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Abstract— As cyber–physical networks become increasingly
equipped with embedded capabilities, they are made vulnera-
ble to malicious attacks with the increased number of access
points available to attackers. A particularly pernicious attack is
spoofing, in which a malicious agent spawns multiple identities
and can compromise otherwise attack–resilient algorithms that
rely on assumed network robustness structures. We generalize a
class of resilient consensus strategies, known as weighted mean-
subsequence-reduced (W-MSR) consensus, to further provide
spoof resilience by incorporating a physical layer authentication.
By comparing the physical fingerprints of received signals,
legitimate agents can identify and isolate malicious agents that
attempt spoofing attacks. A key technical contribution is to
quantify worst case misclassification probability using distrib-
utionally robust Chebyshev bounds computed via semidefinite
programming when the physical fingerprints of received signals
are stochastic. Numerical simulations and experimental results
illustrate the effectiveness of the proposed methods. Our frame-
work is applicable to a variety of problems involving multirobot
systems coordinating via wireless communication.

Index Terms— Distributional robustness, graph robustness,
network resiliency, robot coordination, spoof attack.

I. INTRODUCTION

A LARGE and growing literature has emerged on security,
resilience, and robustness of the cyber–physical sys-

tems in the presence of noncooperative and adversarial
agents [1], [2]. Malicious agents under a distributed envi-
ronment might gain an undesirable advantage by influenc-
ing neighboring legitimate agents in the network. One such
pernicious attack is spoofing,1 in which a malicious agent
spawns multiple nonexistent identities or impersonates existing
legitimate agents. Spoofing is not just an abstract concern; suc-
cessful attacks have been realized in several critical networks,

1Also known as a “Sybil” attack [3].
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such as global navigation satellite systems [4] and antilock
braking systems [5].

Autonomous multirobot systems are a rapidly emerging type
of cyber–physical network, in which many tasks, including
distributed estimation and cooperative manipulation, utilize
distributed consensus protocols to coordinate an agreement on
certain quantities of interest. Recently resilient consensus algo-
rithms have been developed to prevent malicious agents from
exerting undue influence, by designing sufficient redundancy
in the algorithms and underlying network structures [6]–[9].
Such approaches have recently been applied to multirobot
systems in [10] and [11]. Yet, spoofing attacks can easily
compromise these otherwise attack resilient algorithms and
network structures, which assumes an upper bound on the
number of malicious agents in the network. Thus, malicious
information easily propagates through the network leading to
severe performance degradation or safety constraint violations.

In this brief, we address spoofing attacks in robust robotic
networks. It was argued in [3] that any defense against a spoof-
ing attack requires either a trusted central authority to certify
(perhaps cryptographically) the identities of all legitimate
agents in the network or a reliable method to distinguish phys-
ical fingerprints of signals received from neighboring agents.
We focus here on the latter as the former is undesirable in
distributed multirobot setting. Physical fingerprint analysis and
discrimination have been used to detect spoofing in specific
application contexts [12] but not in the context of generally
distributed algorithms in cyber–physical networks or dynamic
multirobot systems. Noise in the communication channel can
result in a legitimate robot being wrongly classified as a
spoofed neighbor, and vice versa, thereby emphasizing the
need to quantify worst case misclassification probability of
such scenarios.

Contributions: The current brief is a significant extension
of our preliminary work in [13] where we generalize a class
of resilient consensus strategies, known as weighted mean
subsequence reduced (W-MSR) consensus, to provide spoof
resilience by incorporating a physical fingerprint analysis of
signals received from neighboring agents (see Algorithm 1).
Performing physical layer authentication by comparing the
physical fingerprints of received signals, legitimate agents
can detect and isolate malicious agents that attempt spoofing
attacks. Our algorithm achieves resilient consensus despite an
arbitrary number of spoofed agents in the network. Our main
contributions in this brief are as follows.

1) When fingerprint signals are stochastic, we quantify
the worst case misclassification probability using dis-
tributionally robust Chebyshev bounds computed via
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Fig. 1. Network under spoofing attack and a typical neighbors fingerprint
distributions being compared by a legitimate robot.

semidefinite programming (see Theorem 2). We model
true distributions of the fingerprints as unknown but
belonging to a moment-based ambiguity sets.

2) We demonstrate that a malicious node spoofing at
least F identities is sufficient to compromise a robust
graph resulting in the failure of W-MSR strategy (see
Theorem 1).

3) We perform numerical simulations and experiments
using Sphero robots swarms to illustrate the effective-
ness of the proposed methods.

Our framework is applicable to a variety of problems involving
multirobot systems coordinating via wireless communication.

The rest of the brief is organized as follows. Section II
formulates a model for spoofing attacks in multirobot networks
and presents the attack detection technique using physical
fingerprint analysis. Section III proposes the extension of
W-MSR for spoof resiliency. The misclassification proba-
bility in a stochastic setting is addressed in Section IV,
where a semidefinite programming formulation is proposed
to arrive at distributionally robust Chebyshev bounds. Numer-
ical simulations results are then presented in Section V
followed by experimental results on a Sphero rolling robot
swarm in Section VI. Finally, the brief is concluded in
Section VII.

II. SPOOFING ATTACKS IN MULTIROBOT NETWORKS

A. Spoofing Attack—Network Model

Fig. 1 illustrates an example of a spoofing attack that we aim
to address. We model the network with an undirected graph
G comprising a node set V representing m agents and edge
set E[t] ⊂ V ×V representing a set of (possibly time-varying)
communication links amongst the agents. The node set is par-
titioned into two disjoint subsets V = Sl ∪ Sa . The set Sl repre-
sents the set of legitimate agents. A malicious agent attempts
to disrupt the network by communicating subversive infor-
mation to neighboring agents and may, in addition, attempt
to perform a spoofing attack by creating multiple nonexistent
identities. Thus, the set of adversaries Sa is composed of both
malicious and spoofed agents so that Sa = Sm ∪ Ss , where Sm

denotes malicious agents and Ss denotes the agents spoofed
by Sm . An upper bound of F number of malicious agents
is assumed, whereas an arbitrary number of agents could be
spoofed.

B. Consensus Dynamics—Update Model

We associate with each node i ∈ V , a state xi [t] ∈ R at time
t ∈ Z≥0. The state may represent a position or some quantity
to be estimated or optimized, depending on the application
context. In order to achieve some objective, the nodes interact
synchronously by exchanging their state value with neighbors
in the network. Let the set of inclusive neighbors be defined
as Ji [t] = Ni [t] ∪ {i}, where Ni [t] = { j ∈ V : ( j, i) ∈
E[t]} is the neighbor set of agent i at time t , whose states are
available to agent i via communication links. Each legitimate
node updates its own state over time based on its current state
and the state of neighboring agents according to a prescribed
rule of the form

xi [t + 1] = fi
(
x j [t]

)
, j ∈ Ji [t], i ∈ Sl . (1)

The degree of i is denoted as di [t] = |Ni [t]|, and every
node is assumed to have access to its own state at time t .

Definition 1: A node i ∈ V is said to be malicious if it
sends xi [t] to all of its neighbors at each time step but applies
some other function f ′

i (·) at some time step [6].
Remark: We limit our discussion to malicious threat model,

though our approach extends to the Byzantine model2 as well.

C. Attack Detection Using Physical Fingerprint Analysis

We imagine a scenario in which the agents in the network
communicate amongst themselves using a wireless communi-
cation protocol. We assume a complex multipath environment
where a transmitted signal is scattered off of walls and objects,
manifesting themselves as measurable peaks in fingerprints
and, thereby, contributing significantly to its uniqueness. Phys-
ical properties of the received wireless signal profiles are lever-
aged to detect the spoofing attack. The physical fingerprint
of an agent j received by agent i at time t , as described
in [12], is modeled by a p-dimensional feature vector, F j

i [t] ∈
R

p, containing physical signal properties, such as angle-of-
arrival, time-of-arrival, and other features. These features can
be measured using a synthetic aperture radar (SAR) and further
can be processed using a well-studied signal processing algo-
rithm called multiple signal classification (MUSIC) to generate
spatial fingerprint corresponding to each neighboring agent.
We assume that, when a malicious agent spoofs, it reports
another identity through the noisy wireless communication
channel where the noise can be modeled by associating a prob-
ability distribution with received signal fingerprints. Hence,
fingerprints of the spoofed agents are realized from the same
distribution of the spoofing agent. This will be discussed in
detail in Section IV. Based on the received signal fingerprints
of pairs of neighboring agents, we define a similarity metric

γ
jk

i = 1

1 +
∥∥∥F j

i − F k
i

∥∥∥ , j, k ∈ Ni (2)

which quantifies how similar the fingerprint of neighboring
agent j is to that of neighboring agent k, as received by agent i .

2A node i ∈ V is said to be Byzantine if it sends different values to different
neighbors at some time step and if it applies some other update rule f ′

i (·),
at some time step.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 27,2021 at 12:49:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RENGANATHAN et al.: SPOOF RESILIENT COORDINATION IN DISTRIBUTED AND ROBUST ROBOTIC NETWORKS 3

Gill et al. [12] modeled the fingerprint by a directional signal
strength profile that depends on wireless signal wavelengths,
distances and relative angles between directional antennae,
multiple possible signal paths, and random channel proper-
ties with the additive Gaussian noise. Our development is
inspired by their approach. Agent i computes these similarity
metrics for each neighbor pair. From these similarity metrics,
a confidence weight α

j
i ∈ [0, 1] can be associated with

neighboring agent j , which should be close to 1 for legitimate
neighbors and close to 0 for spoofed and spoofing neighbors.
For example, in a deterministic setting, the confidence weights
for neighbors j and k are 0 if the neighbor j has the same
fingerprint as neighbor k and 1 otherwise. For the neighbor
j ∈ Ni , we define the confidence weight associated with agent
i as

α
j
i =

∏
k∈Ni , j �=k

(
1 − γ

jk
i

)
. (3)

D. Choosing a Spoofing Threshold

In a stochastic setting, we define a spoof detection threshold
ω ∈ [0, 1]. Since robots have physical extent, there is a
nonzero minimum distance between the sensors or receivers
located in each robot that is used for discriminating received
signals. We assume that this minimum distance translates to a
corresponding minimum distance Fmin in feature vector space,
where the pairwise comparisons are made, so that∥∥∥F j

i − F k
i

∥∥∥ ≥ Fmin ∀ j, k ∈ Ni , j �= k. (4)

This suggests a threshold for robustly classifying neighbor-
ing agents whose fingerprints satisfy this bound as malicious
or spoofed. Specifically, the similarity metrics and confidence
weights for legitimate neighbors then satisfy

γ
jk

i ≤ 1

Fmin

⇒ α

j
i ≥

(
1 − 1

Fmin

)|Ni |
. (5)

It follows that the threshold:
ω =

(
1 − 1

Fmin

)ξ

, ξ = max{|Ni |}, i = 1, 2, . . . , |V| (6)

correctly discriminates between legitimate and malicious or
spoofed neighbors, assuming that the fingerprints satisfy (4).
However, fingerprints of received signals may be stochastic
and not easily bounded resulting in a possibility of misclas-
sifying a malicious neighbor as legitimate. If the likelihood
that the physical fingerprints of two neighbors are different is
below the threshold, the neighbors are classified as spoofed
or spoofing agents, and otherwise, they are classified as
legitimate; for example

g
(
α

j
i

)
≤ ω ⇒ j is spoofed or spoofing

g
(
α

j
i

)
> ω ⇒ j is legitimate (7)

where g(·) is a prescribed detection function. In the stochastic
settings, g(·) and ω could be selected based on an assumed
model for the probability distributions of the fingerprints and
associated bounds on misclassification probability. To recover
the deterministic case, we can set ω = 0 and g(x) = x .

III. DESIGN OF A SPOOF RESILIENT COORDINATION

ALGORITHM

In this section, we describe a coordination algorithm that is
resilient to anonymous malicious agents who share adversarial
state values and may also attempt to spoof nonexistent agents
who also share adversarial state values. Since malicious agents
do not all necessarily attempt to spoof, we build upon recent
work on resilient consensus algorithms that do not handle
spoofing, and resiliency is achieved by effectively designing
and exploiting redundancy in the communication graph.

A. Resilient Asymptotic Consensus

Let xM [t] and xm[t] denote the maximum and minimum
values of the legitimate nodes at time t , respectively. The
legitimate agents in the network are said to achieve resilient
asymptotic consensus [7] in the presence of a particular threat
model if for any initial conditions it holds.

1) ∃ L ∈ R such that limt→∞ xi [t] = L∀i ∈ Sl .
2) The interval [xm[0], xM[0]] is an invariant set (i.e.,

the legitimate values remain in the interval ∀t).

Resilient asymptotic consensus implies that L ∈
[xm[0], xM [0]], despite the presence of misbehaving nodes
given a particular threat model and scope of the threat.
We now review the resilient graph properties and an existing
resilient consensus algorithm called W-MSR, as described
in [6].

Definition 2: Given a graph D and a nonempty subset of
nodes S, we say that S is an (r, s)-reachable set if there are
at least s nodes in S, each of which has at least r neighbors
outside of S, where r, s ∈ Z≥0, i.e., given X r

S = {i ∈ S :
|Ni\S| ≥ r}, then |X r

S | ≥ s.
Definition 3: A graph D = {V, E} on n nodes (n ≥ 2) is

(r, s)-robust; for nonnegative integers, r ∈ Z≥0, 1 ≤ s ≤ n, if,
for every pair of nonempty, disjoint subsets S1 and S2 of V ,
at least one of the followings holds (recall X r

Sk
= {i ∈ Sk :

|Ni\Sk | ≥ r} for k = {1, 2}).
1) |X r

S1
| = |S1|.

2) |X r
S2

| = |S2|.
3) |X r

S1
| + |X r

S2
| ≥ s.

The (r, s)-robustness property introduces information redun-
dancy by specifying a minimum number of nodes that are
sufficiently influenced from outside of their set. Furthermore,
(r, s)-robust graph is also (r̂ , ŝ)-robust with r̂ ≤ r, ŝ ≤ s, but
not vice versa [6].

B. W-MSR Algorithm

At every time t , each legitimate node i obtains the values
of other nodes in its neighborhood. There are at most F
total malicious nodes in the network, and some of node i ’s
neighbors may misbehave; however, node i is unsure of which
neighbors may be compromised. To ensure that node i updates
its state in a safe manner, we consider a protocol where each
node removes the extreme values with respect to its own
value. We denote by Ri [t] the set of nodes whose values were
removed by legitimate node i during the comparison process at
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time t . Each legitimate node i then applies the W-MSR update

xi [t + 1] =
∑

j∈Ji [t]\R[t]

wi j [t]x j [t]

wi j [t] = 1

1 + di [t] − |Ri [t]| , j ∈ Ji [t]\R[t] (8)

where wi j [t]3 is the weight associated with node j ’s value by
node i at time step t . Assuming that there are F total malicious
agents and no spoofed agents, (F + 1, F + 1)-robustness is
a necessary and sufficient condition for the normal nodes to
achieve resilient asymptotic consensus [6] under the W-MSR
update protocol [14] specified in (8). We first observe that
the W-MSR protocol is easily compromised by a spoofing
attack and subsequently present our spoof resilient adaptation
of W-MSR. It is clear that any malicious node can create
a sufficiently large number of spoofed nodes so that a
neighboring legitimate node is forced to use the values of a
spoofed node even after applying the W-MSR update rule.
Here, we show that spoofing at least F identities is sufficient
for a malicious node to cause W-MSR to fail (though fewer
or even a single node can cause failure in certain cases).

Theorem 1: Consider an undirected network G = (V, E),
where V represents the set of m agents and E represents the
set of communication links between them. Assume that the
network is (F + 1, F + 1)-robust and not (F + 2, F + 2)-
robust, where F is the upper bound on the total number of
malicious agents in the network. Let all the legitimate agents
use the W-MSR update rule. Then, there exists a location in
the network for the malicious node where spoofing at least F
number of identities is sufficient to cause the failure of the
legitimate agents to achieve resilient asymptotic consensus.

Proof: Since G is not (F + 2, F + 2)-robust, then there
are nonempty, disjoint subsets S1,S2 ⊂ V such that none
of the three conditions 1)–3) holds. Take one such pair
S1,S2 ⊂ V such that |X F+2

S1
| ≤ |S1| − 1, |X F+2

S2
| ≤ |S2| − 1,

and |X F+2
S1

|+ |X F+2
S2

| ≤ F + 1. Consider the case that
|X F+2

S1
∪ X F+2

S2
| = F + 1, and out of that, suppose that F

nodes are malicious. This indicates that each of S1 and S2 has
at least one legitimate node, each with no more than F + 1
neighbors outside of its respective set. Denote the sets of such
nodes as VS1 and VS2 , respectively. Let one of the malicious
nodes in X F+2

S1
, say Vm , spoof F nodes denoted by {V sl

m}F
l=1

with edges to the same neighbors of Vm . Now, consider the
new graph Ĝ = (V̂, Ê) with V̂ = V ∪ {{V sl

m}F
l=1} and Ê = E∪

{(i, j)
∣∣i ∈ NVm , j ∈ {V sl

m}F
l=1}. Define the disjoint subsets

Ŝ1, Ŝ2 ⊂ V̂ for the new graph as Ŝ1 = S1∪{{V sl
m }F

l=1} and Ŝ2 =
S2, respectively, so that there are at least F + 1 adversarial
nodes inside Ŝ1: the F spoofed nodes, the malicious spoofing
node Vm , and other malicious nodes if any. Denote the sets
VS1 and VS2 after spoofing as VŜ1

and VŜ2
, respectively.

Let 0 < a < b < c < d < e, the initial values of
legitimate nodes in Ŝ1 and Ŝ2, be b and d , respectively,
and the initial values of the rest of the legitimate nodes in
the network be c. Furthermore, let all malicious and spoofed

3For all t ∈ Z≥0, weights satisfy wi j [t] ≥ κ , where 0 < κ < 1, κ ∈ R,∑n
j=1 wi j [t] = 1∀i ∈ Sl , and wi j [t] = 0∀ j /∈ Ji [t], i ∈ Sl [7].

nodes in Ŝ1, Ŝ2 have constant values a and e, respectively,
across all time steps. The W-MSR algorithm with parameter
F discards at most the F highest and F lowest values and
then applies a convex combination update rule with each
weight lower bounded by κ . Applying the convex combination
of values, nodes in VŜ2

with values d = xM [t] will be
monotonic and bounded functions of time t (by Lemma 1
of [7]). However, when nodes in VŜ1

with values b = xm[t]
apply W-MSR, they discard at most the highest F values
out of F + 1 neighbor values from outside Ŝ1, and similar
to discarding the lowest F values, they remove F of the
F + 1 or more a values in Ŝ1 leaving at least one a
value in update consideration. The convex combination-based
W-MSR updates with the remaining neighboring values, which
includes at least one a value from the adversarial node; thus,
xm[t] will no longer be a monotone but bounded function
of time t . Therefore, VŜ1

and VŜ2
, and hence, all legitimate

nodes reach the consensus value of a /∈ [b, d], thereby
resulting in failure of the W-MSR protocol. Analogously, if the
spoofing is happened in S2, the attained consensus would
be e /∈ [b, d]. �

C. Spoof Resilient W-MSR Algorithm

Our spoof resilient adaptation of the W-MSR algorithm is
summarized in Algorithm 1. Based on a pairwise comparison
of physical fingerprints of signals received from neighboring
agents and associated confidence weights, spoofed agents in
the network are identified. Achieving resiliency then involves
removing the identified spoofed and spoofing agents from the
state update if their confidence weight is at most equal to the
spoofing threshold ω. Thus, in a stochastic setting, a spoofing
threshold can be employed, as explained in Algorithm 1.
To conclude this section, we show that Algorithm 1 exactly
achieves resiliency to an arbitrary number of spoofed agents
in the deterministic case where fingerprint noise is zero, with
an appropriate selection of the spoofing threshold.

Lemma 1: Consider an undirected network G = (V, E),
where V represents the set of agents and E represents the
set of communication links between them, and consider the
Spoof-Resilient W-MSR described in Algorithm 1. Suppose
that the physical fingerprints of each agent are deterministic,
the spoofing threshold ω is set to zero, and the detection
function is set to g(x) = x . Suppose further that the network
is (F + 1, F + 1)-robust, assuming an upper bound of F total
malicious agents in the network, some of which may spoof.
Then, the network achieves resilient asymptotic consensus
under Algorithm 1 in the presence of any spoofing attack.

Proof: Since the physical fingerprints are deterministic
and the malicious agent reports multiple identities from the
same location, then all fingerprints of signals of spoofed
agents are identical to that of the spoofing agent. Thus, any
spoofed and spoofing agents (say F̂ in total) are exactly
detected using zero thresholds and identity detection function
and ignored from the state update in line 14 of the Algorithm 1.
Furthermore, applying W-MSR update (with parameter Fnew =
F − F̂) after the identification of spoofing agents guarantees
resiliency in the presence of remaining Fnew malicious nodes

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 27,2021 at 12:49:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RENGANATHAN et al.: SPOOF RESILIENT COORDINATION IN DISTRIBUTED AND ROBUST ROBOTIC NETWORKS 5

Algorithm 1 Spoof Resilient W-MSR (SR-W-MSR)

who do not spoof but may apply adversarial updates to their
state. �

IV. QUANTIFYING MISCLASSIFICATION PROBABILITIES

IN SPOOFING DETECTION

In our proposed physical layer authentication technique,
each legitimate robot associates a fingerprint with each wire-
less communication signal received from neighboring agents.
Following the fingerprint construction procedure explained in
Section IV of [12], we interpret the fingerprint as a vector of
signal parameters, such as received signal strength and relative
bearing. Since communication channels are inherently noisy,
the pairwise comparison might result in misclassification,
as depicted in Fig. 1. By associating probability distribu-
tions with fingerprints of received signals, misclassification
probabilities can be estimated based on assumptions about
the distributions. In practice, the true fingerprint distributions
are generally unknown, may be difficult to estimate, and
depend on the environment configuration, obstacle positions,
battery power levels, and even the robot positions. How-
ever, there are many applications where knowledge about the
environment, onboard sensor characteristics and experimental
data allow quantification of expected variations in fingerprint
distributions. For example, the spacing of vehicle-to-vehicle
communication equipment in cars driving along a highway is
constrained by the physical extent of actual cars. Furthermore,
inherent statistical variations in the transmitters and receivers
can be estimated from received signal data.

These difficulties in estimating fingerprint distributions also
motivate a distributionally robust approach [15], where, rather
than assuming or estimating a particular fingerprint distrib-
ution, we instead assume knowledge or estimation of only
the first two moments. Interpreting Fmin as a threshold to
make classification decisions may result in misclassification
due to possibly unbounded fingerprint distributions. Here,

we compute the worst case probabilities of misclassification
over the set of fingerprint distributions with given mean and
covariance. These worst case estimates can be interpreted as
generalized Chebyshev bounds [16], which extends classical
moment-based Chebyshev inequalities to vector-valued ran-
dom variables.

Let there be n neighbors in total for a given signal receiving
robot that consists of both legitimate and bad neighbors. The
set of bad neighbors consists of both malicious neighbors,
and any arbitrary number of spoofed identities emulated by
each malicious neighbor. Let us denote the set of legitimate
neighbors by L = {1, 2, . . . , nl} and the set of malicious
neighbors by M = {1, 2, . . . , nm}. Also, we refer by Xs

m
the spoofed agent emulated by malicious agent m. Finally,
we collectively refer to the set of all spoofed entities Xs

m
emulated by agents m ∈ M by S = {1, 2, . . . , ns}, where
ns = ∑

m∈M ns
m , and ns

m refers to the number of spoofed
entities emulated by the malicious agent, m ∈ M. For every
l ∈ L and m ∈ M, we denote by Xl ∼ Pl(μl,�l) and
Xm ∼ Pm(μm,�m) the fingerprints and associated probability
distributions of the neighbors received by a robot, where Xl

corresponds to a legitimate robot and Xm to a malicious one.
We assume that the means μl, μm ∈ R

p and covariance
matrices �l ,�m ∈ Sp are known or can be estimated from
received signal data or sensor hardware datasheets (with
Sp denoting the set of symmetric p × p matrices) but the
true distributions Pl and Pm are unknown and belong to a
moment-based ambiguity sets Pl and Pm , respectively, which
are defined as follows:

Pl = {
Pl | E[Xl] = μl, E

[
(Xl − μl)(Xl − μl)

�] = �l
}

(9)

Pm = {Pm | E[Xm] = μm,

E
[
(Xm − μm)(Xm − μm)�

] = �m
}
. (10)

When a malicious agent m ∈ M attempts a spoofing
attack, all true fingerprints distributions of Xm and that of
the spoofed identity Xs

m , respectively, fall under the same
ambiguity set Pm sharing the same moments data. That is,
Xm ∼ Pm1(μm,�m), Xs

m ∼ Pm2(μm,�m) with Pm1, Pm2 ∈
Pm , and also Pm1, Pm2 need not denote the same distribution.
Hence, every legitimate agent, l ∈ L, and malicious agent,
m ∈ M, will have its own moment-based ambiguity set Pl and
Pm , respectively, where its true distribution lies satisfying the
corresponding moments data. Out of the

(n
2

)
pairwise compar-

isons by the signal receiving robot, we enumerate the possible
events that will result in misclassification. A misclassification
event occurs when the following holds.

1) A legitimate neighbor’s fingerprint realization is closer
than Fmin to any malicious neighbor’s fingerprint real-
ization.

2) A legitimate neighbor’s fingerprint realization is closer
than Fmin to a spoofed fingerprint realization of any
malicious neighbor.

3) A legitimate neighbor’s fingerprint realization is closer
to a malicious neighbor’s fingerprint realization than
the corresponding malicious neighbor’s realization is to
one of its own spoofed realizations.
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4) A legitimate neighbor’s fingerprint realization is closer
to a spoofed realization than the corresponding mali-
cious neighbor’s realization that emulated the spoofed
entity.

To model the above scenarios for particular pairs or triples
of legitimate, malicious, and spoofed agents l ∈ L, m ∈ M,
and s ∈ S, we define the events

Cl,m
1 = {

Xl, Xm : ‖Xl − Xm‖2 ≤ Fmin
}

Cl,s
2 = {

Xl, Xs
m : ‖Xl − Xs

m‖2 ≤ Fmin
}

Cl,m,s
3 = {

Xl, Xm, Xs
m :

‖Xl − Xm‖2 ≤ ‖Xm − Xs
m‖2}

Cl,m,s
4 = {

Xl, Xm, Xs
m :

‖Xl − Xs
m‖2 ≤ ‖Xm − Xs

m‖2
}

(11)

and denote corresponding families of these events as

C1 =
{
Cl,m

1 : l ∈ L, m ∈ M
}

C2 =
{
Cl,s

2 : l ∈ L, s ∈ S
}

C3 =
{
Cl,m,s

3 : l ∈ L, m ∈ M, s ∈ S
}

C4 =
{
Cl,m,s

4 : l ∈ L, m ∈ M, s ∈ S
}
. (12)

Since the fingerprints are independent, the joint random
variable denoted by X = [Xl, Xm, Xs

m] has mean and covari-
ance

μ =
⎛
⎝μl

μm

μs

⎞
⎠, � =

⎛
⎝�l 0 0

0 �m 0
0 0 �s

⎞
⎠. (13)

For k = 1, . . . , 4 and i = 1, . . . , |Ck |, respectively, the prob-
ability of misclassification event i is given by

sup
{
P
(
X ∈ C i

k

)} = 1 − inf
{
P
(
X /∈ C i

k

)}
(14)

where the supremum and infimum are taken over the set
of probability distributions on R

p with the given mean
and covariance. Utilizing generalized Chebyshev bounds
from [16], the misclassification probabilities can be readily
computed by solving a (convex) semidefinite programming
problem. Though the events are generally independent within
the same family, they are generally dependent between fami-
lies. Thus, we address them separately here rather than jointly.

A. Computing Misclassification Probability via Semidefinite
Programming

We emphasize that the proposed spoof resilient W-MSR
algorithm (see Algorithm 1) can be implemented without
knowledge of the fingerprint distributions. Knowledge of fin-
gerprint distributions is only required to estimate bounds on
misclassification probabilities, which then informs the choice
of threshold in the algorithm. The first step in computing the
misclassification probability for a particular pair of legitimate
and malicious agents, or triple of legitimate, malicious, and
spoofed agents, is to form the neighbor pair combination
matrix ACi

k
corresponding to an event i in the family Ck .

Assume a total of n = 3 neighbors with nl = nm = ns = 1,

and thus, X = [Xl, Xm, Xs
m]�. Now, for i = 1, . . . , |Ck |,

we have

ACi
1

=
⎛
⎝ 1 −1 0

−1 1 0
0 0 0

⎞
⎠ ⊗ Ip, ACi

2
=

⎛
⎝ 1 0 −1

0 0 0
−1 0 1

⎞
⎠ ⊗ Ip

(15)

ACi
3

=
⎛
⎝−1 1 0

1 0 − 1
0 − 1 1

⎞
⎠ ⊗ Ip,

ACi
4
=

⎛
⎝ 1 0 − 1

0 − 1 1
−1 1 0

⎞
⎠ ⊗ Ip. (16)

We now have the following result for computing distribu-
tionally robust misclassification probabilities using semidefi-
nite programming.

Theorem 2: Consider the joint random fingerprint variable
X = [Xl, Xm, Xs]� with mean E[X] = μ and covariance
E[X X�] = �. Now, consider an event i in the family Ck ,
k ∈ {1, 2, 3, 4}, with ACi

k
formed using (15) or (16). Let

κ =
{

λFmin, if k = 1, 2

0, otherwise.

The worst case probability of misclassification, sup{P(X ∈
C i

k)} over the set of all distributions of X with mean μ and
covariance � is given by the optimal value of the following
semidefinite program:

max λ

s.t. tr
(

ACi
k
Z
)

≤ κ(
Z z
z� λ

)
�

(
� + μ�μ μ

μ� 1

)
(

Z z
z� λ

)
� 0 (17)

with variables λ ∈ R, Z ∈ S3p, and z ∈ R
3p.

Proof: Here, we demonstrate a proof for a misclassifica-
tion event i from the family C3. The proofs corresponding to
events in the other families are entirely analogous. In this case,
the event involves one legitimate neighbor Xl , one malicious
neighbor Xm , and one spoofed identity Xs

m . Let us denote
the joint random variable as X = [Xl, Xm, Xs

m]�. Let A =
(Xl − Xm), B = (Xm − Xs

m). Now, the smallest probability of
not misclassifying inf P(X /∈ C i

3) is given by

inf P
(∥∥A‖2 ≥∥∥B‖2) = inf P

(
X� ACi

3
X ≤ 0

)
.

Then, applying a generalized Chebyshev inequality (from
the main result in Section II of [16]) and combining with (14)
yields the result. �

B. Illustrative Example

For illustration purposes, consider the robots move in a
highly noisy setting in R

2. The receiving robot has sensors
with a positive variance that allows discrimination of received
signal strength in the radial direction and bearing measurement
in the orthogonal direction, which are used to estimate the
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Fig. 2. Misclassification probability with respect to events in the family C1
decreases as Fmin is increased.

Fig. 3. (2, 2)-robust graph with one robot being malicious (red) and it spoofs
a nonexistent robot (green).

positions of neighboring robots, which then serves as the
fingerprint estimate. Suppose that the receiving robot is located
at the origin, and the neighbors are located randomly around
it. The semidefinite program (17) was solved for varying
threshold values Fmin to compute the worst case misclassi-
fication probability with respect to the events in the family C1.
As the robots get more physically separated than the minimum
separation (Fmin), the misclassification probability decreases,
as shown in Fig. 2.

V. NUMERICAL SIMULATIONS

We now illustrate our spoof resilient W-MSR algorithm
using the 7-node (2, 2)-robust network with six legitimate
agents and one malicious agent who spoofs one agent and
sends messages to all his neighbors using both identities with
an intention to move the robot formation to unsafe region,
as shown in Fig. 3. The objective of the network is to form a
hexagonal formation and remain in the safe region, which can
be expressed by introducing a constant bias in the consensus
update equations. Specifically, at every iteration, the desired
position of robot, i = 1, . . . , 6, is computed via

xi [t + 1] =
∑

j∈Ji [t]\R[t]

wi j [t]
(
x j [t] − x̄ j

) + x̄i (18)

where x̄i := [sin(θi), cos(θi)]� ∈ R
2 and θi := (2π(i − 1))/6

is a constant bias vector that is used to position each robot
at a vertex of the hexagon. Note that, due to the addition and
subtraction of the same bias vector for each agent, by defining
x̃i := xi − x̄i , one can see from (18) that x̃i has the same
dynamics as of (8). The six legitimate agents were given
random initial states, as shown in Fig. 3. A constant bias
of x̄ = 5 cm is added to the malicious robot’s position in
each dimension to obtain the spoofed robot’s position. Now,

consider the spoofed agent not being present. When a standard
linear consensus protocol is employed to obtain a robot forma-
tion, it fails, as shown in Fig. 4(a), depicting that the protocol
is not resilient against malicious attacks. When the W-MSR
algorithm is used to obtain a robot formation, the legitimate
robots are resilient against the malicious robot and achieve the
desired formation in the safe region, as shown in Fig. 4(b),
thus proving resiliency against malicious attacks, but without
spoofing. Now, consider that agent 7 is malicious. When
the malicious agent spoofs a single additional agent identity,
the legitimate agents fail to achieve resiliency, and hence, they
are pulled into an unsafe region by malicious robots, as shown
in Fig. 4(c). This shows that spoofing attacks are capable
of compromising graph robustness properties and, thereby,
the network resiliency. Now, consider the same setting where
the spoofing attack is simulated for the first ten time steps,
and then, the algorithm switches to spoof resilient version
guaranteeing spoof resilient formation in the safe region,
as shown in Fig. 4(c), thereby emphasizing the need for earlier
detection.

VI. EXPERIMENTAL RESULTS

To demonstrate our approach, experiments are performed on
a robotic platform using the Sphero rolling robot swarm. The
communication among the robots is shown in Fig. 3, where
each robot represents a node in the (2, 2)-robust network with
six legitimate and one malicious agent.

A. Implementation Details

Our experimental setup consists of seven Sphero 2.0 robots,
a Logitech C950 webcam, a Bluetooth-enabled smartphone,
and a computer system that was equipped with Intel Core
i7-6600U (four CPUs) at a 2.60-GHz processor. All routines
executed during the experiment are implemented in MATLAB.
We emphasize that, although this experimental implementation
is centralized, the information that is made available to each
robot is restricted according to the communication graph
shown in Fig. 3. The webcam is set up to overlook a confined
area, in which the Sphero robots are placed and allowed to
move. The LEDs of the legitimate and malicious robots are set
to emit blue and red colors, respectively. A color-based image
segmentation routine, as explained in [17], is used to detect
and track the robots in real time from the 640 × 480 images
that are fetched from the webcam. The recovered coordinates
from the camera data are used in a consensus-based formation
control strategy to bring the robots to a hexagon formation.
At every iteration, the desired position of legitimate robots
is computed via (18). For demonstration purposes, a constant
bias of x̄ = 50 cm is added to the malicious robot’s position
in each dimension to obtain the spoofed robot’s position.
Given the desired position xi [t +1], a low-level PID controller
computes the required linear and angular velocity control
commands that guide the robot to this location at the next
iteration. These control commands are communicated to the
robots via Bluetooth, as explained in [18]. The motion of the
legitimate robots is controlled by the computer, and the mali-
cious robot is controlled manually via a smartphone. A video

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 27,2021 at 12:49:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 4. With the robots given random initial positions as in 3, the linear consensus protocol is not resilient against malicious attack, as shown in (a). The
W-MSR protocol guarantees a resilient formation against malicious robots in a safe region, as shown in (b). Malicious robot spoofs nonexistent robot resulting
in the robot formation being pulled into the unsafe region, as shown in (c). When the attack is detected, the malicious and spoofed robots are removed from
the network, and spoof resilient W-MSR guarantees resiliency against spoofing attack, as shown in (d). Blue, red, and green represent legitimate, malicious,
and spoofed robots, respectively. (a) Linear consensus protocol fails with one malicious robot. (b) W-MSR succeeds in keeping the formation in the safe
region. (c) W-MSR algorithm fails under the spoofing attack. (d) Proposed SR-W-MSR algorithm achieves spoof resiliency.

supplement available at https://youtu.be/dcd0EexNnzE shows
the experimental results, where we observe that the spoof
resilient W-MSR algorithm successfully detects and isolates
a spoofing attack in the experimental conditions.

VII. CONCLUSION

We proposed a spoof resilient consensus algorithm by
extending a class of resilient consensus strategies, known
as the W-MSR consensus, to provide resilience to malicious
agents that may both adversely update state values and spoof
nonexistent agent identities. The proposed algorithm using
the physical fingerprint approach guarantees resiliency despite
the presence of a certain number of malicious agents and
an arbitrary number of spoofed agents in the network. As a
novel contribution, a probabilistic spoof detection analysis
is presented using a semidefinite programming technique to
arrive at distributionally robust Chebyshev bounds for the
probability of misclassification of robots. Experimental results
using Sphero robot swarms and numerical simulations demon-
strate the effectiveness of the proposed algorithm. Future
research involves quantifying the worst case probability of
misclassifications persisting overextended periods of time by
considering fingerprints over multiple time periods.
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