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Abstract: In this study, the effect of attacks on networked systems is studied and a new security index to analyse the impact of
such attacks using ℋ2 norms of attacks to target and monitoring outputs is proposed. In addition, optimisation problems for
selecting inputs or outputs that point to attacks with maximum impact and least detectability are posed, and subsequently
solved. To demonstrate the applicability of the analysis methods proposed in this study, the IEEE 9-bus and 50-generator 145-
bus systems are considered as test cases.

1 Introduction
Critical infrastructures, such as electricity grids, water distribution
networks, and transport systems, are of significant importance as
they underpin all facets of modern life and are thus lucrative targets
for malicious agents. Recently, many studies have focused on
security of the cyber-physical systems [1, 2]. For instance, to
analyse the vulnerabilities of measurement systems in power
networks to false data attacks, a security index was introduced in
[3]. The index was defined to be the minimum number of
measurements that need to be tampered so that an attack on a
specific bus in the network goes unnoticed when using linear static
estimators. The buses that have a small security index are
particularly vulnerable as the effort and/or the resources needed for
attacking them is small. Calculating this security index was shown
to be NP-hard in general; however, efficient algorithms were
proposed for determining the index in special situations, such as
the full measurement case [4]. This idea was further generalised to
linear dynamic estimators in [5]. Alternatively, controllability and
observability notions were used in [6] to identify the most
impactful attacks that are difficult to detect. A wide range of
attacks in the presence of different estimators were studied in [7] to
investigate the security of descriptor systems arising in smart grids
and irrigation networks.

In this paper, we study the scenarios where an adversarial
agent's objective is to compromise a networked system. In this
paper, an optimisation framework for studying the effect of attacks
injected by an adversarial agent on the outputs and states of a
networked system is proposed. Particularly, the ℋ2 norms of
attacks to target and monitoring outputs is used as a performance
measure. Although the use of ℋ2 norm was studied in the fault
detection community, e.g. [8, 9], its role in cyber-security is mostly
unexplored. The aforementioned framework enables us to
determine the attack structures with the highest impact on the
network. More specifically, we consider an optimisation problem
to select the points to inject the attacks on the systems to attain the
most influence while raising the least amount of suspicion. To
reflect this criteria, the cost function balances the amount of the
caused deviation in the target outputs, measured by the dissipated
energy through the target outputs caused by the injected attacks,
with the residual observed in the monitored outputs, similarly
measured by the dissipated energy through the monitored outputs
caused by the injected attacks. We refer to the optimal value of this
cost as a security index denoting the ease with which one can
tamper with the target outputs while not being discovered. The
lower this index is for a target output, the less secure those outputs
are. Further, we generalise the problem formulation to select the

attack points and target output to inflict the most amount of
damage while reducing the energy observed by monitoring nodes.
To the best of our knowledge, the simultaneous selection of inputs
and target states has not been considered previously. We prove that
this problem, in general, is NP-complete by reducing it to the
famous maximum edge weight induced biclique problem, e.g. [10].
In this case, we can use heuristic algorithms, e.g. [11–13], to
provide approximate solutions. Finally, we show that the it is
possible to solve a larger mixed-integer linear program to extract
the solution of this problem. We demonstrate the applicability of
the proposed analysis tools developed in this paper on a power
grid. The network operator can use the developed results in
multiple ways to improve the security and the robustness of the
system. Firstly, it can reshape the dynamics of the system by
employing a new or modifying the existing controllers to reduce
the impact of various attacks or to achieve its desired security
index. Alternatively, the system operator can add additional
monitoring outputs for increasing the complexity of attacks on
sensitive target states.

The outline of this paper is as follows. In Section 2, the required
background, definitions, and the problem formulations are
provided. In Section 3, the solution to the introduced problems are
provided. Numerical examples and concluding remarks are,
respectively, presented in Sections 4 and 5.

2 Preliminaries and problem statement
In what follows, we set up the general problem formulation and
formalise the problems of interest. We start with the case where the
targets are fixed.

2.1 Optimal attack structure with given targets

Assume that the attack-free networked system of interest is
modelled by the following continuous-time linear time-invariant
dynamical system:

ẋ = Ax + Bu + Hα, (1a)

y = Cx, (1b)

where x = [x1
⊤, …, xN

⊤]⊤ ∈ ℝn is the network state with xi ∈ ℝni

being the state of system i ∈ {1, …, N}, u ∈ ℝb is an external
input, and C ∈ ℝp × n. Further, α ∈ ℝa denotes the injected attack
signal, which is a vector consisting of a attacks, and H ∈ ℝn × a is
the attack matrix to be chosen by the attacker. The columns of H
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are to be picked from a set of possible attack points denoted by
ℋ = {h1, …, hm}, where hi ∈ ℝn. The dynamics matrix A ∈ ℝn × n

is assumed to be stable, and the input matrix B ∈ ℝn × b corresponds
to a set of existing network inputs. The use of linear dynamical
systems is common place in study of transient stability (see, e.g.,
[14]) and these models also lend themselves to solving the
economic dispatch problems among other cyber-physical problems
(see Remark 7). The measurement y is assumed to be available to
the network monitor and is used for anomaly and attack detection
in the system. Therefore, we call y monitoring outputs. In what
follows, we set u = 0. This is without loss of generality since, in
practice, feedback rules of the form u = Kx are implemented to
achieve a required closed-loop performance in which case we can
replace A with A + BK and avoid introducing external inputs. The
network dynamics under this assumption becomes

ẋ = Ax + Hα, (2a)

y = Cx . (2b)

Moreover, we define a set of q ≤ n target states, 𝒯 ⊆ {x1, …, xn}.
Let z be the vector obtained from concatenating the states in the
target set. These states are the ultimate target of the attacker.
 
Assumption 1: The attacker has the knowledge of closed-loop
dynamics, or of open-loop dynamics and the network operator's
control law.
 
Remark 1: Note that Assumption 1 results in a worst-case scenario
result. Evidently, if the correct extent of the attacker's knowledge is
not known by the operator, the safest choice is to design and
analyse the system under this assumption.

In this paper, we consider the problem in which the attacker
wants to select the points of attack (and not the attacks
themselves). That is, the attackers wants to select columns of the
matrix H, i.e. the places of attack injections, and/or the entries of
the target output, i.e. where to inflict its damage. This problem can
be seen as the first step of an attack where the attacker pinpoints
the vulnerabilities in the network. The attacker has to find the best
attack matrix from the available attack vectors that achieves the
following two objectives:

i. The total disruption in the target states in 𝒯 over a time period
of length T after the attack is maximised.

ii. The total effect of the attack on monitoring measurements y
over a time period of length T after the attack is minimised.

The first objective is to drive the crucial states as far as possible
from their nominal value and the second objective captures the fact
that the attacker does not want to trigger the network monitor's
anomaly detection. This problem is formalised in what follows.
 
Problem 1: Consider the system described by (2a) and (2b). Let z
be a vector of length q ≤ n whose entries are a subset of x, i.e.
there exists a matrix E with q rows of all zeros except for one entry
equal to one such that

z = Ex . (3)

Furthermore, let ℋ = {h1, …, hm} be a finite set of arbitrary
vectors hi ∈ ℝn. Addressing the following questions is of interest.
For given wA ≥ 0, wD ≥ 0, and a ≤ m, find H ∈ ℝn × a whose
columns are members of 𝒜 ⊆ ℋ, |𝒜 | = a, that solves the
following optimisation problem:

maximise wAtr(H⊤XEH) − wDtr(H⊤XCH), (4)

where XE and XC are the finite-time observability Gramians over
the interval [0, T] associated with measurement matrices E and C,
respectively.

The finite-time observability Gramians in Problem 1 are given
by

XE = ∫
0

T
eA⊤tE⊤EeAt dt, (5a)

XC = ∫
0

T
eA⊤tC⊤CeAt dt, (5b)

which for the case that A is stable and T → ∞ are the unique
positive-semidefinite solutions of the following Lyapunov
equations:

A⊤XE + XEA + E⊤E = 0, (6a)

A⊤XC + XCA + C⊤C = 0. (6b)

The relative magnitude of coefficients wA and wD determines
which objective is more important. If wA > wD the first objective,
i.e. influencing z, out-weighs the risk of being detected by the
monitor and vice versa.

 
Remark 2: For T = ∞, the term tr(H⊤XEH) is equal to ℋ2-

norm of the transfer function from the attack vector α to the target
outputs z. Hence, the presented formulation is more general than
the study of attacks. The formulation is rather about picking points
from which the required effort for inflicting damage on the target
states is minimised. Similarly, the term tr(H⊤XCH) is equal to ℋ2-
norm of the transfer function from the attack vector α to the
monitoring outputs y. Combining these observations, we can note
that the objective of the attacker in (4) is to make sure that (i) ℋ2
norm from the point of attack α to target outputs is large (thus
foreseeing a large disruption) and (ii) ℋ2 norm from the point of
attack to monitoring outputs is small (therefore the attack goes
undetected). For finite horizons T < ∞, the terms still possess a
similar interpretation as the ℋ2 norm capturing the energy
transferred from possible attack points to the outputs.

 
Remark 3: Inclusion of process noise or measurement noise in

the dynamical system in (2) does not change the methods utilised
in this paper for solving the problem. The additive noise simply
adds a constant terms to the cost function of the optimisation
problem in (4). This is due to the linearity of the underlying
system, which allows us to separate the effects of the attack signal
α, the process noise, and the output noise.

 
Remark 4: All of our results generalise straightforwardly to

discrete-time networked systems. The corresponding model for the
case that there is an attack in the system becomes x+ = Ax + Hα
with the measurement vector y = Cx, where, similarly, α is the a-
dimensional discrete-time attack signal. All the earlier problems
can be extended to this case subject to using appropriate definitions
for the finite-time observability and controllability Gramians.

Now, we propose the following definition for the security index
of a network.

 
Definition 1 (a-security index): For the system described in

Problem 1, where the target states and monitor outputs are fixed,
the security index is the maximum of (4).

This security index is a function of the system dynamics A, the
choice of monitoring outputs C, and the selection of target states E.
The system operator can change the system dynamics A and the
monitoring outputs C by, respectively, designing a new controller
and adding extra monitoring outputs to make the system more
robust and secure. In addition, the attacker can change the target
states to inflict more damage by less complex attacks. The latter is
the subject of the problem formulation in the following subsection.
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2.2 Joint attack structure and target selection

In the previous subsection, the targets of the attacker were assumed
to be given. An attacker may attempt to simultaneously select an
attack matrix and target matrix to inflict maximal damage. This can
be considered as a worst-case possible scenario. The next problem
of interest is described below. Given a set of attack vectors ℋ and
all the states, it is desired to find an attack matrix H and a target
matrix E such that the energy transferred to z = Ex by an attack
through the attack matrix H is maximised. This problem is
formalised next.
 
Problem 2: Consider the system described by (2a) and (2b). Let
𝒮 = {s1, …, sn} be a finite set of row vectors si ∈ ℝ1 × n that
corresponds to measuring each state of the network, i.e. all the
entries are zero except for and entry equal to one that corresponds
to each of the states. Similarly, let ℋ = {h1, …, hm} be a finite set
of attack vectors hi ∈ ℝn and m ≤ n. For given q > 0 and a > 0, the
goal is to find matrices E ∈ ℝq × n with q rows from 𝒯 ⊆ 𝒮 and
H ∈ ℝn × a with a columns from 𝒜 ⊆ ℋ, that solves the following
optimisation problem:

maximise wAtr(H⊤XEH) − wDtr(H⊤XCH), (7)

where XE is the observability Gramian associated with matrix E.
We propose the following definition for the worst-case security

index of a network.
 
Definition 2 ((q,a)-worst-case security index): For the system

described in Problem 2, where a attack vectors and q target states
are to be chosen, respectively, from sets ℋ and 𝒮, the maximum of
(7) corresponds to the (q,a)-worst-case security index of the
networked system.

 
Remark 5: Note that solving (7) is equivalent to solving

maximise wAtr(EYHE⊤) − wDtr(H⊤XCH), (8)

where YH is the controllability Gramian associated with the input
matrix H and is defined as

YH = ∫
0

T
eAtHH⊤eA⊤tdt .

As before for the case where A is stable the Gramians can be
uniquely obtained from solving Lyapunov equations.

We conclude this section by introducing the following
definitions.

 
Definition 3 (complete bi-partite graph): The complete bi-

partite graph, or a biclique, 𝒢 = (𝒱1⋃𝒱2, ℰ) is such that
𝒱1⋂𝒱2 = ∅ and ℰ = 𝒱1 × 𝒱2.

 
Definition 4 (induced subgraph): An induced subgraph of the

vertices of a graph 𝒢 = (𝒱, ℰ) is a subset of vertices of 𝒢 together
with any edge in ℰ whose endpoints are both in this subset.

 
Definition 5 (induced biclique): An induced biclique of a graph

𝒢 is a biclique graph as well as being an induced subgraph of 𝒢.

3 Main results
3.1 Optimal attack structure with given targets

The optimisation problem (4) can be written as a mixed-integer
program and then relaxed to be solved as a semidefinite
programming (SDP) problem. However, such techniques often
suffer from two drawbacks: (i) they generally return a suboptimal
solution with no performance guarantees, and (ii) the semidefinite
programs that emerge out of such relaxations, though
computationally efficient in theory, are numerically cumbersome

and are virtually unsolvable with modern general purpose solvers
for networks with size larger than 100 nodes [Note that commercial
semi-definite programming toolboxes (e.g., SDPA in http://
sdpa.sourceforge.net/family.html) can at most handle 20,000
decision variables, which is the number of free variables in a
symmetric matrix with 200 rows and columns.]. As it will be
clarified below, there is a much more efficient way to solve the
problem. Before continuing any further, we have the following
result regarding Problem 1.
 
Proposition 1: The optimisation problem (4) is equivalent to the
following problem:

maximise
𝒜 ⊆ ℋ, |𝒜 | = a

∑
hi ∈ 𝒜

wA(hi
⊤XEhi) − wD(hi

⊤XChi) . (9)

 
Proof: First, note that for any solution H, we have
H = ⋯ hi ⋯ , where hi ∈ 𝒜. Thus, (4) can be written as

maximise
𝒜 ⊆ ℋ, |𝒜 | = a

wAtr(H⊤XEH) − wDtr(H⊤XCH)

subject to H = ⋯ hi ⋯ , hi ∈ 𝒜,

and equivalently

maximise
𝒜 ⊆ ℋ, |𝒜 | = a

wAtr(HH⊤XE) − wDtr(HH⊤XC)

subject to H = ⋯ hi ⋯ , hi ∈ 𝒜 .

In turn, it can be written as

maximise
𝒜 ⊆ ℋ, |𝒜 | = a

wAtr ∑
hi ∈ 𝒜

hihi
⊤XE − wDtr ∑

hi ∈ 𝒜
hihi

⊤XC ,

which in light of the linearity of trace and the fact that
tr(CAB) = tr(ABC) establishes that any solution to (4) is a solution
to (9). The reverse direction can be shown in a similar fashion as
well. Thus, the first part of the proof is completed.   □

As a result of Proposition 1, (4) can be solved exactly. This can
be done efficiently by sorting the value of
wA(hi

⊤XEhi) − wD(hi
⊤XChi) for different hi ∈ ℋ and choosing H to

be the set of those hi that correspond to the a largest values of
wA(hi

⊤XEhi) − wD(hi
⊤XChi). Moreover, the values of

wA(hi
⊤XEhi) − wD(hi

⊤XChi) can be calculated independently and in
parallel, thus, reducing the computational time by dividing
computing loads.

3.2 Joint attack structure and target selection

In what follows, we show how Problem 2 can be recast as a
maximum edge weight biclique problem, whose solution can be
approximated by a variety of methods from the literature. First, we
present the following proposition.
 
Proposition 2: The optimisation problem described by (7) is
equivalent to

maximise ∑
i = 1

m

∑
j = 1

n
βiγ jwi j+ ∑

i = 1

m
βiξi (10a)

subject to ∑
i = 1

m
βi = a, ∑

i = 1

n
γi = q, (10b)

βi ∈ {0, 1}, j = 1, …, m, (10c)

γi ∈ {0, 1}, i = 1, …, n, (10d)

where wi j = wAhi
⊤X jhi and ξi = − wDhi

⊤XChi with
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Xi = ∫
0

T
eAtsi

⊤sie
A⊤tdt, i = 1, …, n . (11)

 
Proof: Note that (7) is equivalent to

maximise wAtr(H⊤XEH) − wDtr(H⊤XCH)

subject to XE = ∑
si ∈ 𝒯

∫
0

T
eAtsi

⊤sie
A⊤t dt,

where the decision variables are the sets 𝒜 ⊆ ℋ and 𝒯 ⊆ 𝒮 where
|𝒜 | = a and |𝒯 | = q. Along with (11), this optimisation problem
can be written as

maximise wAtr(H⊤XEH) − wDtr(H⊤XCH)
subject to XE = ∑

s j ∈ 𝒯
γ jX j .

Replacing the constraint in the cost function and similar to the
proof of Proposition 1, we have

maximise wA ∑
hi ∈ 𝒜

∑
s j ∈ 𝒯

(hi
⊤X jhi) − wD ∑

hi ∈ 𝒜
(hi

⊤XChi) .

Note that the membership in sets 𝒯 and 𝒜 can be checked by
binary variables {γi}i = 1

m  and {βi}i = 1
n  where γi = 1 if si ∈ 𝒯 and 0

otherwise, and βi = 1 if hi ∈ 𝒜 and 0 otherwise. The cardinality
constraints on 𝒯 and 𝒜 can be ensured by enforcing constraints on
the summations ∑i = 1

n γi = q and ∑i = 1
m βi = a.   □

In the following proposition, we relate (10) to the famous
maximum edge weight induced biclique problem which is
postulated to be NP-complete in general, see [10]. For more
information on different variants of this problem the reader may
refer to [10, 15, 16].
 
Proposition 3: Define a complete bipartite graph 𝒢 = (𝒱, ℰ) with
the vertex set 𝒱 = 𝒱H⋃𝒱S = {1, …, m}⋃{0,1, …, n} and edge
set ℰ = 𝒱H × 𝒱S with edge weights wi j = hi

⊤X jhi for all
(i, j) ∈ {1, …, m} × {1, …, n} and ξi for all
(i, j) ∈ {1, …, m} × {0} . Let 𝒢′ = (𝒱′, ℰ′) an induced biclique of
𝒢 where 𝒱′ = 𝒱A⋃𝒱T, ℰ′ = 𝒱A × 𝒱T, 𝒱A ⊆ {1, …, m},
{0} ⊆ 𝒱T ⊆ {0, 1, …, n}, |𝒱A | = a, |𝒱T | = q + 1. Solving (10) is
equivalent to finding 𝒢′ that maximises the sum of the edge
weights.
 
Proof: Let {βi

⋆}i = 1
m  and {γi

⋆}i = 1
n  be the optimal solutions to (10) and

the optimum value of the cost function in (10) be given as
J⋆ = ∑i = 1

m ∑ j = 1
n βi

⋆γ j
⋆wi j+∑i = 1

m βi
⋆ξi . The optimum value is the

sum of all wi j such that βi = γ j = 1. Now consider the complete
bipartite graph 𝒢 = (𝒱, ℰ) where
𝒱 = 𝒱H⋃𝒱S = {1, …, m}⋃{0,1, …, n} and edge set
ℰ = 𝒱H × 𝒱S with edge weights wi j = hi

⊤X jhi for all
i ∈ {1, …, m} and j ∈ {1, …, n} and ξi for all i ∈ {1, …, m} and

j ∈ {0}. It can be seen that βi = γ j = 1 corresponds to (i, j) ∈ ℰ′.
So the problem can be cast as selecting a nodes from 𝒱H and q + 1
nodes from 𝒱T such that the sum of edge weights is maximised.
This is exactly the problem of finding the induced graph of 𝒢, 𝒢′,
with maximum edge weights where 𝒢′ = (𝒱′, ℰ′),
𝒱′ = 𝒱A⋃𝒱T, ℰ = 𝒱A × 𝒱T, 𝒱A ⊆ {1, …, m},
{0} ⊆𝒱T ⊆ {0,1, …, n}, |𝒱A | = a, |𝒱T | = q + 1.   □

The bipartite graph of Proposition 3 is depicted in Fig. 1. The
optimisation problem (10) is an integer programming problem with
a bilinear cost function and linear constraints. There are many
methods proposed to approximately solve this problem, e.g. the
reader may refer to the methods proposed in [11–13] and the
references therein. The following proposition uses ideas from [11]
to transform this problem into a mixed-integer linear programming
problem. 

 
Proposition 4: Let ((αi j

∗ ) j = 1
n , βi

∗)i = 1
n  denote the solution of the

mixed-integer linear program

maximise ∑
i = 1

m

∑
j = 1

n
αi jwi j + ∑

i = 1

m
βiξi (12a)

subject to ∑
i = 1

m
βi = a, ∑

i = 1

m

∑
j = 1

n
αi j = aq, (12b)

βi ∈ {0, 1}, i = 1, …, m, (12c)

αi j ∈ {0, 1}, i = 1, …, m ∧ j = 1, …, n, (12d)

αi j ≤ βi, i = 1, …, m ∧ j = 1, …, n, (12e)

|αi j − αk j | ≤ | βi − βk | , i, k = 1, …, m ∧ j = 1, …, n . (12f)

Then the solution to the optimisation problem (10) is given by
(γ j

∗) j = 1
n  and (βi

∗)i = 1
n , where

γ j
∗ = 1, ∃i = 1, …, m: βi

∗ = 1 ∧ αi j
∗ = 1,

0, otherwise.
 
Proof: First, note that, by construction, (γ j

∗) j = 1
n  and (βi

∗)i = 1
n

satisfy the constraints of the optimisation problem (10). This is
evident for all constraints except the one concerning ∑ j γ j

∗. Let 𝟙
denote the characteristic function, i.e. 𝟙p is equal to one if p holds
and is equal to zero otherwise. It can be shown that

𝟙∃i: βi
∗ = 1 ∧ αi j

∗ = 1
= ∑

k = 1

m
𝟙

βk
∗ = 1 ∧ αk j

∗ = 1
/ ∑

k = 1

m
𝟙

βk
∗ = 1

= ∑
k = 1

m
𝟙

βk
∗ = 1 ∧ αk j

∗ = 1
/ ∑

k = 1

m
βk

∗ = ∑
k = 1

m
𝟙

βk
∗ = 1 ∧ αk j

∗ = 1
/a,

where the first equality follows from the constraint in (12f), i.e.
αi j = αk j if βi = βk = 1. Further, note that

Fig. 1  Bipartite graph 𝒢 = (𝒱, ℰ) described in Proposition 3
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𝟙
βk

∗ = 1 ∧ αk j
∗ = 1

= 𝟙
αk j

∗ = 1
= αk j

∗ ,

where the first equality follows from (12e), i.e. αk j
∗  can only be

non-zero if βk
∗ = 1. Now, note that

∑
j = 1

n
γ j

∗ = ∑
j = 1

n
𝟙∃i: βi

∗ = 1 ∧ αi j
∗ = 1

= ∑
j = 1

n

∑
k = 1

m
αk j

∗ /a = q .

We we choose to prove this statement by contraposition. To do so,
assume that there exist (γ j′) j = 1

n  and (βi′)i = 1
n  which are the solutions

of (10) and satisfy the inequality

∑
i = 1

m

∑
j = 1

n
βi

∗γ j
∗wi j + ∑

i = 1

m
βi

∗ξi < ∑
i = 1

m

∑
j = 1

n
βi′γ j′wi j + ∑

i = 1

m
βi′ξi . (13)

Let us construct αi j′ = γ j′βi′. Clearly, αi j′ ≤ βi′ because γ j′ ∈ {0, 1}. In
addition, we have

∑
i = 1

m

∑
j = 1

n
αi j′ = ∑

i = 1

m

∑
j = 1

n
γ j′βi′ = ∑

i = 1

m
βi′ ∑

j = 1

n
γ j′ = aq .

Finally

|αi j′ − αk j′ | = γ j′ | βi − βk | ≤ | βi − βk | .

Therefore, ((αi j′ ) j = 1
n , βi

∗)i = 1
n  also satisfies the constraints of (12).

Now, (13) implies that

∑
i = 1

m

∑
j = 1

n
αi j

∗ wi j + ∑
i = 1

m
βi

∗ξi < ∑
i = 1

m

∑
j = 1

n
αi j′ wi j + ∑

i = 1

m
βi′ξi .

This contradicts the assumption that ((αi j
∗ ) j = 1

n , βi
∗)i = 1

n  is the solution
of (12).   □

Proposition 4 shows that the optimisation problem (10) can be
transformed it into a mixed-integer linear program. Subsequently,
the proposed mixed-integer program can be solved using off-the-
shelf solvers, such as CPLEX. It is pivotal to note that the proposed
transformation does not reduce the computational complexity of
the problem as mixed-integer linear programs are also NP-
complete [17]. The transformation in fact dramatically increases
the number of decision variables. After recasting (12) in the
standard form to be able to use commercial solvers, the number of
decision variables grows to 2(n + 1)m. In contrast, the original
bilinear mixed-integer problem had m + n decision variables.

 
Remark 6: The network operator can use the developed results

in multiple ways. For instance, the system operator can reshape the
dynamics of the system A + BK by modifying the controller K to
reduce the impact of the various attacks and to achieve its desired
security index. Alternatively, the system operator can figure out the
ease with which an important set of outputs can be targeted and add
additional monitoring outputs for increasing the complexity of such
attacks.

4 Numerical examples
In this section, we introduce a scenario arising in smart grids where
the security analysis of the type introduced in this paper is
applicable. The system that we consider models the active power
flow in a power network. We determine the optimal points for an
adversary to launch an attack. The attack here corresponds to
injection or drainage of active power in the buses of the network;
therefore the attacks points are the compromised buses at which
injection or drainage occur. To this aim, we consider the classical
linearised synchronous machine model [14] for each node of the
power network. The behaviour of bus i can be described by the so-
called swing equation:

miθ̈i + diθ̇i − Pmi = − ∑
j ∈ Ni

Pi j, (14)

where θi is the phase angle of bus i, mi and di are, respectively, the
inertia and the damping coefficients, Pmi is the mechanical input
power and Pi j is the active power flow from buses i to j. Assuming
that there are no power losses, neglecting ground admittances, and
letting V i = V i e jθi be the complex voltage of bus i, the active
power flow between buses i and j, Pi j, is given by

Pi j = ki jsin(θi − θ j), (15)

where ki j = V i V j bi j and bi j is the susceptance of the power line
connecting buses i and j. Since the phase angles are close, we can
linearise (15), rewriting the dynamics of bus i as

miθ̈i + diθ̇i = − ∑
j ∈ Ni

ki j(θi − θ j) + Pmi . (16)

Letting x = [θ1, …, θN, θ̇1, …, θ̇N]⊤ and u = Pm1 ⋯ PmN
⊤, we

obtain

ẋ = Ax + Bu + Hα,

where

A =
0N IN

−ML −DM
, B = 0N M ⊤,

M = diag 1
m1

, …, 1
mN

, D = diag d1, …, dN ,

and L is the Laplacian matrix of graph 𝒫(𝒱P, ℰ) with N = |𝒱P|
nodes. Note that the Laplacian here is a Kron reduced Laplacian
[18]. Each node corresponds to a bus in the power network and the
undirected edge {i, j} ∈ ℰP if bus i is connected to bus j with edge
weight ki j for all {i, j} ∈ ℰ. Note that since, in this case, the matrix
A has zero eigenvalues, thus for the sake of simplicity we work
with the finite-horizon observability and controllability Gramians.
The matrix H can have a columns of the matrix B to show that the
points that the compromised buses at which injection or drainage
of power occur. It is desirable to address Problems 1 and 2 to
identify the vulnerabilities of power networks when active power is
injected into or drawn out of a power network.
 
Remark 7: Another application area can arise from solving the
economic dispatch problem with DC power flow equations in
power networks. In this scenario, the attack corresponds changes in
the prices of the generator flows. The attacker's objective is to
introduce the biggest shift in a set of target buses' prices by
changing the prices in another part of the network. Depending on
the attack this may result in an increased price or a drop in a price
in the target buses and consequently undesirable changes in the
power injected by a given generator. The existing numerical
algorithms for the problem are often based on the dual
decomposition technique, where the optimal power among the
generators is extracted from a convex optimisation problem with
linear equality constraints on demand-response satisfaction. For
quadratic cost functions, under appropriate conditions, the
iterations of the dual decomposition can be written as a linear
update rule. Now, a compromised agent can opt not to follow the
update rule to achieve its desired effect on the price vector (i.e., the
Lagrange multiplier in the dual decomposition algorithm). Another
problem that can be solved using a similar optimisation based
method described above is congestion control in data networks.
Here, the attacker's objective is to introduce the biggest shift in a
set of target links' prices by changing the prices in another part of
the network. This depending on the attack may result in an
increased congestion or increased under-utility, i.e. lack of traffic,
in the target links. Other cyber-physical systems, such as intelligent
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transportation systems, can also be efficiently analysed using these
techniques to pinpoint their vulnerabilities.

In the remaining of this section, we study the vulnerability of
power networks to attacks on generators. We determine the optimal
attack vector for an adversary to launch an attack. The attack here
corresponds to a sudden addition or draining of active power in the
buses of the network. Specifically, the optimal attack vector
indicates a sudden change in the load of which buses has the largest
impact on the states of target buses.

4.1 IEEE 9-bus system

In the this subsection, we consider the 9-bus system depicted in
Fig. 2. First, we solve Problem 1 for the active power flow model
in (16) where ℋ = {h1, …, h9} with hi being a vector of all zeros
except for the (i + 9)th entry that is equal to one, a = 1,
z = [θ̇1, θ̇4]⊤, T = 5, wA = 1, and y = 0, i.e. no monitor outputs. The
optimal attack vector in this scenario is h4, i.e. attacking the input
of bus 4 yields the highest gain from the attacker's point of view.
Next, we assume that an anomaly detector has access to the
monitor output y = [θ8, θ̇8]⊤. Moreover, we assume that all the
parameters are identical to the previous case except for wD = 1.
The optimal attack vector for this scenario is h6. The values of
hi

⊤(wAXE − wDXC)hi are presented in Fig. 3 for both of the
aforementioned scenarios. The security index for the network in
the case where no monitor output was available is 0.033 and is
obtained at 𝒯 = {h4} and it is 0.023 and is obtained at 𝒯 = {s6}
for the case where y = [θ8, θ̇8]⊤. 

Second, we consider Problem 2 for the same 9-bus network
described by (16) where a = q = 1. Choosing 𝒯 = {s5} and
𝒜 = {h2} correspond to the optimal solution of (7). The value of
cost function for different choices of 𝒯 and 𝒜 is depicted in Fig. 4.

4.2 IEEE 50-generator 145-bus system

Here, we show that the methods developed in this paper can be
easily applied to larger scale systems. To this aim we investigate
Problem 1 for (16) where, as for the IEEE 50-generator 145-bus
system system, ℋ = {h1, …, h50} with hi being a vector of all zeros
except for the (i + 50)th entry that is equal to one, a = 1,
z = [θ̇15, θ̇29]⊤ (the targets are the frequencies of generators 15 and
29), T = 5, wA = 1, and y = 0, i.e. no monitor outputs. The optimal
attack vector in this scenario is h46, i.e. attacking the input of
generator 46 yields the highest gain from the attacker's point of
view. Next, we repeat the same test while considering an anomaly
detector having access to the monitor output y = [θ26, θ̇26]⊤, i.e the
phase and the frequency of generator 26. Moreover, we assume that
all the parameters are identical to the previous case except for
wD = 1. The optimal attack vector for this scenario remains h46.
The values of hi

⊤(wAXE − wDXC)hi for the scenarios described
above are presented in Fig. 5. 

The simulations for this paper are carried out in Python and to
conform with the guidelines of reproducible research [http://
reproducibleresearch.net/.] and can be found at [19].

5 Conclusion
In this paper, we studied the impact of attacks on networked
systems using ℋ2 norm of the attack to the target and monitoring
outputs. We proposed a security index tailored for such attacks and
considered the worst-case scenario for attacks. We commented on
the fact that the index can be applied to both continuous- and
discrete-time systems and related the problem of finding the worst-
case security index to the famous NP-complete problem of
maximum induced biclique in graphs. We considered problems that
arise in power networks and studied the impact of attacks on them.
Future research can focus on studying the case where the attacker
does not have access to the system dynamics with some
uncertainty.

Fig. 2  9-Bus power network
 

Fig. 3  Value of (9) for different hi

 

Fig. 4  Value of (7) for different choices of 𝒯 and 𝒜 where a = q = 1 in
the 9-bus power network

 

Fig. 5  Value of (9) for different hi
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