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Abstract— Quantifying controllability in large dynamical net-
works and designing network structures with good controlla-
bility properties has generated significant recent interest. We
consider actuator placement problems in dynamical networks
and show that the mappings from actuator subsets to four
fundamental optimal control metrics are in general neither
supermodular nor submodular set functions via a simple coun-
terexample. We also find a set of restrictive conditions under
which these mappings are modular set functions. Although this
implies that simple greedy algorithms do not in general produce
actuator placements with guaranteed near optimal closed-loop
control performance, we find in computational experiments
that greedy algorithms can exceed performance and far exceed
scalability of convex relaxation heuristics with general purpose
semidefinite programming solvers.

I. INTRODUCTION

Quantifying controllability in large dynamical networks,
including power grids, transportation networks, and various
biological networks, has generated significant recent interest.
Although the notion of controllability in dynamical systems
has been around for decades [1], there are renewed efforts to
elaborate on various aspects of controllability in structured
networks.

Many metrics can be used to quantify different aspects of
controllability and relate it to network structure properties.
Once an appropriate metric is defined, one can consider
the problem of selecting or placing actuator sets that im-
prove network controllability. Recent prominent work has
considered classical binary controllability metrics based on
Kalman rank [2], [3], [4], [5], [6], [7], [8]. Since these can
be extremely crude and misleading controllability quantifi-
cations, other work has focused on non-binary metrics, e.g.,
using the controllability Gramians to obtain input energy-
related quantifications and optimal control costs that capture
essential control notions of feedback control performance
and robustness.

Actuator selection problems for optimizing network con-
trollability are combinatorial and for large networks require
heuristics. There are two broad heuristic approaches: con-
vex relaxation and combinatorial greedy algorithms. Convex
relaxations for sensor and actuator selection using optimal
control metrics are considered in [9], [10], [11]. Combinato-
rial methods are considered using Gramian metrics in [13],
[14], [15], [16]. A key focus in analysis of combinatorial
greedy algorithms is to determine if set functions mapping
actuator subsets to a controllability metric are submodular
or supermodular. When this is true, greedy algorithms are
guaranteed to produce near optimal actuator subsets. Several
classes of Gramian metrics are shown to be submodular in

[13], [14], [15], [16]. Other similar problems that feature
Gramians, submodularity or supermodularity, and greedy
algorithms are considered in [17], [18], [19], [20], [21],
[22]. Many of the results and methods for actuator selection
and controllability have analogous counterparts for sensor
selection and observability.

Here we consider four fundamental optimal and dynamic
game metrics that quantify feedback control performance and
robustness, and we study the use of greedy algorithms for
actuator selection in dynamical networks. The main contribu-
tions are as follows. We show that in general none of the four
fundamental metrics are supermodular functions via a simple
counterexample. This parallels a recent result demonstrating
lack of supermodularity in Kalman filtering-based estimation
metrics [23]. We also identify special conditions on the
problem data under which all of the metrics are modular.
Finally, we investigate the empirical performance of simple
greedy algorithms in a class of random networks and show
that the greedy algorithm can outperform a convex relaxation
while achieving far faster computation times.

The paper is organized as follows. Section II provides
the problem formulation and preliminaries. Section III gives
a counterexample that shows that the four metrics are in
general not supermodular, and identifies special conditions
on the problem data under which the metrics are modular.
Section IV presents the results of computational experiments.
Section V concludes and describes future research directions.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate four actuator selection prob-
lems based on optimal values and equilibrium values of
fundamental optimal control and dynamic game problems.
These metrics capture feedback control performance and ro-
bustness. Specifically, we consider deterministic and stochas-
tic linear quadratic optimal control problems and dynamic
games. Properties and heuristic solution algorithms will be
discussed in Section III.

A. Deterministic optimal control

Consider the linear dynamical system

Tt4+1 :A$t+BSUt, t:O,...,T7 (1)

where x; € R" is the system state at time ¢, u; € R(m+IS)
is the input at time ¢, A is the dynamics matrix. Let V =
{b1,...,bas} be a finite set of n-dimensional column vectors
associated with possible locations for actuators that could
be placed in the system. For any S C V, the input matrix
Bg comprises a (possibly empty) input matrix By € R"*™



corresponding to existing actuators and the columns indexed
by S, ie., Bs = [Bo,bs,,...;bs s ] € R (MHISD,

We would like to select a subset of actuators that max-
imizes a performance metric for the system. Here, we
consider the optimal open-loop linear quadratic regulator
objective of an input sequence u = [ul,...,ur_;]T. The
cost function is

T-1

Vior(S:zo) = m&n Z(mtTth +ul Rsup) + 23.Qar,
t=0

where ) = 0 is a state cost matrix and Rg > 0 is an input
cost matrix, which is a principal submatrix of a total input
cost matrix R € RM*M consisting of the rows and columns
indexed by S. The optimal open-loop cost can be computed
by solving a least squares problem. In particular, we have

Vior(S,mo) = 2f GT(I + HBsBEH") 'Gay

T
= 1y Poxo,
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G =diag(Q?) | 4" |, Bg = diag(BsRg?).
AT
Via dynamic programming, the optimal cost matrix Fy can be
alternatively computed from the backward Riccati recursion

P 1 =Q+ATP,A— ATP,Bs(Rs+ BLP.Bs) 'BL P, A,
3)
for t = T,...,1 with P = @. It is well known that
for deterministic systems, the optimal open-loop control
sequence and optimal closed-loop feedback control policy
generate the same state trajectories and have the same cost.
The optimal cost function (2) depends on the initial state.
To obtain a scalar performance metric, we can assume that
the initial state zo is a zero-mean random variable with
finite covariance X and consider expected performance. We
obtain

Jror(S) = Eq V7 (S, 20)

=tr[GT (I + HBsBLHT)"'GX,y] (@)
= tI‘[P()X()].

Problem 1: The mapping Jj,p : 2V — R shown
above is a set function that maps actuator subsets to the
optimal LQR cost. To select a k-element subset of actuators
to minimize this cost, we can pose the following set function
optimization problem

min

T Jror(S)- (5

For infinite horizon problems, the set function J;,p pro-
duces a finite value whenever the system is stabilizable via
the actuator subset S; otherwise .J} 5 (S) = 0o.!

B. Stochastic optimal control

Consider now the stochastic linear dynamical system

Ti+1 :Axt"_BSut"_wh t:07"'7T7 (6)

where {w;} is an identically and independently distributed
Gaussian process with wy ~ N(0, W). Here one optimizes
an expected cost over the set II of causal, measurable state
feedback policies 7 : R* — R™

T-1
X o T T T
Vioa(S,mo) = min E, ;(xt Qxt + u; Rsut) + Q.

It can be shown via dynamic programming that the optimal
policy is linear state feedback and that the optimal cost
function is quadratic and given by

T
Vioa(S, o) = x§ Poxo + Y trPW, (7)
t=1
where the P, for t = 0,...,T are generated by (3), the same
recursion as in the deterministic problem. Assuming again
that the initial condition is a zero-mean random variable with
finite covariance X, we have the scalar metric

T
Jrqa(S) = trPXo + ZtrPtW. (8)

t=1

Problem 2: The mapping J7 ¢ : 2V — R is a set
function that maps actuator subsets to the optimal closed-
loop LQG cost under the optimal feedback policy. Our
second problem is to select a k-element subset of actuators
to minimize this cost, which can be posed as the following
set function optimization problem

Jiqc(9). 9

min
Scv, |S|=k

C. Deterministic dynamic game

Consider the linear dynamical system

Ti+41 :A$t+BSUt+FUt, t=0,...,T7 (10)

where v; € RP is the input of a strategic attacker. Here
we consider a two-player zero-sum dynamic game (ZSDG)
between the system defender, who controls wu, and the
attacker, who controls v. In zero-sum dynamic games, the

'We will discuss later an alternative performance quantification for
actuator subsets that cannot stabilize the system.



appropriate equilibrium concept is the saddle point, whose
value is given by

V;SDG(Sa 170) =
T—1

min max Z (] Q¢ + ul Rsuy — v*vl ve) + 25Qur.
u v

t=0 (11
This problem is closely related to H., optimal control,
which is of fundamental importance for robust control of
systems with model uncertainties; see, e.g., [24], [25]. As in
deterministic optimal control, the saddle point value in open-
loop strategies can be computed by solving least squares
problems associated with both the defender and attacker. The
optimal value is

Vzspa(S, o)
=2l GT(I+ HBsBY{H” — v 2HFFTHT)"'Gxy
= x§ Poo,

12)
where F = diag(F’). The optimal cost matrix Py can be
alternatively computed via a generalized backward Riccati
recursion

Pi1=Q+ ATPI + (BsBL —~2FFT)P, 7' A, (13)

fort=1T,...,1 with Py = Q. It is also well known that the
optimal open-loop input sequences and closed-loop feedback
strategies yield the same state trajectories and associated
saddle point equilibrium value [26], [24].
Assuming again that the initial state is a random variable
with finite covariance Xy, we obtain
Jzspa(S) = Eq V7 (S, 20)
=tr[GT(I + HBsBLH” — v 2HFFTH")"'GX,].
(14
Problem 3: The mapping Jhspo : 2V — Ris a
set function that maps actuator subsets to the saddle point
equilibrium value of the dynamic game. Our third problem
is to select a k-element subset of actuators to minimize this
value, which again can be posed as the following set function
optimization problem

i J S). 15
soiin  Jzsp6(5) (15)
D. Stochastic dynamic game
Consider the linear dynamical system
$t+1:ACCt+BSUt+F’Ut+U)t, t:O,...,jﬂ’7 (16)

where {w;} is an identically and independently distributed
Gaussian process with w; ~ N(0, W). We now consider a
stochastic zero-sum dynamic game (SZSDG). In particular,
the saddle point value in feedback strategies

J;ZSDG(S) =
T-1
E,;, min max E,, (mtTQxf + U?Rut - ’y%tva) (17)
mell pell o

+ x%QxT

is given by

T
J$zspa(S) = trPoXo + ZtrPtW.

t=1

(18)

Problem 4: The mapping J%,qpq 0 2¥ — R is a set
function that maps actuator subsets to the closed-loop saddle
point equilibrium value under the optimal feedback strategies
for both players. Our fourth problem is to select a k-element
subset of actuators to minimize this value, which can again
be posed as the following set function optimization problem

min

(19)
SCV, |S|=k

J525p6(5)-

E. Set functions and submodularity

The actuator placement problems described above are
formulated as cardinality constrained set function optimiza-
tion problems. These problems are combinatorial and finite,
and so can be solved simply by brute force enumeration.
However, this approach quickly becomes intractable even for
moderately sized problems. Our setting of large networked
dynamical systems forces a different approach.

Rather than attempting to find a global optimum, we focus
instead on structural properties of set functions that allow
simple and computationally scalable algorithms to achieve
provably good results. One such property, called submod-
ularity, plays a similar role in combinatorial optimization
as convexity and concavity play in continuous optimization
[27], [28].

Definition 1: A set function f : 2¥ — R is called
submodular if for all subsets A C B C V and all elements
s ¢ B, it holds that

f(AU{s}) = f(A) = f(BU{s}) — f(B),

or equivalently, if for all subsets A, B C V/, it holds that

(20)

F(A) + f(B) > F(AUB) + f(ANB). Q1)
A set function is called supermodular if the reversed inequal-
ities in (20) and (21) hold and is called modular if (20) and
(21) hold with equality.

Intuitively, submodularity is a diminishing returns property
where adding an element to a smaller set gives a larger gain
than adding it to a larger set. Maximization of submodular
functions (equivalently, minimization of supermodular func-
tions) is NP-hard, but a simple greedy heuristic can be used
to obtain a solution that is provably close to the optimal
solution [29]. The greedy algorithm for set function mini-
mization is shown in Algorithm 1. Modular functions can be
globally optimized by evaluating the set function for each
element and sorting, as described in [14]. Several problems
in systems and control that feature greedy algorithms and
sub- or supermodularity have been recently explored [17],
[18], [13], [14], [15], [20], [22], [16].



Algorithm 1 A greedy heuristic for set function optimiza-
tion.
S0
while |S| < k do
e* = argmax
ecV\S
S+ Su{e}
end while
S*« S

f(SU{e})

III. MAIN RESULTS

In this section, we first show via a simple counterexample
that in general the four set functions are neither super-
modular nor submodular. As a consequence, simple greedy
algorithms do not necessarily produce actuator subsets that
provide provably near optimal closed-loop performance and
robustness for optimal control and dynamic games. We then
identify a set of restrictive conditions under which all of the
four set functions described in the previous section based
on optimal control and dynamic game performance metrics
are modular. Finally, we describe an alternative metric for
infinite horizon problems with unstable systems.

A. The optimal control and dynamic game metrics are nei-
ther submodular nor supermodular

Consider the expression for the optimal open-loop LQR
cost in (4). At first glance, it seems at least plausible that
there might be a supermodular diminishing returns property
to the optimal cost as actuators are added. When an actuator
is added, a positive semidefinite term is added to expression
inside the inverse, and so adding actuators will eventually
cause saturation in certain directions. It is a matrix analog
of the scalar function %IS\’ which decreases increasingly
slowly as |S| increases. Indeed, one can easily verify that
for many problem instances and many actuator subsets,
the supermodularity inequality in Definition 1 is satisfied
(suggesting that the metric is not submodular, but perhaps
supermodular). The same observations can be made for the
remaining metrics.

Consider though the following counterexample with

0.75 -1 1 0
a=loz ] v={e=lo )= [1]1
Q=1, R=1, Xo=1I, T=2.

(22)
There are four actuator subsets of V: 2V =
{[2)7 {bl}ﬂ{b2}7v}~ Let S; = {bl}, Sy = {bg}. Note
that S; NSy = 0 and S; USy = V. We can compute directly
that

=5.35
= 3.38

Jror(52) = 4.74,

Jiop(S1 NS
iQR( 1N Ss) o3
Jiqr(S1U S2)
and so
Jior(S1)+JLoRr(S2) = 9.05 >

(24)

This violates the inequality for supermodularity in Definition
I and shows that the set function J7 , p is not supermodular.

The same counterexample shows that J; ¢ is not super-
modular in general. The first term in (8) is the same as the
corresponding deterministic cost, and there is a positive def-
inite covariance matrix W for the disturbance that makes the
second term small enough for the supermodularity inequality
to be violated.

Similarly, the same counterexample also shows that
J2spa and JE, o are not supermodular in general. The
cost of the deterministic dynamic game converges to the
cost of the deterministic dynamic game as the attacker input
penalty v — oo. Thus, for any attacker input matrix F
there is a ~y large enough for the supermodularity inequality
for J;¢p to be violated. There is then also a disturbance
covariance matrix W for the disturbance that makes the
second term in (18) small enough for the supermodularity
inequality for J§,¢p to be violated.

Although the metrics are in general neither submodular
nor supermodular, this does not preclude the use of greedy
algorithms as a heuristic for selecting actuator subsets. The
greedy algorithm’s simplicity yields serious computational
advantages, and it can produce actuator subsets that signifi-
cantly improve feedback control performance and robustness
despite the lack of theoretical guarantees.

B. Special cases

We have just seen that the four metrics are neither sub-
modular nor supermodular in general. The next question is
whether there are any specific conditions on the problem
data under which the metrics do have a supermodularity
property. We now present a set of conditions under which all
of the metrics are actually modular. The conditions are quite
restrictive, but the modularity means that globally optimal
actuator subsets can be obtained. We have the following
result.

Theorem 1: Suppose the horizon T = 1, the cost matrices
Q = I, R = I, and the set defining possible actuator
locations is V' = {ey, ..., e, }, the set of standard unit basis
vectors in R”, meaning that each possible input signal affects
a single state variable. Then the set function Jj ,p 2V - R
described in Section II-A is modular.

Proof: First, note that if Q = I, R =1 and V =
{e1,...,e,} then for any S C V we have R+ BLQBg = 2I.
The optimal cost matrix for 7' = 1 from the Riccati recursion
(3) for S C V reduces to

1
Py=1+ATA- 5ATBngA

1
_ T T T
=I+A A—§ZA eie; A.
€S
Now for any S C V and s € V' \ S, it follows that
Jiqr(SU{s}) = Jigr(S) = —tr(ATesel AXy),

and so by Definition 1, J},p is modular. u
The same result holds for the stochastic case.



Theorem 2: Suppose the horizon 7' = 1, @ = I, R =
I, and the set defining possible actuator locations is V =
{e1,...,en}, the set of standard unit basis vectors in R™.
Then the set function J7 o : 2V — R described in Section
II-B is modular.

Proof: The optimal closed-loop LQG cost JzQG(S)
for S C V is given by (8). The first term is the same as the
open-loop cost for the corresponding deterministic system,
which is modular by Theorem 1. For T" = 1, the second
term reduces to trQW, a constant independent of .S. This
constant cancels in Definition 1 for modularity, so J; ¢ is
also modular. [ ]

A similar result also holds for deterministic and stochastic
dynamic games with the same arguments when F' = I and
v > 1.

Theorem 3: Suppose the horizon ' =1, Q@ = I, R =
I, FF =1, v > 1, and the set defining possible actuator
locations is V' = {ey, ..., e, }, the set of standard unit basis
vectors in R™. Then the set functions J}¢p : 2V — R
and J%,pe 2 — R described in Sections 11-C and 1I-D
are both modular.

Proof: Under the assumptions, (13) reduces to

2 4
2’7 ATA - 2 J 2
7? -1 (V¥-1D(2?*-1)

For any S C V and s € V'\ S, it follows that

Jzspc(SU{s}) — Jzspa(S) =
4
. v T, T
e 1)tr(A ese; AXp),

and so by Definition 1, J7 ¢ is modular. Further, for T' = 1
the second term in (18) is tr@QW, a constant independent of
S, 50 JS,5pe is also modular. |

Po=1+ ATBsBE A.

C. Algorithms and quantifying actuator quality for unstable
systems and infinite horizons

For finite horizon problems, Algorithm 1 can be directly
applied with any of the metrics. Infinite horizon problems
raise the issue of instability. For large networks with unstable
dynamics, it may be possible that no single actuator provides
closed-loop stability, and so it is not clear how to proceed
with the greedy algorithm. As measured by the optimal cost,
each actuator is infinitely bad. However, it is possible to get
a quantitative measure of actuator quality by looking instead
at recursions for the cost inverse.

Consider the deterministic optimal control problem. In-
verting the Riccati recursion (3) yields

P, = [Q+AT(P,—P,Bs(Rs+BLP,Bs) ' BT P,) Al L.

(25)
Applying the Woodbury matrix identity to the expression in
parenthesis gives

P =1Q+A"(P7' + BsR™'BE)TTATY (26)

Applying the Woodbury matrix identity again to the expres-
sion in brackets gives

Pt =t
—Q'AT(P + BsRT'BE + AQTTAT) T AQT!
27)
The inverse cost matrix P, ' becomes rank deficient in
directions in which an actuator (or subset of actuators) fails
to stabilize the system, causing Py to be infinite in these
directions. In other directions, one obtains valuable quan-
titative information about the effectiveness of a particular
actuator subset for controlling the system even when it fails
to stabilize. Until a stabilizing actuator subset is found,
the greedy algorithm can be run to maximize tr(P; ' X; ')
instead of minimizing tr(FPyXy).
Similar expressions can be obtained for the stochastic
optimal control and dynamic game problems.

IV. NUMERICAL EXPERIMENTS

In this section we present numerical experiments to com-
pare the performance of the greedy algorithm with a convex
relaxation technique.

We consider a class of randomly generated dynamics
matrices where the entries of A are independently drawn
from a standard normal distribution. We then scale A so that
its spectral radius is 1 so that the system is marginally stable.
The remaining problem data are n = 25, V = {ey,...,en},
Q =1, R=1 Xo =1, and T = 20. We generated
100 instances of the dynamics matrix and ran the greedy
algorithm to select a set of 10 actuators to minimize J7 o p
the deterministic LQR optimal cost. The mean over the
100 samples was 52.4, and computation time for a single
instance was about a third of a second on a 1.7 GHz
Intel Core i7 processor. For comparison, we implemented
a convex relaxation algorithm, which was a discrete-time,
finite-horizon version of the actuator selection method in
[9]. We ran this method? for 100 instances using the general
purpose semidefinite programming solver SDPT3 [30]. The
mean performance was 54.5, and the computation time for a
single instance was about 20 seconds. The greedy algorithm
provided better performance on average than the convex
relaxation while being nearly two orders of magnitude faster
to compute for this problem class and size.

More extensive computational experiments are needed to
fully compare the performance of convex relaxations and
greedy algorithms for each of the metrics, and this will
be pursued in future work. Specialized methods can be
developed to improve computation times for these types of
convex relaxations [11], and the greedy algorithm is also
trivially parallelizable and can scale more easily to large
networks. Despite the lack of supermodularity and associated
theoretical guarantees, greedy algorithms can match and
exceed performance of convex relaxation techniques and

2In the convex relaxation algorithm, the number of added actuators
is fixed indirectly by varying a cost parameter multiplying a sparsity-
inducing penalty function. A bisection algorithm was implemented on the
cost parameter to ensure that 10 actuators were selected.



possess simplicity that can give significant computational
advantages.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

We formulated actuator placement problems for optimiz-
ing controllability of dynamical networks using four fun-
damental optimal control and dynamic game metrics that
quantify network controllability in terms of feedback control
performance and robustness. Unlike other controllability
metrics involving the Gramian, these turn out in general to be
neither submodular nor supermodular. Consequently, greedy
algorithms do not necessarily yield provably good actuator
subsets. However, this does not preclude the use of greedy
algorithms as a heuristic, and we find in computational ex-
periments that greedy algorithms can exceed the performance
of convex relaxations and scale to much larger networks.

We did find a set of restrictive conditions under which
all four of the metrics are modular. An immediate open
problem is to identify if possible less restrictive conditions
on problem data under which the metrics are supermodular.
Other future work will include extensive computational ex-
periments for various random networks and networks from
application domains. Additionally, the metrics we considered
here quantify performance and robustness of feedback con-
trol with centralized information architectures; for large scale
systems it will be important to consider metrics that capture
limitations imposed by structural information constraints on
the feedback information architecture.
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