detection with machine learning can be

attacked with a small number of spoofed points in introduced their

solution to detect spoofing attacks using vehicle occlusion pat-

terns and the projection of LiDAR data onto different planes [44].

RADARs have also been attacked by injecting false data to make

objects appear closer than they actually are [14]. This is achieved by

capturing the RADAR signals and selecting a delay before sending

a frequency with the desired distance chosen by the attacker. Some

of these attacks do not require specialized hardware as demon-

strated attacks on camera and LiDAR sensors using commodity

hardware to perform binding, jamming, replay, and spoofing at-

tacks showed its feasibility [36]. Attacks have also been considered

for platooning vehicles as [24] exposed potential vulnerabilities

with LiDAR and RADAR sensors where malicious information can

be shared with a targeted vehicle. Other approaches have focused

on the underlying machine learning algorithms as [11] showed that

vulnerabilities of LiDARs can be exploited even in settings in which

AVs use machine-learning object detection systems are present and

[16] demonstrated evasion attacks performed against Convoluted

Neural Networks (CNN) classifying camera images to predict the

steering angle.

Other works exposed sensor vulnerabilities related to RADARs,

cameras, and ultrasonic sensors requiring contact-less interaction

with the vehicle. These attacks have demonstrated that it is possible

to blind and deceive AVs [54]. There have been approaches that

focused on analyzing sensor data being detected by the vehicle.

[53] proposed a framework for identifying cyber-attacks and faulty

sensor readings by combining a CNN and a Kalman Filter anomaly

detector that observe incoming data from multiple sensors and

make real-time decisions on whether the data is anomalous or not.

From this literature review, it is clear that securing sensors to

attacks is not an easy endeavor and is still actively pursued. Even

well-trained machine learning algorithms can still be attacked,

sometimes with simple and physically impossible data [44], but it

would remain undetected. Our proposed shared reality will limit

the effectiveness of these sensor attacks. Shared reality is related

to sensor fusion and there has been extensive research on sensor

fusion [7, 10, 15, 21, 35, 51, 52, 56]. The goal of sensor fusion is to

improve the quality of sensor measurements. Sensor fusion, how-

ever, is not intended to detect malicious sensor tampering. In our

case, instead of attempting to improve an estimate from different

sensor sources, our goal is to create an independent estimate of the

physical state of the world with each sensor, and then test if both

sensors perceive the same physical world.

7 CONCLUSION

In this work we improved upon the EKF-based camera anomaly

detector SAVIOR [38] by: 1) applying SAVIOR to 2D LiDAR data

and thus securing multiple sensors to abrupt and medium changes,

2) introducing the light-weight Shared Reality module to monitor

cross-coupled data across multiple sensors corresponding to the

same physical object which enables the detection of small drifting

attacks on a subset of the sensors, and 3) combining the SAVIOR

and Shared Reality modules into the secure pipeline which ends

with a control decision module that can be modified depending on

the sensors and data involved in the Shared Reality module. We

demonstrate the flaws of using SAVIOR alone and the improved

attack detection range with the secure pipeline highlighting the

strengths of each module. In the end, the AVs are secured against

medium and abrupt changes as well as the more powerful attack

pattern where the attacker knows of the SAVIOR anomaly detection

mechanisms and avoids it by injecting a small offset that accumu-

lates over time to create a significant deviation. While SAVIOR

improved the detection of malicious input into the system, this

work improved the detection of a new type of attack by leveraging

sensor redundancy and introducing a module for reality checking

that ensures that participating sensors make attacks much harder.

Our design is more resilient than previous work because an at-

tacker now has to take into account how other sensors would react

if drastic or small changes are introduced into the system.We tested

our implementation on a vehicle platooning algorithm and showed

that sensor redundancy improves the security of the AVs with an

increased overhead of 4.96333%.

8 DISCUSSION AND FUTURE DIRECTIONS

Our proposed method uses SAVIOR modules to secure sensors

to medium and abrupt changes and the Shared Reality module to

secure the AV to slow drifting changes by cross-coupling data across

multiple sensors. Nonetheless, the proposed secure pipeline is not

perfect. There is still room for improvement based on the following:

• The number of sensors and data cross-coupled through Shared
Reality is important. With just two sensors and two distinct

features (lateral and vertical inter-vehicle distance), as we

have, the AV’s secure pipeline control decision module must

take escalated measures immediately. Having more sensors

and more cross-coupled physical features further secures the

platform.

• A slow attack on all sensors and that affect all cross-coupled
data in the same way would thwart the Shared Reality mod-

ule. However, having to affect all cross-coupled data in the

same way forces the attacker to not only craft the attack

to be a small drifting one, but also craft it so that most

cross-coupled features across most sensors remain within

the Shared Reality thresholds. This increases the difficulty of

launching successful and undetected attacks.

• Incorporation of Shared Reality with sensor fusion: it would

be interesting to merge aspects of both modules to ensure

sensor fusion sensors are secure and confirm that Shared
Reality sensors are operating properly.

We finalize by emphasizing three important features of our pipeline:

1) the Shared Reality module is computationally lightweight, 2)

the pipeline and particularly the Shared Reality module serve as

frameworks that can be expanded or reduced depending on the

available hardware and operation setting, and 3) even with three

sensors, multiple cross-coupled features can be used raising the

difficulty required for an attack.

ACKNOWLEDGMENTS

This research was sponsored by the Army Research Office and

was accomplished under Grant Number W911NF-20-1-0253. This

research is also supported by NSF CNS-1929410, CNS-1931573, and

AFRL FA8750-19-2-0010. The views and conclusions contained in

this document are those of the authors and should not be interpreted

as representing the official policies, either expressed or implied,

of the Army Research Office or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for

Government purposes notwithstanding any copyright notation

herein

REFERENCES

[1] Platooning trucks to cut cost and improve efficiency (2018), https://www.energy.

gov/eere/articles/platooning-trucks-cut-cost-and-improve-efficiency

[2] Mpc-berkeley/barc. https://github.com/MPC-Berkeley/barc (2020)

[3] Odroid-xu4 (Aug 2020), https://wiki.odroid.com/odroid-xu4/odroid-xu4

[4] Ahmed, C.M., Murguia, C., Ruths, J.: Model-based attack detection scheme for

smart water distribution networks. In: Asia Conference on Computer and Com-

munications Security (AsiaCCS). pp. 101–113. ACM (2017)

[5] Alam, A., Besselink, B., Turri, V., Martensson, J., Johansson, K.H.: Heavy-duty

vehicle platooning for sustainable freight transportation: A cooperative method

to enhance safety and efficiency. IEEE Control Systems Magazine 35(6), 34–56

(2015)

[6] Aoudi, W., Iturbe, M., Almgren, M.: Truth will out: Departure-based process-level

detection of stealthy attacks on control systems. In: Conference on Computer

and Communications Security (CCS). pp. 817–831. ACM (2018)

[7] Asvadi, A., Garrote, L., Premebida, C., Peixoto, P., Nunes, U.J.: Multimodal vehicle

detection: fusing 3d-lidar and color camera data. Pattern Recognition Letters 115,

20–29 (2018)

[8] Bergen, M.: Uber has spent more than $1 billion on driverless cars (April

2019), https://www.bloomberg.com/news/articles/2019-04-11/uber-has-spent-

more-than-1-billion-on-driverless-cars

[9] Bishop, R.: U.s. states are allowing automated follower truck platooning while

the swedes may lead in europe (May 2020), https://www.forbes.com/sites/

richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-

platooning-while-the-swedes-may-lead-in-europe/#38106e60d7e8

[10] Blasch, E., Bossé, E., Lambert, D.: High-Level Information Fusion Management

and System Design. Artech House, Inc., USA, 1st edn. (2012)

[11] Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., Chen, Q.A., Fu, K.,

Mao, Z.M.: Adversarial sensor attack on lidar-based perception in autonomous

driving. Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (Nov 2019). https://doi.org/10.1145/3319535.3339815,

http://dx.doi.org/10.1145/3319535.3339815

[12] Cao, Y., Xiao, C., Cyr, B., Zhou, Y., Park, W., Rampazzi, S., Chen, Q.A., Fu, K., Mao,

Z.M.: Adversarial Sensor Attack on LiDAR-based Perception in Autonomous

Driving. In: Conference on Computer and Communications Security (CCS) (2019)

[13] Cardenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang, C.Y., Sastry, S.: Attacks

against process control systems: risk assessment, detection, and response. In: Asia

Conference on Computer and Communications Security (AsiaCCS). pp. 355–366

(2011)

[14] Chauhan, R., Gerdes, R.M., Heaslip, K.: Demonstration of a false-data injection

attack against an fmcw radar. In: Proc. Embedded Security Cars (ESCAR). p. 135

(2014)

[15] Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network

for autonomous driving. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. pp. 1907–1915 (2017)

[16] Chernikova, A., Oprea, A., Nita-Rotaru, C., Kim, B.: Are self-driving cars secure?

evasion attacks against deep neural networks for steering angle prediction (2019)

[17] Choi, H., Lee,W.C., Aafer, Y., Fei, F., Tu, Z., Zhang, X., Xu, D., Xinyan, X.: Detecting

attacks against robotic vehicles: A control invariant approach. In: Conference on

Computer and Communications Security (CCS). pp. 801–816. ACM (2018)

[18] Davidson, D., Wu, H., Jellinek, R., Ristenpart, T., Singh, V.: Controlling UAVs with

sensor input spoofing attacks. In: Workshop on Offensive Technologies (WOOT).

pp. 221–231. USENIX Association (2016)

[19] Etigowni, S., Tian, D.J., Hernandez, G., Zonouz, S., Butler, K.: Cpac: securing

critical infrastructure with cyber-physical access control. In: Annual Computer

Security Applications Conference (ACSAC). pp. 139–152. ACM (2016)

[20] Fu, K., Xu, W.: Risks of trusting the physics of sensors. Communications of the

ACM 61(2), 20–23 (2018)

[21] Gao, H., Cheng, B., Wang, J., Li, K., Zhao, J., Li, D.: Object classification using

cnn-based fusion of vision and lidar in autonomous vehicle environment. IEEE

Transactions on Industrial Informatics 14(9), 4224–4231 (2018)

[22] Giraldo, J., Urbina, D., Cardenas, A., Valente, J., Faisal, M., Ruths, J., Tippenhauer,

N.O., Sandberg, H., Candell, R.: A survey of physics-based attack detection in

cyber-physical systems. ACM Computing Surveys (CSUR) 51(4), 1–36 (2018)

[23] Hadžiosmanović, D., Sommer, R., Zambon, E., Hartel, P.H.: Through the eye of the

PLC: semantic security monitoring for industrial processes. In: Annual Computer

Security Applications Conference (ACSAC). pp. 126–135. ACM (2014)

[24] Jagielski, M., Jones, N., Lin, C.W., Nita-Rotaru, C., Shiraishi, S.: Threat detection

for collaborative adaptive cruise control in connected cars. In: Proceedings of the

11th ACM Conference on Security & Privacy in Wireless and Mobile Networks.

pp. 184–189 (2018)

[25] Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An open

approach to autonomous vehicles. IEEE Micro 35(6), 60–68 (2015)

[26] Keen, T.: Experimental security research of tesla autopilot. Tencent Keen Security

Lab (2019), https://keenlab.tencent.com/en/whitepapers/Experimental_Security_

Research_of_Tesla_Autopilot.pdf

[27] Kyle Hyatt, C.P.: Self-driving cars: A level-by-level explainer of autonomous

vehicles (March 2018), https://www.cnet.com/roadshow/news/self-driving-car-

guide-autonomous-explanation/

[28] Laris, M.: Tesla running on ‘autopilot’ repeatedly veered toward the spot

where apple engineer later crashed and died, federal investigators say (Feb

2020), https://www.washingtonpost.com/transportation/2020/02/11/telsa-

running-autopilot-repeatedly-veered-toward-spot-where-apple-engineer-

later-crashed-died-federal-investigators-say/

[29] Lepetit, V., Moreno-Noguer, F., Fua, P.: Epnp: An accurate o (n) solution to the

pnp problem. International journal of computer vision 81(2), 155 (2009)

[30] Liang, K.Y., Mårtensson, J., Johansson, K.H.: Heavy-duty vehicle platoon forma-

tion for fuel efficiency. IEEE Transactions on Intelligent Transportation Systems

17(4), 1051–1061 (2015)

[31] Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estima-

tion in electric power grids. In: Conference on Computer and Communications

Security (CCS). pp. 21–32. ACM (2009)

[32] Lynberg, M.: Automated vehicles for safety (Nov 2018), https://www.nhtsa.gov/

technology-innovation/automated-vehicles-safety

[33] Matheson, R.: Study measures how fast humans react to road hazards (Aug 2019),

http://news.mit.edu/2019/how-fast-humans-react-car-hazards-0807

[34] Nassi, B., Nassi, D., Ben-Netanel, R., Mirsky, Y., Drokin, O., Elovici, Y.: Phantom

of the adas: Phantom attacks on driver-assistance systems. Cryptology ePrint

Archive, Report 2020/085 (2020), https://eprint.iacr.org/2020/085

[35] Ouyang, Z., Liu, Y., Zhang, C., Niu, J.: A cgans-based scene reconstruction model

using lidar point cloud. In: 2017 IEEE International Symposium on Parallel and

Distributed Processing with Applications and 2017 IEEE International Conference

on Ubiquitous Computing and Communications (ISPA/IUCC). pp. 1107–1114.

IEEE (2017)

[36] Petit, J., Stottelaar, B., Feiri, M.: Remote attacks on automated vehicles sensors :

Experiments on camera and lidar (2015)

[37] Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles

sensors: Experiments on camera and lidar. Black Hat Europe 11 (2015)

[38] Quinonez, R., Giraldo, J., Salazar, L., Bauman, E., Cardenas, A., Zhiqiang, L.:

SAVIOR: Securing autonomous vehicles with robust physical invariants. In:

29th USENIX Security Symposium (USENIX Security 20). USENIX Association,

Boston, MA (aug 2020), https://www.usenix.org/conference/usenixsecurity20/

presentation/quinonez

[39] Rajamani, R.: Vehicle dynamics and control. Springer Science & Business Media

(2011)

[40] Romaniuk, S., Gosiewski, Z.: Kalman filter realization for orientation and position

estimation on dedicated processor. acta mechanica et automatica 8(2), 88–94

(2014)

[41] Sato, T., Shen, J., Wang, N., Jia, Y.J., Lin, X., Chen, Q.A.: Security of deep learn-

ing based lane keeping system under physical-world adversarial attack. arXiv

preprint arXiv:2003.01782 (2020)

[42] Shin, H., Kim, D., Kwon, Y., Kim, Y.: Illusion and dazzle: Adversarial optical

channel exploits against lidars for automotive applications. In: International

Conference on Cryptographic Hardware and Embedded Systems (CHES). pp.

445–467. Springer (2017)

[43] Son, Y.M., Shin, H.C., Kim, D.K., Park, Y.S., Noh, J.H., Choi, K.B., Choi, J.W., Kim,

Y.D.: Rocking drones with intentional sound noise on gyroscopic sensors. In:

USENIX Security Symposium (USENIX Security). USENIX Association (2015)

[44] Sun, J., Cao, Y., Chen, Q.A., Mao, Z.M.: Towards robust lidar-based perception in

autonomous driving: General black-box adversarial sensor attack and counter-

measures. arXiv preprint arXiv:2006.16974 (2020)

[45] Suzuki, S., et al.: Topological structural analysis of digitized binary images by

border following. Computer vision, graphics, and image processing 30(1), 32–46

(1985)

[46] Trippel, T., Weisse, O., Xu, W., Honeyman, P., Fu, K.: Walnut: Waging doubt on the

integrity of mems accelerometers with acoustic injection attacks. In: European

Symposium on Security and Privacy (EuroS&P). pp. 3–18. IEEE (2017)

[47] Tsugawa, S., Jeschke, S., Shladover, S.E.: A review of truck platooning projects

for energy savings. IEEE Transactions on Intelligent Vehicles 1(1), 68–77 (2016)

[48] Tu, Y., Lin, Z., Lee, I., Hei, X.: Injected and delivered: fabricating implicit con-

trol over actuation systems by spoofing inertial sensors. In: USENIX Security

Symposium (USENIX Security). pp. 1545–1562. USENIX Association (2018)

[49] Urbina, D.I., Giraldo, J.A., Cardenas, A.A., Tippenhauer, N.O., Valente, J., Faisal,

M., Ruths, J., Candell, R., Sandberg, H.: Limiting the impact of stealthy attacks on

industrial control systems. In: Conference on Computer and Communications

Security (CCS). pp. 1092–1105. ACM (2016)

[50] Wakabayashi, D.: Self-driving uber car kills pedestrian in arizona, where

robots roam (March 2018), https://www.nytimes.com/2018/03/19/technology/

uber-driverless-fatality.html

[51] Wang, Z., Wu, Y., Niu, Q.: Multi-sensor fusion in automated driving: A survey.

IEEE Access (2019)

[52] Wu, T.E., Tsai, C.C., Guo, J.I.: Lidar/camera sensor fusion technology for pedes-

trian detection. In: 2017 Asia-Pacific Signal and Information Processing Asso-

ciation Annual Summit and Conference (APSIPA ASC). pp. 1675–1678. IEEE

(2017)

[53] Wyk, F., Wang, Y., Khojandi, A., Masoud, N.: Real-time sensor anom-

aly detection and identification in automated vehicles (08 2018).

https://doi.org/10.13140/RG.2.2.32141.38888

[54] Yan, C.: Can you trust autonomous vehicles : Contactless attacks against sensors

of self-driving vehicle (2016)

[55] Yan, C., Xu, W., Liu, J.: Can you trust autonomous vehicles: Contactless attacks

against sensors of self-driving vehicle. DEF CON 24 (2016)

[56] Zhong, Z., Liu, S., Mathew, M., Dubey, A.: Camera radar fusion for increased

reliability in adas applications. Electronic Imaging 2018(17), 258–1 (2018)

https://www.energy.gov/eere/articles/platooning-trucks-cut-cost-and-improve-efficiency
https://www.energy.gov/eere/articles/platooning-trucks-cut-cost-and-improve-efficiency
https://github.com/MPC-Berkeley/barc
https://wiki.odroid.com/odroid-xu4/odroid-xu4
https://www.bloomberg.com/news/articles/2019-04-11/uber-has-spent-more-than-1-billion-on-driverless-cars
https://www.bloomberg.com/news/articles/2019-04-11/uber-has-spent-more-than-1-billion-on-driverless-cars
https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/#38106e60d7e8
https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/#38106e60d7e8
https://www.forbes.com/sites/richardbishop1/2020/05/02/us-states-are-allowing-automated-follower-truck-platooning-while-the-swedes-may-lead-in-europe/#38106e60d7e8
http://dx.doi.org/10.1145/3319535.3339815
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation/
https://www.cnet.com/roadshow/news/self-driving-car-guide-autonomous-explanation/
https://www.washingtonpost.com/transportation/2020/02/11/telsa-running-autopilot-repeatedly-veered-toward-spot-where-apple-engineer-later-crashed-died-federal-investigators-say/
https://www.washingtonpost.com/transportation/2020/02/11/telsa-running-autopilot-repeatedly-veered-toward-spot-where-apple-engineer-later-crashed-died-federal-investigators-say/
https://www.washingtonpost.com/transportation/2020/02/11/telsa-running-autopilot-repeatedly-veered-toward-spot-where-apple-engineer-later-crashed-died-federal-investigators-say/
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
http://news.mit.edu/2019/how-fast-humans-react-car-hazards-0807
https://eprint.iacr.org/2020/085
https://www.usenix.org/conference/usenixsecurity20/presentation/quinonez
https://www.usenix.org/conference/usenixsecurity20/presentation/quinonez
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Model and Assumptions
	2.2 Platooning
	2.3 Physical Model of Vehicle
	2.4 Physics-Based Attack Detection

	3 Shared Reality Design
	3.1 CUSUM Algorithm
	3.2 SAVIOR
	3.3 Shared Reality Vs Sensor Fusion

	4 Implementation
	4.1 Path Detection
	4.2 Path Following
	4.3 Additional Sensor Processing
	4.4 Secure Pipeline

	5 Evaluation
	5.1 Attacks
	5.2 Shared Reality Comparison
	5.3 Performance

	6 Related Work
	7 Conclusion
	8 Discussion and Future Directions
	References

