
Manipulating Factions Evolved in Signed Networks*

Iman Shames, Tyler H. Summers, Michael Cantoni

Abstract— In this paper the dynamics of signed networks is
studied. Initially, we show how factions can be formed in a
signed network and demonstrate that the factions formed in a
weakly balanced network are consistent with what is expected.
Later, we shift our focus to constructing signed networks that
result in factions of known structure. In the end, we consider
the case in which a group of influencer nodes manipulate their
local connections in the network in order to steer to nodes to
form any arbitrary faction structure. This allows the definition
of a novel centrality measure for sets of nodes in a signed
network.

I. INTRODUCTION

There has been significant recent interest in studying
dynamical processes on large networks consisting of many
interacting subsystems. One important research focus is to
quantify how combinatorial network properties interact with
continuous properties associated with the dynamics. Very
recently, dynamics on networks with interactions that can be
both positive and negative have been considered. Such net-
works provide an intriguing contrast with well-studied con-
sensus and synchronization problems; in consensus networks,
where weights are typically non-negative, states synchronize
to a common value, whereas in signed networks, the presence
of both positive and negative weights can cause clusters to
emerge that each synchronize to different values. Several
interesting mathematical models for real networks feature
both positive and negative interactions: in social networks,
individual relationships can be friendly or hostile, giving
rise to factions and, e.g., clustering in opinion dynamics;
in genetic regulatory networks, genes can promote or repress
the expression of other genes; in neuronal networks, neurons
can excite or inhibit the firing of other neurons.

An important combinatorial property associated with
signed graphs is structural balance, which traces back to
social psychology research in the 1940s by Heider [1].
Harary and Cartwright [2] showed that structurally balanced
graphs are those that can be partitioned into two subgraphs
such that within each subgraph all edges are positive and
between subgraphs all edges are negative. There is also a
notion of weak structural balance, which allows a partition
into more than two such subgraphs [3].

Recent work has considered dynamic processes on both
the edges and the vertices in signed networks. Studies
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of edge dynamics include [4]–[7]. In this work, a real-
valued “friendliness level” is associated with each edge and
nonlinear differential equations for the evolution of these
friendliness levels that almost always converge to structurally
balanced states are studied. In [5] it was shown that the final
structurally balanced state can be determined from the sign
pattern of the dominant eigenvector of the initial state matrix.
Non-symmetric graphs and active influence are considered in
[6] and [7].

Studies of node dynamics on signed graphs include [8]–
[10]. The most commonly considered model is a variation
of the standard consensus algorithm that allows weights to
be negative. Xia and Cao [8] show that clustering in diffu-
sively coupled networks can arise from three mechanisms,
including heterogeneous self-dynamics, delays, and negative
couplings. Altafini [9] also considers consensus protocols
with negative weights and shows that structural balance plays
a role in convergence properties. Both of these works use
a non-standard definition of the graph Laplacian that takes
absolute values of edge weights. Shi et al. [10] present a
stochastic model of dynamics on signed graphs and also
make connections to the theory of structural balance. Burger
et al. [11] show clustering arising from heterogeneous self-
dynamics and saturating but positive coupling. Other ways of
clustering can arise in diffusively coupled network dynamics
is through state-dependent coupling [12] and pinning control
[13].

However, it is still not clear how the clustering structure is
determined and how this relates to graphs properties. In this
paper, we elucidate several features of dynamic clustering
and structural balance. There are four main contributions
of our work: we show that (1) the dominant eigenspace
determines clustering/faction structure; (2) if the underlying
graph is complete (weakly) structurally balanced, dynamics
converge to clusters defined by the factions in the underlying
graph; (3) one can construct weighted graphs that have a
given faction/cluster structure by solving a linear program;
(4) a group of “influencer” nodes that manipulate their local
edges can result in any desired faction structure.

A novelty in our results come from using the standard def-
inition of the Laplacian with negative coupling. Although the
trajectories diverge since the Laplacian is indefinite, we can
still quantify clustering of the trajectories and convergence
can be seen in an appropriately normalized system.

The structure of the rest of the paper is as follows. In next
section, we present some preliminaries and the problem for-
mulation. In Section III, we show that the faction structure of
a signed network is determined by its dominant eigenspace.
In Section IV, we show how weighted signed networks with



a given faction structure can be constructed by solving a
linear program and demonstrate how a group of influencer
network can drive the network to form any desired faction
structure. Section V gives illustrative numerical examples,
and Section VI gives concluding remarks.

II. PRELIMINARIES AND PROBLEM FORMULATION

We start this section by defining what we mean by a
weakly balanced graph.

Definition 1. A signed graph G(V, E) with nonzero weights
for its edges is weakly balanced if there exist V1, . . . ,Vf
such that Vi ∩Vj = ∅ ,

⋃f
i=1 Vi = V , all edges that connect

the vertices inside each of Vi have positive weights and all
edges that connect vertices from two different Vi and Vj have
negative weights.

For more information on balanced networks see [2].
Furthermore, the Laplacian of a signed graph is defined

in the same way as the Laplacian of a graph with positive
edge weights:

L = A−D (1)

where Aij = Aji, and Aij > 0 corresponds to a sympathetic
relationship with nodes i and j, and Aij < 0 is associated
with an antagonistic relationship between the pair i and j.
Aij = 0 demonstrates that there is no relationship between
the pair and there is no edge between the pair i and j in G.
Moreover,

Dii =

n∑
j=1

Aij .

Note that L is indefinite and rank deficient with 1 in
its nullspace. This property of the Laplacian matrix as
defined above has persuaded many researchers to change the
definition of Laplacian for signed graphs, e.g. see [9], [14].
However, in this paper we argue that it is not necessary and
still much insight can be obtained from studying networks
with this definition of the graph Laplacian.

Let xi(t) be the state of node i. We assume that the
following equation governs the states of the nodes in the
network:

ẋ(t) = Lx(t). (2)

We have the following definitions.

Definition 2. For a given network of n nodes with the
underlying graph G(V, E) we say nodes i and j belong to
the same faction if ‖xi(t)−xj(t)‖ → 0 as t goes to infinity,
where xi(t) is the state of node i at time t.

We address the following three problems in this paper. The
first problem deals with how the states of nodes evolve in a
signed graph. The second question considers the problem of
constructing a graph where nodes in the graph form a faction
of given structure. Finally, the third problem addresses the
question of the possibility of transforming a graph to another
one with a desired faction structure through manipulating its
edges by a subset of nodes.

Problem 1. For a given network of n nodes with an
underlying signed graph G(V, E), it is desired to calculate
the number of factions, f , and characterise the members of
each faction when the node states are governed by (2).

Problem 2. Given f sets V1, . . . ,Vf , determine how a signed
graph G(V, E) can be constructed such that under (2) the
nodes form f factions V1, . . . ,Vf .

Problem 3. For a given network of n nodes with an
underlying signed graph G(V, E), the Laplacian L, a set of
Influencer Nodes, I ⊂ V and f sets V1, . . . ,Vf determine
under what conditions it is possible to find a perturbation
matrix ∆ with nonzero entries at i-th rows and columns
where i ∈ I such that the nodes in a network with the
interconnection L+ ∆ form f factions V1, . . . ,Vf .

III. EMERGENCE OF FACTIONS IN NETWORKS

We first propose the solution to Problem 1. Since, L is
generically an indefinite matrix for signed graphs states of the
nodes will “blow up”. However, the trajectories form groups
that are consistent with factions as defined in Definition 2.
We address Problem 1 in the next theorem.

Theorem 1. Consider the system described by (2). Let
v1, . . . , vp be the eigenvectors associated with the dominant
eigenvalue λ1(L), which is of multiplicity p. If νi = νi
for all vectors ν in the linear span of v1, . . . , vp, then
‖xi(t) − xj(t)‖ converges to 0 for any initial condition x0

such that V̄ x0 6= 0, where V̄ is the matrix with columns
comprising the normalised eigenvector of L associated with
λ1(L).

Proof: Let λi(·) be the i-th eigenvalue of its n × n
matrix argument and λn(·) ≤ · · · ≤ λ1(·). As L is a real
symmetric matrix there exist a unitary matrix V such that

L = V ΛV >,

where Λ = diag(λ1(L), . . . , λn(L)) has the eigenvalues of
L as its diagonal entries and the i-th column of V is the
normalised eigenvector of L associated with λi. Hence,

x(t) = V eΛtV >x(0). (3)

Equivalently,

x(t) = eλ1(L)t(V̄ V̄ T +M(t))x0

where M(t)→ 0 exponentially fast with increasing t. Let

ν(t) =
x(t)

‖x(t)‖
.

Then,

ν(t) =
eλ1(L)t(V̄ V̄ T +M(t))x0

eλ1(L)t‖(V̄ V̄ T +M(t))x0‖
which approaches

ν? =
V̄ V̄ Tx0

‖V̄ V̄ Tx0‖
. (4)



Since ν? is in the linear span of v1, . . . , vp, it follows by
hypothesis that ν?i = ν?j and hence that ‖xi(t) − xj(t)‖
converges to 0.

�
Since L is generically an indefinite matrix for signed

graphs, each xi(t) in (2) can go to infinity. However, from
the observations made thus far, xi(t) and xj(t) converge to
the same value for all i and j belonging to the same faction
as described in Definition 2.

Theorem 1 establishes that the factions are determined
by the structure of the dominant eigenvectors of L and
the space that they span. Now we shift our focus to study
the dominant eigenspace of a weakly balanced graph as
described in Definition 1.

Remark: Theorem 1 in fact holds for any symmetric
autonomous linear dynamical system, not just systems with
Laplacian dynamics. This can be seen easily by noting that
the arguments in the proof are identical in that case.

For a weakly balanced network we have the following

Theorem 2. Consider a network of n nodes with an under-
lying signed graph G(V, E) with edge weights of either +1
or -1. Moreover, suppose there exist V1, . . . ,Vf such that
Vi ∩ Vj = ∅,

⋃f
i=1 Vi = V , and the states of nodes are

governed by (2) for with arbitrary initial condition. Then,
(i) λ1(L) has multiplicity p = f − 1; and

(ii) As t → ∞ the vertex sets V1, . . . ,Vf characterise the
f factions in the graph.

Proof: Note that

L = L̃− 2L̂ (5)

where L̃ is the Laplacian of the complete graph on V with
all edge weights equal to 1 and L̂ = diag(L1, . . . , Lf ) with
Li being the Laplacian of the complete graph induced by Vi
with all edge weights equal to 1, i = 1, . . . , f . From Weyl’s
matrix inequality we have

λn(L̃) + λ1(L̂) ≤ λ1(L) ≤ λ1(L̃) + λ1(L̂) (6)

It can be observed that λ1(L̂) = 0, λ1(L̃) = n, and λn(L̃) =
0. We obtain

0 ≤ λ1(L) ≤ n. (7)

Let 1i be a vector of all ones of length ni, and v ,
[α11

>
1 , . . . , αf1

>
f ]> where αi are arbitrary real scalars. First,

observe that v is an eigenvector of L when α1 = · · · = αf
and corresponds to a zero eigenvalue. Now, consider the case
where not all αi are equal. We postulate that the a v with
such a structure is an eigenvector of L with its corresponding
eigenvalue equal to to n. We have

Lv = (L̃− 2L̂)v

= L̃v − 2L̂v

= L̃v.

(8)

For v to be an eigenvector of L, the following equation
should be satisfied

L̃v = nv. (9)

For (9) to be satisfied the following should hold
f∑
i=1

niαi = 0. (10)

Then any v such that (10) holds is an eigenvector of L with
corresponding eigenvalue of n. From (7) we know that the
largest eigenvalue of L is at most n and as is obtained in the
light of the above arguments. Moreover, the space spanned
by all such vectors that satisfy (10) is an f − 1 dimensional
space. So, the multiplicity of the dominant eigenvalue is f−
1. In light of the Theorem 1 and the structure of the dominant
eigenspace of L, the formation of different factions consistent
with V1, . . . ,Vf is apparent. �

We continue by making an observation on the relationship
between the evolution of x(t)/‖x(t)‖ and the gradient of the
Rayleigh quotient of L, R(L, y). Recall that,

R(L, y) =
y>Ly

y>y
.

Moreover, consider the evolution of the trajectories of u(t)

where u(t) ,
x(t)

‖x(t)‖
. We have

u̇(t) =

ẋ(t)‖x(t)‖ − x(t)>ẋ(t)

‖x(t)‖
‖x(t)‖2

=

Lx(t)‖x(t)‖ − x(t)>Lx(t)

‖x(t)‖
‖x(t)‖2

u̇(t) = Lu(t)− (u>(t)Lu(t))u(t). (11)

On the other hand, for the gradient of the Rayleigh
quotient of L we have

∂R(L, y)

∂y
=

2

y>y
(Ly − y>Ly

y>y
y). (12)

Note that if y is constrained to have unit norm, the right
hand side of (11) will have the same direction as (12).

We end this section by relating the factions defined for
x(t) and u(t) establishes the relationship between the fac-
tions defined under (2) and (11).

Proposition 1. For a given network of n nodes with the
underlying graph G(V, E) if nodes i and j belong to the same
faction then ‖ui(t)− uj(t)‖ → 0 and ‖xi(t)− xj(t)‖ → 0,
where ui(t) is the state of node i at time t as t goes to
infinity, and vice versa.

IV. CONSTRUCTING AND MANIPULATING GRAPHS FOR A
GIVEN SET OF FACTIONS

In this section we initially address Problem 2 where the
objective is to construct a graph from a given set of factions.
Let v? be a vector that defines a set of factions in the
following way: the entries of v? that correspond to nodes
in the same faction are equal and entries corresponding to
nodes not in the same faction are not equal. Moreover, the
entries of v? should sum to zero since 1>n v

? = 0.



Now consider the following linear program with variables
λ ∈ R and L ∈ Rn×n and data v?

maximize
λ,L

λ

subject to L ∈ L, Lv? = λv?, ‖vec(L)‖∞ ≤ 1
(13)

where vec(L) is a column vector consisting of the entries of
L and L is the subspace of admissible symmetric Laplacian
matrices and is defined

L = {L : L ∈ Rn×n, L = L>, L1 = 0,

Lij = 0, ∀(i, j) ∈ E0, Llk = 0, ∀(l, k) ∈ E1}.
(14)

Moreover, the sets E0 and E1 are the sets of all the edges
that the constructed graph should exclude and include respec-
tively. These sets can be used to enforce desired structure on
the resulting graph. Note that the constraint ‖vec(L)‖∞ ≤ 1
ensures that the problem is bounded above. The idea is
to automatically compute a matrix for which λ and v? is
the dominant eigenpair. This will be formalised later in this
section.

In the following theorem we characterise the situations that
the graph obtained from solving (13) has v? as its dominant
eigenvector.

Theorem 3. Let λ? and L? be obtained from solving the
optimisation problem (13). Then λ? and v? are the dominant
eigenpair of L?.

Proof: We prove the theorem by way of contradiction.
Assume ψ > λ? is the largest eigenvalue of L?. Then

because of the fact that there are
n2 + n

2
decision variables

and at most |E0| + |E1| =
n2 − n

2
, there exists a Ψ 6= L?

such that

Ψ1 = 0, Ψ = Ψ>, Ψv? = ψv?

Ψij = Ψji = 0, ∀(i, j) ∈ E0, Ψlk = Ψkl = 1, ∀(l, k) ∈ E1

Thus there exists another feasible solution that yields a larger
value and it is a contradiction. �

The abovementioned theorem enables us to proceed to
address Problem 3. Note that the value of the perturbation
matrix depends on the choices of the desired factions and I.
Moreover, as stated earlier the structure of the factions can
be captured by a vector v?. The following linear program is
proposed to find ∆(I, v?):

[λ?,∆?(I, v?)] = argmax
λ,∆

λ

subject to (L+ ∆)1 = 0, (L+ ∆)v? = λv?,

∆ = ∆>, ‖vec(L+ ∆)‖∞ ≤ 1

∆ij = 0, ∀(i, j) ∈ {(i, j) : {i, j} ∩ I = ∅}
(15)

First, we note that if there is only one influencer node, the
problem (15) do not have a nonzero solution for ∆(I, v?).
To see this note that the equation ∆(I, v?) = 0 does not
have a nonzero solution for the case where |I| = 1. For the
case where there are two influencer nodes one cannot make
any statements, however, for the case where |I| ≥ 3 one can

prove that any faction structure is attainable. To this aim, as
before, we need to show L?(I, v?) = L + ∆?(I, v?) has
the dominant eigenpair λ? and v? where ∆?(I, v?) and λ?

are obtained from solving (15). We formalise it in the next
theorem.

Theorem 4. Let λ? and ∆?(I, v?) be obtained from solving
the optimisation problem (15). Moreover, assume |I| ≥ 3.
Then λ? and v? are the dominant eigenpair of L?(I, v?) =
L+ ∆?(I, v?).

Proof: First, note that (15) can be recast as

[λ?, L?(I, v?)] = argmax
λ,L∆

λ

subject to L∆1 = 0, L∆ = L>∆,

L∆v
? = λv?, L∆ij = Lij , i, j ∈ V \ I

‖vec(L∆)‖∞ ≤ 1
(16)

Similar to the proof of Theorem 3, assume ψ > λ? is the
largest eigenvalue of the solution to (16), L?(I, v?). Since

there are
2n|I|+ |I| − |I|2

2
decision variables and 2n linear

constraints then for |I| ≥ 3 there exists a Ψ 6= L?(I, v?) that
satisfies

Ψ1 = 0, Ψ = Ψ>, Ψv? = λv?

Ψij = Lij , i, j ∈ V \ I,

which results in a contradiction. �
The existence of a nonzero ∆(I, v?) enables the imple-

mentation of a feedback control signal to steer the nodes to
form any desirable faction structure depending on the choice
of v?. In other words, by changing the Laplacian of the
graph, (2) becomes

ẋ(t) = Lx(t) + uI(t), (17)

where uI = ∆(I, v?)x(t).
We conclude this section by commenting on the magnitude

of ∆(I, v?) and its application as a centrality measure for a
signed network.

Network centrality measures are real-valued functions that
assign a relative “importance” to each vertex within the
graph. Examples include degree, betweenness, closeness, and
eigenvector centrality. Along these lines, one can assign
importance to a subset of nodes in a network as well. To this
aim, in the context of signed graphs, the magnitude of the
perturbation required to achieve a desired faction structure,
i.e. ∆(I, v?) defines a class of network centrality measures.
In particular, this input magnitude assigns an importance
or influence value to different sets of nodes and indicates
how easily that subset of nodes can perturb the network into
the desired faction structure. For a given desired state, this
magnitude can be used to rank the influence of all subsets of
nodes in the network by computing the value for influencer
nodes set and sorting the result; the smallest magnitude
corresponds to the most influential set. The required pertur-
bation magnitude and the ranking depends of course on the



desired factions and the number of the influencer nodes. We
thus define the Factional Influence Index for signed graphs,
parameterised by the desired factions structure, v?, and the
number of influencer nodes, NI , as follows.

Definition 3 (Factional Influence Index). Given a signed
graph with n vertices and an associated Laplacian matrix
L as defined in (1). Let v∗ correspond to a desired faction
structure. The Factional Influence Index of set Ii ⊂ V and
|Ii| = NI given v∗ is the norm of the perturbation by the
influencer nodes in Ii required to achieve v∗:

ϕv∗(Ii) = ‖∆(Ii, v?)‖. (18)

V. ILLUSTRATIVE EXAMPLES

In this section we initially study the evolution of the
states of the nodes in a network with the a weakly balanced
underlying graph of 25 nodes and 8 factions as defined in
Definition 1. The value of xi(t)/‖x(t)‖ are depicted in Fig.
1 where states of nodes within the same faction converge to
the same value.

In the second example, we consider a network of 20 nodes
under an initial weakly balanced interconnection. It is further
assumed that I = {1, 2, 3}. At times 20 and 40 the influencer
nodes change their local interconnections as described in
Section IV to reflect a new faction structure. The value of
xi(t)/‖x(t)‖ for all i ∈ V and the factions formed in each
time interval are depicted in Fig. 2.

To conform with the principles of reproducible research
the scripts to generate the results in this paper are available
at [15].

VI. CONCLUDING REMARKS

In this paper we consider the problem of evolution of states
of a set of nodes in a signed network.

We initially demonstrated how the states of the nodes
evolve in a signed network. Moreover, It was demonstrated
how nodes form factions and how the structure of these
factions depends on the dominant eigenspace of the signed
Laplacian of the network. Furthermore, the problem of con-
structing networks with factional properties was considered.
Later, it was shown how a subset of influencer nodes in the
network can steer the rest of the network to any desired fac-
tion structure by modifying their local interconnections only.
This observation allowed the definition of a novel centrality
measure for subsets of nodes in a signed network. Some
numerical examples were provided as well. Formulating the
problem of finding the control input uI as a linear quadratic
optimal control problem is a future research direction.
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