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Rigid Network Design Via Submodular
Set Function Optimization

Iman Shames and Tyler H. Summers

Abstract—We consider the problem of constructing networks that exhibit desirable algebraic rigidity properties, which can provide
significant performance improvements for associated formation shape control and localization tasks. We show that the network design
problem can be formulated as a submodular set function optimization problem and propose greedy algorithms that achieve global optimality
or an established near-optimality guarantee. We also consider the separate but related problem of selecting anchors for sensor network
localization to optimize a metric of the error in the localization solutions. We show that an interesting metric is a modular set function, which
allows a globally optimal selection to be obtained using a simple greedy algorithm. The results are illustrated via numerical examples, and
we show that the methods scale to problems well beyond the capabilities of current state-of-the-art convex relaxation techniques.

Index Terms—Network problems, optimization

1 INTRODUCTION

ACCELERATING advances in communication, computa-
tion, and sensing technologies are allowing networks
of low-cost interconnected nodes to provide unprecedented
data streams about physical processes, and position control
and localization of (mobile sensor) node positions is often
required to meaningfully interpret and utilize the data.
There are several broad categories of measurement techni-
ques that can be used for position localization and control,
including angle of arrival, received signal strength profiling,
and distance related measurements. In this paper, we will
focus on distance-based scenarios in the plane; however,
similar results can be obtained for other types of measure-
ments and in higher dimensions.

The application of rigid graph theory to distanced-based
motion control in mobile robot formations and localization
problems in sensor networks has been the focus of many
recent studies [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. In
formation shape control problems, the literature is focused
on characterizing rigid graph properties that allow distrib-
uted control of any desired configuration [1], [2], [3] and
associated control law design [4], [5], [6]. Similarly, the sen-
sor network localization literature has focused on character-
izing rigid graph properties that allow unique localization
solutions [7], [8], [10], [12], [13], [14] and associated localiza-
tion algorithms [9], [10], [11].

While many aspects of distanced-based motion control
and localization problems have been studied in detail,
very few papers consider design of the network itself. In
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particular, the distances to be actively controlled in a forma-
tion control problem or the distance measurements in a
localization problem are typically taken as given. However,
a network designer can choose which set of distances to
control or which set of measurements to utilize given
knowledge of the desired formation shape or estimated sen-
sor configuration. An intelligent choice of these sets may
yield drastic performance improvements of certain tasks,
such as localization or formation control.

Design of rigid networks to optimize metrics associated
with the graph edges is considered in [15], [16], [17], [18]. In
[15], the total sum of the edge lengths, which is roughly
related to communication cost, is minimized using decentral-
ized methods. A more general state space setting is consid-
ered in [16], and an algorithm is developed to minimize the
system H, norm of the network associated with an exoge-
nous disturbance input. In [17], a sum of generic weight func-
tions associated with edges is minimized using decentralized
methods. In all cases, additional edges increase the cost, so
the optimal networks structures are shown to be minimally
rigid networks (rigid networks with the minimum number
of edges), and the algorithms are closely related to standard
algorithms for finding minimum weight spanning trees.

It has also been observed that the performance of the
rigidity based localization and control techniques are
closely related to the algebraic properties of the network
[19], [20], [21]. There are combinatorial methods to construct
networks to satisfy certain rigidity properties, namely, Hen-
neberg sequences [22], [23], but there are no methods that
take into account the algebraic properties of the network,
arising from the relative positions of the nodes, to maximize
these performance-based objective functions in the network
design. The metrics that we will consider are different from
those in [15], [16], [17]. In contrast to [15], [16], [17], our met-
rics are motivated by performance of specific localization
and control tasks and are improved by the addition of edges.
This implies that minimally rigid networks are not necessar-
ily optimal in our setting. An interesting extension for
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future work would be to simultaneously consider both
types of objectives and study the corresponding tradeoffs.
The recent work [18] formulates a related edge weight maxi-
mization problem but does not make connections to alge-
braic rigidity properties.

A related network design problem in the context of
sensor network position localization is anchor selection. It
is well known that the absolute positions of at least three
sensors, called anchors, are required to uniquely localize a
network in the plane. However, there are typically many
possible choices for anchors, each of which results in dif-
ferent properties of the position estimates of the remain-
ing sensors. The optimal selection of anchors has been
considered in [19], which uses a convex relaxation heuris-
tic to minimize a worst-case measure of estimation error
covariance. While this method results in a convex optimi-
zation problem, there are no approximation guarantees,
and the convex optimization problem can still be difficult
to solve for very large networks. The problem of anchor
selection or placement in sensor networks has been stud-
ied in different context in the last few years, however, to
the best of our knowledge none of the existing methods
have taken the approach presented in this paper and often
are not applicable to large scale networks, e.g., see [24],
[25], [26], [27], [28].

In this paper we first consider the problem of rigid net-
work design where in a given configuration the edges are
selected to optimize an algebraic rigidity-related perfor-
mance index, based on a rigidity Gramian, while satisfying a
rank condition that ensures rigidity of the network. In par-
ticular, we show that networks with desirable algebraic
rigidity properties can be constructed using a simple greedy
algorithm. Moreover, we establish that certain cost func-
tions that capture the algebraic properties of the networks
are modular or submodular set functions, which allows us
to provably obtain globally optimal or near optimal edge
selections. We then revisit the problem of optimal anchor
selection that was introduced in [19] and propose an alter-
native solution based on set function optimization. In partic-
ular, we show that an interesting metric associated with the
estimation error covariance is a modular set function.
Again, the implication of this is that a simple greedy algo-
rithm for anchor selection will provide a globally optimal
anchor selection. The results are illustrated with numerical
examples, and we show that our methods scale to problems
well beyond the capabilities of current state-of-the-art con-
vex relaxation techniques. The problems have a similar
mathematical structure to other recently introduced Gra-
mian-based set function optimization problems linking
submodularity with controllability [29], [30], [31] and sub-
modularity with network coherence [32]. Other problems
involving submodularity in networked control systems are
studied in [33].

The rest of the paper is organized as follows. Section 2
describes the necessary background information. In Section
3 the problem of constructing a rigid network through
applying submodular optimization techniques is consid-
ered. In Section 4 we revisit the problem of anchor selection
in a network in the context of network localization. We pres-
ent numerical examples in Section 5. Concluding remarks
are given in Section 6.

2 PRELIMINARIES

This section provides background on rigid graph theory
and on set function submodularity and matroids. We intro-
duce an important matrix, called the rigidity Gramian, which
is constructed from the well-known rigidity matrix and
quantifies algebraic rigidity properties of a network. The
network design problems we consider in the following sec-
tion can be cast as matroid constrained submodular set
function optimization problems.

2.1 Rigid Graph Theory

Let us call a network a graph G = (V, £), where V is the vertex
set and £ CV x V is the edge set with {i,j} denoting the
undirected edge incident at ¢ and j, together with a map
p:V — R, with p; € R? denoting the coordinate vector
associated with vertex ¢ € V. A network is thus denoted by
a tuple (G, p). Suppose there is a set of non-negative real
numbers representing intersensor distances D = {d;; : {4, j}
€ &}. The network is a realization of D if ||p; — p;|| = d;; for
any {i,j} € £.

The two networks (G,p) and (G,q) are equivalent if
llpi — pjll = |lai — q;]| for any {i,j} € €. The two networks
(G,p) and (G, q) are congruent if ||p; — p;|| = ||¢ — g;|| for all
pairs 4, j whether or not {4, j} € £. This is equivalent to say-
ing that (G, p) can be obtained from (G, q) by an isometry of
R?, i.e., a combination of translation, rotation and reflection.

Roughly speaking, a network is rigid when it cannot flex,
i.e., its shape cannot be changed via continuous motions of
vertex positions while keeping distances associated with
edges constant to become incongruent to its starting posi-
tion. More precisely, we have the following definition.

Definition 1. A network (G, p) is rigid if there exists some posi-
tive € such that if (G,p) and (G,q) are equivalent and
[lpi —ail| < € for all i€V, then the two networks are
congruent.

A network is minimally rigid when it is rigid but the dele-
tion of any single edge from the associated graph results in
a nonrigid network. The underlying graph of any minimally
rigid network can be constructed via applying the following
two operations, called Henneberg sequences [23], to a rigid
graph on two vertices (viz., two vertices connected by an
edge, the smallest rigid graph):

1) (Vertex Addition) Addition of a new vertex to the
graph along with edges connecting it to two previ-
ously existing vertices.

2) (Edge Splitting) Addition of a new vertex to the
graph along with two edges connecting it to two pre-
viously existing vertices that share a common edge,
removing the common edge, and addition of another
edge to any other vertex in the graph.

Any non-minimally rigid graph can be obtained from a
minimally rigid graph by simply adding edges. An equiva-
lent graph theoretic characterization is given by Laman’s
Theorem [34], which states roughly that rigid graphs have
at least 2|V| — 3 well-distributed edges.

It turns out that there exist rigid networks (G,p) and
(G, q) which are equivalent but not congruent. In fact, any
minimally rigid network with more than three vertices is
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equivalent to another such network to which it is not con-
gruent, due to so-called flip and flex ambiguities [20]. A net-
work (G, p) is globally rigid when every network equivalent
to (G, p) is also congruent to it. Such a network is uniquely
realisable given distances associated with the edges, and fix-
ing the coordinates of at least three noncollinear vertices
results in a unique position map p that satisfies the given
distance constraints; see [12], [13], [14] for more details.

Rigidity and global rigidity for a network in R? are
generic properties, in the sense that if a network (G, p) has
either of these properties, then the network (G, p) will also
have the property for generic values of the position coordi-
nates p, i.e., for all values save possibly for those contained
in a set of measure zero involving an algebraic dependence
over the rationals of the coordinates.! However, the posi-
tions in a realization of a network, not just the underlying
graph, can significantly affect the performance of algo-
rithms for robotic formation shape control and sensor locali-
zation that relate to rigidity, so algebraic properties of
rigidity are of substantial interest.

Rigidity can also be fully characterized algebraically.
Consider a network (G, p) in the plane, and let the coordi-
nate vector p; of vertex j be p; = [x;,4;]". The rigidity matrix,
denoted R(gp is defined with an arbitrary ordering of the
vertices and edges, and has 2|V| columns and |€| rows. Each
edge gives rise to a row, and if the edge links vertices j and
k, the nonzero entries of the row of the matrix are in columns
2j—1, 2j, 2k—1 and 2k, and are respectively z; — xy,
Yj — Yk, T — Tj, Yr — y;- Note that the entries of the rigidity
matrix do not depend on the absolute value of the positions
of the nodes, and they only depend on the relative positions
of the nodes from each other. A graph is generically rigid if
and only if for generic vertex positions, the rigidity matrix
has rank 2|V| — 3 [23]. There are zero-measure sets of non-
generic vertex positions for which the rigidity matrix can be
rank deficient, leading to the separate concept of infinitesimal
rigidity [35]. In this paper, we assume that vertices are in
generic positions to avoid degenerate situations in subse-
quent optimization problems involving the subtle distinc-
tion between generic and infinitesimal rigidity.

Assumption 1. The positions associated with vertices are generic.

The rigidity matrix contains much more quantitative
information about rigidity than just the rank. In particular,
the singular values of the rigidity matrix provide a measure

of the algebraic quality of a network. Accordingly, we
define the edge rigidity Gramian for a network (G, p) as

X(E:QP) _ R(g,p)RIg,p) c RIEIxIE] 1)

and the vertex rigidity Gramian as
X‘(}g,p) _ R(Tg,p)R(g,m c RIZVIx2V|, ©)
Networks whose Gramians have large eigenvalues have

superior algebraic rigidity properties than those with
smaller eigenvalues. These advantages translate to faster

1. An example for such non-generic situations is the case where the
coordinates are collinear in R?.

local convergence rates in formation shape control problems
and lower estimation error covariance in localization prob-
lems. Note that the vertex and edge Gramians have the
same non-zero eigenvalues, but that they have different
null space dimension and different eigenvectors. Various
scalarizations of the Gramian can be considered, which
trade off in different ways rigidity across the network.

2.2 Submodularity and Matroids

We will formulate rigid network design problems as set
function optimization problems. For a given finite set
V = {1,..., N}, which will represent a set of edges or nodes
in a network, a set function f:2V — R assigns a real num-
ber to each subset of V, which will represent a scalar metric
of the network rigidity. Cardinality constrained set function
optimization problems have the form

f(S). 3

maximize
STV, [S]<k

This finite combinatorial optimization problem can by
solved by brute force by evaluating f all possible subsets
of size «k and selecting the maximizing subset. However,
this approach quickly becomes infeasible even for mod-
erate values of NV and «. When f has a property called
submodularity, although the problem remains hard, a
simple greedy algorithm can be used to obtain near opti-
mal subsets.

Definition 2 (Submodularity). Let V be a finite set and let
f:2Y — R be a set function on V. Then f is called submodu-
lar if for every A, B C Vit holds that

f(A) + f(B) = f(AUB) + f(AN B). 4)

Submodularity can be informally described as a diminish-
ing returns property; that is, adding an element to a smaller
set gives a larger gain than adding one to a larger set. In par-
ticular, we have the following definition and result.

Definition 3 (Set Function Monotonicity). A set function
f:2Y =R is called monotone increasing if for all subsets
A, B C Vit holds that

ACB= f(A) < f(B) ®)

and is called monotone decreasing if for all subsets A, B C V it
holds that

ACB= f(A) > f(B). (6)

Theorem 1 ([36]). A set function f:2Y — R is submodular if
and only if the derived set functions f, : 2V\9} — R

fo(X) = f(X U {a}) = f(X)
are monotone decreasing for all a € V.

A set function is called supermodular if the reversed
inequality in (4) holds, and is called modular if it is both sub-
and supermodular. Modular functions have the following
simple characterization.

Definition 4 (Modularity). A function f is modular if for any
ACV:
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FA) = g(0) + 7 g(i). (7)

€A

One can see that optimizing modular set functions is
easy because each element of a subset gives an indepen-
dent contribution to the function values. Thus, (3) is
solved by evaluating the set function for each individual
element and choosing the top « individual elements to
obtain the best size k subset.

Consider the submodular function optimization problem
(3) where f is a monotone increasing submodular function,
Kk is a constant, and V is a given set. Algorithm 1 outlines a
greedy algorithm to this problem. We have the following
approximation result for (3) and the greedy Algorithm 1.

Theorem 2 ([37]). Algorithin 1 gives a (1 — 1/e)-approximation
for the problem (3), ie., (1 —1/e)f(Sopr) < F(S*), where
Sorr is the global optimizer of (3) and S* is the output
of Algorithm 1.

Algorithm 1. A Greedy Solution to (3)

S0
while |S| < « do
e = argmax,ein s
S—Su{e}
end while
S S

[f(SU{e}) = F(S)]

Cardinality constrained set function optimization prob-
lems can be considered as a special case of more general
matroid constrained set function optimization problems.
Matroids can be used to encode more complicated con-
straints: for example, in our setting one might like to con-
struct a network to optimize an algebraic metric of rigidity
subject to a constraint that the underlying graph is rigid,
which can be described as a matroid constraint [14]. Mat-
roids generalize the notion of linear independence in vector
spaces and are defined as follows.

Definition 5 (Matroid). A matroid is an ordered pair (V,T)
consisting of a finite set V and a collection T of subsets of V
(called the independent sets) having the following properties:

1) bez

2) IfAeZand BC A thenBeT.

3) If Aand BareinT and |A| < |B|, then there is an ele-
ment x of B\ Asuch that AU {z} € T.

Definition 6 (Independence Oracle). For the matroid (V,T),
an independence oracle is a function W(X) for all X C 'V such
that:

ifXeT
if X ¢T.

True

V(X = {False

Now consider the following matroid constrained optimi-
zation problem:

f(S), (8)

maximize
SCV, SeT

where the ordered pair (V,7) is a matroid. Similar to above,
Algorithm 2 provides a greedy solution to this problem and
the following result holds for the solution obtained from it.

Theorem 3 ([38]). Algorithm 2 gives a 1/2-approximation for the
problem (8),i.e., f(Sopr)/2 < f(S*) where Sopr is the global
optimizer of (8) and S is the output of Algorithm 2.

Observe that calculating O at each iteration requires
access to an independent oracle. Moreover, we note that,
there are recently developed and more sophisticated algo-
rithms that improve the performance guarantee to (1 — 1/e)
f(Sorr) < f(SF), the same approximation guarantee that
can be achieved for the special case of a cardinality con-
straints [39]. However, in this paper we focus on simple
greedy algorithms of the type presented in Algorithm 2 to
simplify the presentation.

Algorithm 2. A Greedy Solution to (8)

Require: An independence oracle checking e € 7.

S—10

O—{ecV\S:SU{e} e}

while O # ) do
* = argmax.co [f(s U {6}) - f(S)]
S —Su{e*}
O—{ecV\S:SU{e}e1}

end while

S S

We conclude this section by emphasizing that for the case
that f is a modular function both algorithms result globally
optimal solutions such that f(Sppr) = f(S™).

3 RIGID NETWORK CONSTRUCTION

In this section, we consider the problem of constructing
rigid networks given a set of vertices and their positions
in the plane by choosing which pairs of nodes should be
connected by an edge. We focus on optimizing a perfor-
mance index that captures the algebraic quality of the
rigidity of the network (though other cost functions asso-
ciated with the selected edges can be incorporated). Since
rigidity is monotonic in the number of edges, we limit the
number of edges in the network, subject to a constraint
that the underlying graph is rigid; from Laman’s theorem
[34] it is necessary that || > 2|V| — 3. As mentioned ear-
lier, there are many sets of edges that could be added to
achieve rigidity of the underlying graph (namely, any set
obtained from a Henneberg sequence [23]), but the alge-
braic rigidity of the resulting networks can be drastically
different. To illustrate this, we present two examples and
explain the implications with respect to localization and
formation shape control scenarios.

3.1 Motivating Examples

Example 1. Consider Fig. 1. Both networks depicted in Fig. 1
are constructed by the application of the Henneberg
sequence and as a result are generically minimally rigid.
Now, consider Fig. 2, where the networks have the same
underlying graph as those in Fig. 1 with the difference that
nodes 1 and 4 are nearly collocated. In the new configura-
tion, the network depicted on the left exhibits weak
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Fig. 1. Two different networks obtained from the application of the
Henneberg sequence. Hence, the underlying graphs are generically
rigid.

algebraic rigidity properties: one can see that if node 4 is
placed on top of node 1, node 5 can take infinitely many
positions satisfying the edge length constraints ||p; — ps|
= dy5 and ||ps — ps|| = das. This corresponds to a rank defi-
ciency in the rigidity Gramian. If the goal was to localize
the nodes given noisy distance measurements, the vari-
ance of the position estimate for node 5 would approach
infinity as the distance between nodes 1 and 4 goes to zero.
The network on the right does not suffer from this problem
even if nodes 1 and 4 are collocated. In terms of algebraic
rigidity, the graph structure on the right is highly pre-
ferred given the positions in Fig. 2.

Example 2. In this example we again consider the networks
depicted in Fig. 1. Suppose that the nodes now represent
mobile robots and it is desired for the robots to move to a
formation such that ||p; — p;|| = d;; for some desired d;;
and 7, j € V. Moreover, suppose that the nodes have sin-
gle integrator dynamics p; =w; and to achieve the
desired formation, the input of each node u; is chosen to
be the control law proposed in [4], yielding the closed-
loop dynamics

. 1
pi = 52 (d2 — Ilp; — pill*) (p; — p2), 9

JeVi

where V; is the set of nodes sharing an edge with 4. As in
the previous example, consider a situation where dy4 is
small. Fig. 3 depicts the control performance for the left
and right networks in Fig. 1. The plot shows the time
evolution of the shape error function s. =3, ;) [dij—
llp; — pil|l, which captures convergence of the nodes to
the desired configuration starting from the same initial
positions. The error decreases much faster when the
nodes have the underlying graph in the right network
in Fig. 1.

The difference in performance in both examples can be
traced to the eigenvalues of the rigidity Gramian. In particu-

Fig. 2. Although the underlying graphs are generically rigid, the relative
node positions can lead to significantly different algebraic rigidity proper-
ties. The network on the left ceases to be rigid when nodes 1 and 4
become collocated (and have very low algebraic rigidity when nearly col-
located). Thus, the network on the right is highly preferred for these par-
ticular relative positions.

0.6 T T T T
- - - Left Network
—— Right Network

0.5

0.41

0.3

0.2}

Error in Inter-node Distances

Time

Fig. 3. The performance of a formation shape control strategy for two
different networks.

lar, the eigenvalues of the Gramian on the right network in
Fig. 1 are larger than those of the left network, and this leads
to better performance in both localization and formation
shape control scenarios. These examples motivate the con-
sideration of node coordinates and associated algebraic
rigidity properties in constructing rigid networks.

3.2 Problem Statement
The following statement formalizes the problem of interest.

Problem 1. Given a finite set of nodes V and a generic coordinate
mapping p € R*Y, solve the following optimization problem

max}:mize f(&
(G,p) is rigid (10)
g=v.98),

subject to
€] < «,

where G is the underlying graph with vertex set V and the vari-
able edge set £, p corresponds to the nodes coordinates,
f:2Y — R is a monotone increasing set function that quanti-
fies the algebraic rigidity of the network, and « > 2|V| — 3 isa
given constant.

This problem is an NP-hard combinatorial optimization
problem. However, we will show that several scalar func-
tions of the rigidity Gramian quantifying algebraic rigidity
are modular or submodular set functions. The problem can
be split into two stages. In the first stage, a minimally rigid
graph is constructed while optimizing an algebraic rigidity
metric, which can be cast as a matroid constrained sub-
modular maximization problem. In the second stage, after
minimal rigidity has been achieved, an algebraic rigidity
metric is further optimized while the remaining edges are
added, which can be cast as a cardinality constrained
submodular maximization problem. As a consequence of
the modularity and submodularity properties, each stage
comes with global optimality or near optimality guarantees
per Theorems 2 and 3 via simple greedy algorithms.

First, we rewrite the rigidity constraint of the network
(G,p) in terms of the rank of the associated rigidity matrix
R(gp)- Thus (10) can be rewritten as
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maxigmize f(&

subject to rank(Rgp)) = 2[V| — 3 (11)
g:(vag)a |5|§K

The proposed solution to (11) consists of two stages. In the

first stage, we consider a special case of (10), where (G, p) is
required to be minimally rigid, in which case |£| = 2|V| — 3:

max(ismize (&)
subject to  rank(Rgp)) = 2|V| -3 (12)

After a minimally rigid graph has beed constructed, the
rank constraint is unnecessary. So in the second stage, the
remaining « — (2|V| — 3) edges are added by solving

max‘igmize f(&)
subject to  Es1.0pr C & (13)
g: (Vag)a |€| SK,

where Eg1 opr is the result of the algorithm for (12). In what
follows, we elaborate on our proposed algorithms for solv-
ing (12) and (13).

3.3 Solution to the First Stage as a Matroid
Constrained Optimization Problem

Let

MAE{M: M CE.,|M|=2[V|—3,Gu
= (V, M),rank(R(gM,p)) = 2|V| — 3}, (14)

where £, is the set of the edges of the complete graph on V,

and let
FeoJ 2™ (15)
MeM
We have the following.
Proposition 1. Consider the following optimization problem:
rna?ér}lizc f(&) (16)

where F is described by (15). The following statements hold:

1)  The pair (€., F) is a matroid.
2)  Anysolution to (12) is a solution to (16), and vice versa.

Proof. To prove 1), first label the edges of & from 1 to
VI(JV] —1)/2. Next, consider the mapping n:C—¢&,
that relates each of the numbers to its corresponding
edge, where C={l,...,|V|(]V| —1)/2}. Furthermore,
let S(V,p) be the rigidity matrix associated with net-
work (V, &, p) with s; its ith row. By definition (15), F
is the set of all subsets ) of & such that s,.), Ve € ),
are linearly independent. Then according to [40, Propo-
sition 1.1.1] the pair (€., F) is a matroid.

To prove 2), let £ and £ be the solutions to (12) and
(16) respectively where I€] < 2|V| -3 and |E| <2|V] -3.
First, because the rank condition cannot be satisfied with

|E’\ < 2|V| — 3 then |E| = 2|V| — 3 and since f is nonde-
creasing increasing then it is required that |€| = 2|V| — 3.
This in turn means € € M and equivalently rank(R((V,
E),p) =2[V| — 3, thus & is a solution to (12). Now con-
sider €. Since rank(R(V,€),p) = 2|V| — 3and || = 2|V| —
3, by definition £eM and consequently & € F. Since

any member of F that maximizes f is a solution to (16), P
is a solution to (16) as well. O

The matroid (€., F) is closely related to the infinitesimal
rigidity matroid discussed in [41].

A greedy algorithm for solving the matroid constrained
optimization problem (16) similar to the one outlined in
Algorithm 2 can be employed where V, S and T are replaced
by &, £, and F, respectively. The algorithm starts with an
empty set of edges and iteratively adds edges to the set to
maximize the marginal benefit of each added edge given
the previously added edges, while maintaining indepen-
dence of the set according to the matroid F.

Note that constructing O in Algorithm 2 requires access
to an independence oracle for testing independence of the
edge set at each iteration. The following result defines such
an oracle based on checking the rank of the associated rigid-
ity matrices.

Proposition 2. For a given £ € F with |E| < 2|V|—3, let
O2{ecé \E:EU{e}eF} and Q2{ec&. \ & rank
(R((V,E€U{e}),p)) > rank(R(v.e)p))}, where . is the set
of the edges of the complete graph on V. Then, 2 = O € F.

Proof. First, note that for any £ € F, |£| = rank(R(y¢)p)) by
definition. Consequently, if for some eecé&.\¢,
Eu{e} € F, then rank(R((V,EU{e}),p))=1I&]+1 >
rank(R(y¢)p))}- Thus, for any e € O, also e € Q. The
proof for the reverse direction follows in a similar way. O

In the light of Proposition 2, we propose Algorithm 3,
which makes independence oracle calls explicit by using
the rank of the rigidity matrix.

We now present the main result of this section on the
trace of the rigidity Gramian, which is one important way
of quantifying algebraic rigidity of a network.

Algorithm 3. Minimally Rigid Network Construction:
A Greedy Solution to (16)

Require: V, p
E—10
E—E.
while rank [R«V.g).p)l < 2|V| - 3do
X = argmax, g f(Eu{e}) — f(&)]
if rank [R((V‘g)‘l,)] < rank [R((V, EU{e*}),p)| then

E—Eu{e*}
end if
E— &\ {e*}
end while
Eq — €&

Theorem 4. Let £ C &, and let X¢ = R&v«s)AmR((Vf)p) be the
rigidity Gramian associated with €. Then the set function
defined by f(€) = trace(X¢) is modular and monotone



90 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL.2, NO.3, JULY-SEPTEMBER 2015

increasing. As a consequence, when Algorithm 3 is used to opti-
mize this function, a globally optimal set of edges is obtained.

Proof. Recall the labeling of edges in &£, from 1 to
VI(JV] —1)/2 and the mapping n:C — &, that relates
each of the numbers to its corresponding edge, where
C=A{1,...,V|(]V| — 1)/2}. Furthermore, let R((V,&.),p)
be the rigidity matrix associated with network ((V, £.),p)
with s; its ith row. Note that

F(&) = trace(R(y ) p Rv.e)p))

T. | _ T
= trace E s; Si | = E 8;iS; -

n(i)ee n(i)e€

Thus, from Definition 4, f(&) = trace(X¢) is modular.
That f(£) is monotone increasing follows from the addi-
tivity of the Gramian in the edges, which means that add-
ing an edge to the graph cannot reduce the algebraic
rigidity of the network. Global optimality is obtained
from Algorithm 3 since each edge contributes indepen-
dently to the function value for any given set. ]

For the case that f is modular it is easy to see that
fEU{e}) — (&) = f({i}). As a result, e* = argmax, g
[f(EU{e}) — f(&)] in Algorithm 3 can be replaced by
e” =argmax,z f({i}). This results in a more computation-
ally efficient algorithm since f is evaluated at most |€,| times.

If f is submodular, the set £g; obtained from Algorithm 3
satisfies the performance guarantee f(Esi1.0prr)/2 < f(Es1),
where £g1 opr is the global maximizer of f in the first stage
problem (12) [37]. One can imagine alternative spectral
functions of the rigidity Gramian to optimize, such as trace
of the pseudoinverse or the product of non-zero eigenval-
ues. Since in Algorithm 3 the rigidity matrix changes rank
at each iteration, it is not clear how to prove if these or other
functions are submodular. However, we will see in the next
section that in the second stage we can prove submodularity
of other functions.

3.4 Solution to the Second Stage as a Cardinality
Constrained Optimization Problem

In the first stage, a minimally rigid graph is constructed by

Algorithm 3, which returns edge set £g;. In the second stage

the optimization problem (13) is to be solved, in which the

remaining edges are added to £g;. A greedy algorithm for

solving (13) is outlined in Algorithm 4.

Algorithm 4. Minimally Rigid Network Construction: A
Greedy Solution to (13)

Require: V, p, £ from Algorithm 3.

E— 851

E — EK \ 851

while [€] < « do
e* = argmax_z [f(EU{e}) — f(£)]
E—Eu{e*}
E—E\{e*}

end while

Eso— &

Since the trace of the rigidity Gramian is a modular set
function, one also obtains a globally optimal solution for
this stage and a globally optimal solution for the whole
problem. We will now show that during this stage, in which
there is already a minimally rigid edge set, two other spec-
tral Gramian metrics, namely the trace of the Gramian pseu-
doinverse and the log product of non-zero eigenvalues,
correspond to submodular set functions and thus come
with an approximation guarantee for this stage.

To motivate the use of the trace and alternative metrics,
we now describe how the entire Gramian spectrum affects
the performance of formation control and localization tasks.
In a formation control context, if the dynamics of each agent
is driven by stochastic process noise (e.g., a team of autono-
mous aircraft under a random wind disturbance), then the
agents do not deterministically converge locally to the
desired shape, but instead stochastically fluctuate around
the desired shape. The variance of the linearized positions
around the desired shape converges locally to a steady state
value. The rigidity Gramian can be interpreted as defining
an ellipsoid that quantifies variance of linearized relative
position control errors, and all eigenvalues of the rigidity
Gramian contribute to errors in various directions. The trace
of the Gramian pseudoinverse is then proportional to the
average value of the error variance in different directions,
and the log product of non-zero eigenvalues of the Gramian
is a volumetric quantification of the steady state errors. In a
localization setting, the rigidity Gramian and its pseudoin-
verse are closely related to the Fisher Information Matrix
and estimation error covariance associated with linearized
position estimates, discussed in more detail below. Simi-
larly, the Gramian defines an uncertainty ellipsoid, and all
eigenvalues of the Gramian contribute to estimation errors
in various directions; the trace is related to Fisher Informa-
tion, the trace of the pseudoinverse is proportional to aver-
age variance, and the eigenvalue product has volumetric
and entropy interpretations.

We have the following result.

Theorem 5. Let £ C & and let Xe = Ry, ¢ Rive)p) be the
rigidity Gramian associated with £. Moreover, assume that
there exists an edge set E* such that (V,E%),p) is minimally
rigid, i.e., rank((V, 5*),p) =2|V| — 3, and £ C £. The fol-
lowing set functions are submodular and monotone increasing

1) fi(€) = —trace(X;), where X; denotes the Moore-
Penrose pseudoinverse of Xe¢.

2) fo€) =log (T X, (Xe)) where Ai(Xg) is the
ith eigenvalue of X¢ and A (Xg) > ... > A (Xe).

As a consequence, when Algorithm 4 is used to optimize
these functions, the approximation guarantees provided by
Theorems 2 and 3 are obtained.

Proof. We will use the characterization in Theorem 1 to
prove the result. Similar to the preceding proof of modu-
larity for the trace metric, the key structure that can be
exploited is the additivity of the rigidity Gramian with
respect to elements of £.

Trace of the inverse. Take an arbitrary e € £. and con-
sider the derived set functions f, : 2°°\{} — R given by
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(&) = ftrace(X;U{c}) + trace(XI:)
= —trace((Xe + X.)') + trace(X;).

Take any & C &; C &\ {e}. By the additivity property of
the Gramian, it is clear that & C & = X¢, =< Xg,. Now
define X(t) = Xg, +t(X¢g, — X¢,) for t€0,1]. Obvi-
ously, X(0) = X¢, and X(1) = X¢,. Now define

F(X(1) = —trace((X(t) + X.)1) + trace(X(¢)").

Note that f.(X(0)) = f.(&) and f.(X(1)) = f.(&;). We
have

% LX) = % [—trace((X(t) + X))+ trace(X(t)T)}

— trace [(X(t) + X)) (Xe, — Xe )(X(8) + X)) }
— trace {X(t)f(Xg2 — Xg, )X(t)q

= trace {((X(t) + X.)" = X(t)“) (Xe, — Xgl)] <0.

To obtain the second equality we used the matrix
derivative formula % trace(X(t)") = trace(X(t)' £ (X (t))
X(t)") which holds whenever X (¢) has constant rank for
all t, which we have here due to the assumption that
there already exists a set of edges that provides rigidity.
To obtain the third equality we used the cyclic property
of trace. Since (X(t)+ X.)"* — X(t)"* <0 and Xe,—
Xe¢, = 0, the last inequality holds because the trace of the
product of a positive and negative semidefinite matrix is
non-positive. Since

1
Fx) = f.xo + [ SR

it follows that f.(X(1))= f.(&)< f.(X(0) = £.(E1).
Thus, f. is monotone decreasing, and f; is submodular
by Theorem 1.

Finally, it can be seen from additivity of the rigidity
Gramian that f is monotone increasing, which just
means that adding an edge to the graph cannot decrease
its rigidity.

Product of non-zero eigenvalues. The proof for the prod-
uct of non-zero eigenvalues has the same structure. Take
any e € &.. Since rank(Xg) = rank(X¢ ), from Lemma
1 in the appendix we know that there exists a P such that

rank(Xg) .
log < H /\i(X5)> = log det(X¢)

i=1

and

rank (X (cy) rank(X¢)
108;( H )\i(XEU{ﬁ})) = log< Ai(Xsu{e})>

i=1 i=1

= log det Xgu{e}),

where X¢ = Xg+ P and )?gu{e} = Xeugey + P- So, it is
enough to show the submodularity of log det(Xg).

Consider the derived set functions f, : 2°\{} — R given
by
fe(€) = log det Xgu{@} — log det Xg
= log det(Xg + X.) — log det X¢.

Take any &, C & C &\ {e}, remember that X < Xg,,
and define X(t) = (X, + P) + t((X52 +P)— (Xe, + p))
= (Xgl + P) + t(XgQ — Xgl) fort € [0, 1] and

F.(X(1) = log det(X(t) + X,) — log det X (t).

Since we assumed that there exists a set of edges that pro-
vides rigidity and P is constant, X (¢) has full rank for all
t, and it follows that

2 hxw) = % [1og det(X(t) + X.) — log det )?(t)}

= trace{()?(t) + Xe)fl(X& - Xéfl)}
— trace {)N((t)_l(ng - Xsl)}

= tracc{(()?(t) + X))t = )Z’(t)*)(ng — Xg, )} <0.

We used the matrix derivative formula 4log det X(t) =
trace[ X (t) ! %)N( (t)]. The remainder of the proof follows
trace of the pseudoinverse. O

We conclude this section by noting that the cost functions
in the two stages of constructing the network need not be
the same, i.e., the cost function of the optimization problem
(12) maybe different from the one in (13). To emphasise this,
let fs1(€) and fs2(€) denote the cost functions of (12) and
(13), respectively. For example, one might first construct a
minimally rigid via applying Algorithm 3 for the case where
fs1(€) = trace(X¢) and then add extra edges to this mini-
mally rigid network though the application of Algorithm 4
where f (&) = Hzinlk(&) A\i(Xe), where X¢ is the rigidity
Gramian associated with £ C £, as defined earlier.

4 OPTIMAL ANCHOR SELECTION

We now consider a separate but related network design
problem involving a choice of subsets of vertices rather
than subsets of edges. As stated earlier, a globally rigid net-
work is uniquely realisable. However, even given the graph
and distance set of a globally rigid network, there is not
enough information to position the network absolutely in
R?. In fact, the network can only be positioned to within a
translation, rotation or reflection. To eliminate this non-
uniqueness requires further knowledge, typically the abso-
lute position of at least three vertices. In a physical sensor
network, this information is either derived from global
position sensing (GPS) measurements or other form of
independent measurements. The vertices in question must
not be non-collinear; for if they were, there would be ambi-
guity up to a reflection in the position of all other vertices.
The vertices with known positions are called anchors, and
we denote the set of all anchors with A. Just as the edge sets
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discussed in the previous section affected the network
rigidity properties, so do sets of chosen anchors.

In this vertex selection setting, a rigidity Gramian again
quantifies network rigidity properties for anchor selections,
and this translates to better performance in localization
tasks. Links between the Gramian and localization proper-
ties are described in detail in [19] and [20]. A noise-free net-
work localization problem comprises finding sensor
positions p;, i € V'\ A such that

lpi —pl* = d5j, {i,j€ECVxV, an
given a set of distance measurements d;;, {i,j} € £ between
certain pairs of sensors and at least three non-collinear
anchor positions pj, j € A. This problem has a unique solu-
tion if G is generically globally rigid. When the distance
measurements are noisy, i.e., &;; are replaced by d7; + 8;; (17)
with §;; being an error in the squared distance (rather than
in the distance itself), there is in general no exact solution,
but one can obtain an approximate solution by solving

(18)

min
i ,iEV\.A {i "

- 2
}[m —pill = (d+3,)] -
J

Let p; be the true position of node i and p?‘ is obtained from
solving (18), and define p; = p?‘ — p;. From [19, Theorem 2]
one can observe that p; is the minimizer of the following
optimization problem

2
(19)

R

. 1502
i 3l |
Here R,(A), the reduced rigidity matrix, is constructed by
deletion of columns of R corresponding to anchor posi-
tions and rows of Ry corresponding to edges between
two anchors, respectively. Furthermore, p is the perturba-
tion in non-anchor positions and & is the error vector in the
square of the length of edges connecting those edges with at
least one non-anchor end. Additionally, H = H ® I, where
H is obtained by removing the columns and rows of the
incidence matrix of G corresponding to the anchor positions
and the edges connecting the anchors, respectively;
I, € R?*? is the identity matrix. The optimization problem
described by (19) has the following unique solution:

p=~R3
where
R -

-1
% (R,.(A)TR,.(A) + iHTH> RAT. Q)

Note that R,(A) depends on the positions of the nodes
while H does not. As a result by an appropriate choice of

system of coordinates R, can be approximated arbirarily
accurately as

R~ (RT(A)TRT(A))_IRT(A)T = %RT(A)',

DO | =

where R,(A)" is the Moore-Penrose pseudoinverse of R,(A)
(For its existence see [19, Theorem 3]). Since § is unknown
accurately calculating the error in the localization is impos-
sible. However, the error vector § can be modeled by ran-
dom variables, with specific covariance and mean value.

Let cov(8) denote the covariance of 8. Thus,

TT

cov(p) = iR,-(A)TCOV(S)RT(A) (21)

Often in practice cov(8) can be assumed to be diagonal with
nonidentical diagonal entries. Let o be the minimum of
these diagonal entries, hence,

o2

- 1 ~ .
cov(p) = 7 R (A)fcov(d) R, (A) T TR (AR (A) e
Therefore, the magnitude of the eigenvalues of the reduced
rigidity Gramian induced by anchor set A, denoted

X4 =R(A) R.(A) are directly related with the lower
bound on the covariance of error in position estimates,
which relates to Fisher information. Before proceeding fur-
ther we comment on the eigenvalues of the reduced rigidity
Gramian in a deterministic setting. From [20] it is known
that there exists a suitably small positive A and an associ-
ated positive constant ¢ such that if the measurement errors
in the squares of the distances obey | > 8l < 4,

the solution of (18) is unique and || > ; p; —pjll <
> (i} 8ij||. Moreover, the magnitude of ¢ is inversely pro-

portional to the magnitudes of the eigenvalues of the
reduced rigidity Gramian induced by anchor set A. To sum-
marize, networks with large reduced rigidity Gramians for
a given anchor selection allow for better performance in
localization tasks.

The problem of anchor selection in a network in its most
general form can be written as:

maximize f(A),

ACVY [Al=m (23)

where m > 3 is the number of anchors to be chosen and
f:2Y — Ris a set function. This problem is again a difficult
combinatorial optimization problem. For certain functions
of the reduced rigidity Gramian, there are convex relaxation
techniques that can be employed to obtain approximations
efficiently; e.g., see [19]. However, such techniques often
suffer from two drawbacks: (i) they generally return a sub-
optimal solution with no performance guarantees, and (ii)
the semidefinite programs that emerge out of such relaxa-
tions, though computationally efficient in theory, are
numerically cumbersome and are virtually unsolvable with
modern general purpose solvers for networks with size
larger than 100 nodes.?

Alternatively, one can consider purely combinatorial
algorithms and study properties of associated set functions.
We will show that a certain function of the reduced rigidity
Gramian has a desirable modularity property that allows a

2. Developing more efficient relaxation techniques for solving
mixed-integer semidefinite optimization problems is an active area of
research and methods with better peformance might be developed in
the future.
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globally optimal anchor selection to be obtained from the
application of Algorithm 1 to (23). Before stating our main
result in this section, we make a technical assumption that
ensures that the associated localization problem after any
anchor selection is well-posed.

Assumption 2. Consider a network N' = (G, p), with the under-
lying sensing graph G = (V, ), where no agent is an anchor.
For any subset A C{1,2,...,n} with |Al=m >3, let
N(A) = (G(A),p) with underlying sensing  graph
G(A) = (V,E(A)) denote the network obtained from N by
assigning all the agents i € A as anchors. Let £(.A) denote the
set of edges connecting these anchor agents. It is assumed that
N(A) is globally rigid for any AC{1,2,...,n} with
|Al =m > 3.

We have the following result for the trace of the reduced
rigidity Gramian.

Theorem 6. For any selection of anchors A CV such that
|A| >3, the set function f(A) = trace(X,), where X, =
R.(A)" R,(A) is the reduced rigidity Gramian and R,(A) is
the reduced rigidity matrix, is modular. As a consequence,
when Algorithm 1 is used to optimize this function, a globally
optimal anchor selection is obtained.

Proof. To prove the statement note that trace[(R,(A)"
R,(A)] = trace[(R,(A)R,.(A)"]. Moreover,

trace[(R,(A)R,(A)'] = trace Z rir| = Z trace[r] 7],
icA icA

where A=V \ A and 7; € RFF*? is a matrix with the
2i — 1th and 2ith columns of the rigidity matrix R((G, &),
p). From Definition 4, the function is modular. ]

One can consider other spectral functions of the reduced
rigidity Gramian. However, as in the first-stage problem in
the previous section, submodularity properties cannot be
established with the approach of the proof of Theorem 5
because the Gramian changes rank (indeed, here it also
changes dimension) as anchors are added. If submodularity
could be established for other functions, the approximation
guarantee of Theorem 2 would apply when Algorithm 1 is
applied. In any case, even though we cannot currently
establish submodularity properties for other functions, this
does not preclude the use of the greedy algorithm. Though
the solutions do not currently come with approximation
guarantees, the algorithm may still yield good solutions and
scales to large problems.

Selecting the anchors via the method described above
requires forming the reduced rigidity matrix, which in turn
requires knowledge of certain relative positions between
the nodes in the network. One can envisage two scenarios
in which the method could be used. First, suppose that mul-
tiple nodes in a sensor network have GPS receivers, and to
conserve energy it is desired that only a few receivers
should be turned on for localization purposes. Initially, a
random subset of them may activate their GPS receivers so
that a coarse localization can be done. Using the information
obtained from this initial optimization step, a rigidity matrix

can be constructed, which consequently makes selecting
which nodes to turn on their GPS receivers, i.e., be selected
as an anchor, in order to obtain a better localization accu-
racy possible. Second, suppose that relative position infor-
mation in the absence of a global coordinate frame is
available, however, finding the positions in a global coordi-
nate frame requires fixing the position of a subset of nodes,
i.e., selecting some of them as anchors. This is particularly
important when the nodes are moving while maintaining
their relative positions from each other.

5 NUMERICAL EXAMPLES

In this section, initially, we study the performance of the
algorithms introduced in Section 3.

In the first scenario, we compare the performance of
Algorithms 3 and 4 with a semidefinite programming (SDP)
relaxation of (11) given below:

Viey|-1)/2
maxtimize f Z tis! si

i—1
VIeYI-1)/2
subject to ¢; € [0, 1], ti =k,
=1

Vi2v|-1)/2
BT Z ttsLTs, B>yl

i—1

where s; its ith row of ((V, &), p) — the rigidity matrix asso-
ciated with network , — B is a 2|V| x 2|V| — 3 matrix whose
columns are orthogonal to the vectors in the null space of
the rigidity Gramian of a rigid network— i.e., they are
orthogonal to [1,0,1,0...]", [0,1,0,1,...]", and [y;, —a1,
Yo, — Lo, .. .]T, —and y < 11is a small positive constant. Con-
sequently, the resulting network from solving (24) is
obtained from selecting edges n(j) (n:{1,...,|V|(]V] —
1)/2} — &. relates each index j to its corresponding edge)
where the corresponding tf obtained from (24) is among
the «-largest values of t, i =1,...,|V|(2|V| — 1)/2. How-
ever, the network obtained from solving (24) is not guaran-
teed to be rigid.

To illustrate this we constructed networks via solving
(24) for a network of n = 50 nodes and different . We drew
sensor positions from a uniform distribution and compared
the average of the trace of the rigidity Gramian of the net-
works compared from solving (24) with those obtained
from applying the two-stage method outlined in Section 3
after 100 runs in Fig. 4. For smaller values of « it can be seen
that solving (24) results in networks with larger Gramian
teace compared to Algorithms 3 and 4. However, it is
important to note that in none of these situations the result-
ing network is guaranteed to be actually rigid. The percent-
age of the cases where the resulting network is not rigid for
different edge numbers « is shown in Fig. 5.

In the second scenario, we consider the problem of con-
structing minimally rigid networks. To this aim, we com-
pared the magnitude of the trace of the rigidity Gramian
obtained from applying the Henneberg sequence and Algo-
rithm 3. The numerical experiments are repeated 20 times
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Fig. 4. The trace of the rigidity Gramian of networks generated via apply-
ing Algorithm 3 and 4 versus solving (24) for n = 50, different values of
k€ {97,107,117,...,497}, and 100 instances of nodes positions, p;,
i=1,...,n.

and the average of the trace across all experiments for dif-
ferent number of nodes are constructed. The positions of
the nodes are selected randomly from a uniform distribu-
tion for each experiment. The result is depicted in Fig. 6. It
can be seen that the greedy algorithm exhibits a far better
performance than randomly applying Henneberg sequen-
ces. Note that while applying random Henneberg sequence
might not seem to be the most efficient strategy to construct
rigid networks, it is the only method in the literature for
constructing rigid graphs. There is no other method to this
date that uses algebraic rigidity properties to construct
rigid networks.

Next we study the problem of anchor selection in a net-
work of 1,000 nodes where 20 anchors are to be selected.
The result using the trace metric is shown in Fig. 7. Qualita-
tively, those nodes are selected as anchors that the sum of
the lengths of all the edges incident at them are the largest.
Particularly, it can be observed that the majority of the
selected anchors lie in an area with equal distances to the
center and the boundary of the network. The anchor selec-
tion problem using python took about 49 seconds on a
2.8 GHz laptop; the convex relaxation algorithm proposed

100
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Fig. 5. The percentage of the cases where the network obtained from
solving (24) is not rigid for n =50, different values of
k€ {97,107,117,...,497}, and 100 instances of nodes positions, p;,
i=1,...,n.
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Fig. 6. The trace of the rigidity Gramian of networks generated via apply-
ing Algorithm 3 and a Henneberg sequence for constructing minimally
rigid networks for different number of nodes, n.

in [19] fails to run on a problem this size using standard
SDP solvers.

In all the numerical examples we encountered the greedy
algorithm not only guarantees solutions that satisfy the
rank constraint but also scales to far larger problems than
the SDP relaxations. For the greedy, limiting factor is func-
tion evaluation, which only involves carrying out an singu-
lar value decomposition (SVD) which can easily scale to
tens of thousands of variables using standard algorithms on
typical laptops. Solving the SDP relaxation, on the other
hand, becomes virtually impossible using typical solvers on
standard laptops for problems with around 100 variables.

To conform with the guidelines of reproducible research
the python scripts used to generate the results in this paper
are available at [42].

6 CONCLUSION

In this paper, we proposed algorithms to construct networks
with desirable algebraic rigidity properties. We identified
several scalar metrics of the rigidity Gramian that are modu-
lar or submodular set functions, which allows global optimal-
ity or approximation guarantees to be obtained using simple

Fig. 7. The selection of 20 anchors in a network of 1,000 nodes. The
selected anchors are depicted as red rectangles.
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greedy algorithms. A matroid constrained formulation was
used to enforce a rank constraint that ensures that solutions
also satisfy binary rigidity properties. We also considered the
related problem of optimal anchor selection for sensor net-
works localization. The problem was again formulated as a
set function optimization problem, and we identified a modu-
lar metric that can be globally optimized with a greedy algo-
rithm. Almost all methods in the literature for constructing
rigid networks are purely graph theoretic and do not consider
algebraic rigidity properties; our methods can produce net-
works with vastly superior performance in localization and
formation control tasks. Moreover, the greedy algorithms
scale to problems far beyond the current capabilities of semi-
definite programming based relaxation techniques.

There are several interesting topics for future work. One
would be to incorporate the objective functions considered
in [15], [16], [17] and study the corresponding performance
tradeoffs and (sub)modularity properties. Others would
be to study other objective functions associated with the
anchor selection problem and to pursue theoretical exten-
sions and empirically evaluate the greedy algorithm.

APPENDIX

Lemma 1. Consider X,Y € R"*" be positive semidefinite matri-
ces such that rank(Y) <rank(X) <n and rank(X +Y)
= rank(X). First, the null spaces of X and X +Y are the
same. Second, there exists a positive semidefinite P such that

1 (X)) =0

NX) a0, )

XN(X+P) = {

Third, for the same P as in (25), [[™F) (X
+Y) =det(X +Y + P), where \;(-) is the ith eigenvalue of
its arqument and A, (-) < ... < N (4).

Proof. Let rank(X) = p and u; be the unit length eigenvec-
tors of X associated with )\;(X) such that u, u; =0 for
i#j. For any je{n—p+1,...,n}, It follows that
u/ (X +Y)u; = u'Yu. To obtain a contradiction assume
there is a je{n—p+1,...,n} such that u/Yu;#O0.
Thus the dimension of the null space of X + Y is at most
n—p—1, which is equivalent to rank(X +Y)=p+1
which is a contradiction. Hence, the spaces spanned by
the eigenvalues of X and X + Y are the same.

Second, because X is symmetric it can be diagonal-
ised. Let X = UA(X)UT, where UTU = I, A(X) = diag
M(X),..., (X)), and U = [wy Uy ]. Define P =
UApU" where Ap has zero entries except the iith diago-
nal entry of 1 if X;(X) = 0. Such a P satisfies (25) and
P = Z?:nﬁﬁl u7uj o . T

Third, X+Y=UAX+Y)U , where U U=1,
AX +Y) =diag\ (X +Y),...,. (X +Y)), and U=
[1 ... u,] with 4; being the ith eigenvector of X +Y
associated with \;(X + Y’). Similar to above there exists a
P=3%", ., wu, suchthat

1 AN(X4Y)=0

MEAY) N +Y)£0. 20

A,;(X+Y+F):{

Hence, X +Y +P is nonsingular and [[*H)
Ni(X 4+Y) =det(X +Y + P). Moreover, in light of the
first statement, @; =u;, i=n—p+1,...,n. Thus P=P
and [ N (X +Y) = det(X + Y + P). O
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