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Abstract— This paper proposes a method to compute lower
performance bounds for discrete-time infinite-horizon min-max
control problems with input constraints and bounded distur-
bances. Such bounds can be used as a performance metric for
control policies synthesized via suboptimal design techniques.
Our approach is motivated by recent work on performance
bounds for stochastic constrained optimal control problems
using relaxations of the Bellman equation. The central idea of
the paper is to find an unconstrained min-max control problem,
with negatively weighted disturbances as in H1 control, that
provides the tightest possible lower performance bound on the
original problem of interest and whose value function is easily
computed. The new method is demonstrated via a numerical
example for a system with box constrained input.

I. INTRODUCTION

Consider the discrete-time linear time-invariant system

x
t+1 = Ax

t

+Bu
t

+Gw
t

z
t

= Cx
t

+Du
t

(1)

with state x
t

2 Rn, input u
t

2 Rm, unknown exogenous
disturbance w 2 Rl, and costed/controlled output z

t

2 Rp

at each time t = {0, 1, . . . }. We assume throughout that
the initial state x0 is known and that the state is directly
observable at each time step. We further assume that the
inputs are subject to a compact constraint u

t

2 U, that the
disturbances are constrained to a compact set w

t

2 W, that
the pairs (A,B) and (A,C) are controllable and observable,
respectively, and that D is full rank. We denote by W the
set of all infinite-horizon disturbance sequences generated
by W.

We define a stationary control policy ⇡ : Rn ! U for the
system (1) as a decision rule mapping observed states to
control inputs, i.e. u

t

= ⇡(x
t

). We denote the set of all
such stationary policies satisfying the system constraints for
all infinite-horizon disturbance sequences by ⇧. The linear
min-max control problem is to design a control policy ⇡ 2
⇧ that minimizes the worse-case value of some objective
function over all admissible disturbance sequences, starting
from some known initial state.

Given an initial state x := x0, a control policy ⇡ and a
disturbance sequence w 2 W , we consider a cost function
in the form

J(x0,⇡,w) =

1X

t=0

↵t`(z
t

, w
t

) (2)
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where ` : Rn⇥U⇥W! R is a cost function and ↵ 2 (0, 1)
is a discount factor. The optimal value function and policy
are given by

V (x0) = min

⇡2⇧
max

w2W

1X

t=0

↵t`(z
t

, w
t

)

⇡⇤
(x) = argmin

⇡2⇧
max

w2W

1X

t=0

↵t`(z
t

, w
t

)

(3)

It is well known that, given the preceding assumptions and
certain mild conditions on the stage cost `, a stationary
optimal control policy ⇡⇤ exists [1, Ch. 5]. However, it is
extremely difficult to compute the optimal cost and policy
in general, because the optimization problem to be solved
is over an infinite dimensional function space and over the
worst case disturbance sequence.

It was shown in [2] that for constrained finite-horizon prob-
lems with a cost convex and quadratic in z and concave
and quadratic in w, the optimal value function is piecewise
quadratic and the optimal control policy piecewise affine over
a polytopic partition of the state space, though computing and
storing the policy is possible only for very small systems.
Recent research has focused on developing tractable but
suboptimal policies for systems in which the approach of [2]
is intractable. Examples include various formulations of min-
max model predictive control [3], [4], [5], [6]. This imme-
diately raises questions about the degree of suboptimality of
such policies. To the best of our knowledge there is currently
no general method to answer these questions for min-max
problems.

We therefore propose a method for computing a lower bound
on the optimal cost for input constrained problems, which
provides a way to bound the degree of suboptimality of
any control policy constructed by any given design method.
Our approach is motivated by recent work from Wang and
Boyd [7], who propose a similar approach to computing
performance bounds for stochastic optimal control problems
(i.e. those with an expected value, rather than a min-max,
cost). The central idea is to find an unconstrained linear
min-max control problem for which the optimal cost can
be efficiently computed that best approximates from below
the optimal cost of the original constrained problem.

In particular, we construct an auxiliary convex-concave
quadratic cost function for the system (1) without constraints,
and exploit this auxiliary function to compute a lower bound
on the value function V of the constrained system. The
particular choice of a convex-concave auxiliary cost function
is motivated by the fact that such cost functions appear
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naturally in H1 control design problems, for which exact
performance value functions can be computed. Our resulting
bounds are not generic, but are instead computed individually
for each problem instance. Such bounds can be useful in
evaluating the performance of suboptimal policies in cases
where the optimal policy cannot be efficiently computed:
when the gap between the lower bound and the performance
of a suboptimal policy is small, one can conclude that the
suboptimal policy is nearly optimal.

The paper is organized as follows. Section II briefly re-
views solution methods for unconstrained min-max prob-
lems, which are closely related to the H1 control problem.
Section III describes the method for computing the proposed
bound. Section IV provides a numerical example for which
the bound is computed. Finally, Section V gives concluding
remarks.

II. UNCONSTRAINED PROBLEMS WITH QUADRATIC COST

This section reviews solution methods for unconstrained min-
max problems whose objective functions are convex-concave
in (z, w), which will be used to compute lower bounds for
input constrained problems in Section III. If the stage cost
for some unconstrained problem is less than or equal to the
stage cost for the constrained problem, then we will show
that the unconstrained optimal cost is a lower bound on the
constrained optimal cost for a certain set of initial states.
One can then optimize the parameters in the stage cost of
the unconstrained problem to find tighter lower bounds for
the original constrained problem.

We begin by recalling that a special case, closely related
to the H1 optimal control problem, in which the min-max
optimal policy can be efficiently computed is when the stage
cost is convex and quadratic in (x, u) and concave and
quadratic in w, with discount factor ↵ = 1, i.e.

¯J =

1X

t=0

kCx
t

+Du
t

k2 � �2kw
t

k2, � > 0 (4)

and there are no constraints, i.e. when U = Rm and W =

Rl. In this case, the optimal value function is quadratic in the
initial state, the optimal state feedback policy is linear, and
the closed-loop system has `2 gain bounded by �, whenever �
is larger than the H1 optimal gain. Furthermore, the optimal
cost and feedback gain can be computed efficiently from the
problem data using a variety of well-known techniques, see
e.g. [8], [9], [10].

One standard solution method for this problem is based on
dynamic programming recursion using the Isaacs equation,
which is the discrete-time dynamic game counterpart to the
Bellman equation from dynamic programming [10]. Suppose
that (P, ¯P ) 2 Rn⇥n are symmetric matrices that satisfy the
generalized algebraic Riccati equation

P = Q+AT

¯PA�AT

¯PB(R+BT

¯PB)

�1BT

¯PA (5a)
¯P := P + PG(�2I �GTPG)

�1GTP, (5b)

where we have assumed for simplicity that Q = CTC > 0,
R = DTD > 0, CTD = 0 and DTC = 0. If P � 0 is a
solution to (5), then V (x0) = xT

0 Px0 is the optimal value
function, and the optimal controller and disturbance policies
are u = Kx and w = K

w

x, respectively, where

K = �(R+BT

¯PB)

�1BT

¯PA

K
w

= (�2I �GTPG)

�1GTP (A+BK).
(6)

For ↵ 2 (0, 1) the optimal cost and policies have the same
structure but with some problem data scaled by the discount
factor: A ! p↵A, B ! p↵B and � ! �/

p
↵ (see the

Appendix). In other words, the optimal cost and controllers
for the discounted problem can be computed by solving an
associated undiscounted problem.

Alternative solution methods involve relaxing the Riccati
equation (5a) to an inequality and solving a semidefinite
programming problem. If (5a) is relaxed to the right (i.e
by replacing = with ⌫), it can be shown that the resulting
inequality is equivalent to the linear matrix inequality ob-
tained by applying the Bounded Real Lemma to the system
(1) in close-loop with the optimal controllers u

t

= Kx
t

and
w

t

= K
w

x
t

[9], [8] (see Appendix). The optimal cost and
state feedback gain matrices are given by the solution to the
following optimization problem in variables P and K:

minimize Tr(P )

subject to P � 0

2

664

�P�1 A+BK G 0

(A+BK)

T �P 0 (C +DK)

T

GT

0 ��I 0

0 C +DK 0 ��I

3

775 � 0.

(7)
The usual approach to solving (7) is to transform this
problem into a semidefinite program in variables P�1 and
KP�1. However, in the next section we will allow D to vary
in order to obtain the tightest possible lower bound for the
problem (3), so an alternative to (7) is preferred. As shown
in [9], the optimal cost can also be computed separately
from the optimal state feedback via the semidefinite program
(SDP) in variables P and X . The matrices N and M in
(SDP) are bases for the null space of BT and its orthogonal
complement, respectively. Note that in contrast to (7), the
problem (SDP) is affine in R�1. This property will be useful
when computing lower bounds for the original problem (3).

Remark 1: The problem (SDP) is in contrast with the
computation of performance bounds for constrained linear
stochastic control problems in [7], in which bounds were
obtained by relaxing the standard linear quadratic regulator
Riccati equation in the other direction and maximizing over
the resulting linear matrix inequality. If (5a) is relaxed to the
left (i.e. by replacing = with �), one obtains the following
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minimize Tr(P )

subject to P � 0, X � 0
2

664

NT (AXAT �X) NTAX NT (AXAT �X)M NTG
XATN �Q�1 XATM 0

MT (AXAT �X)N MTAX MT (AXAT �X � �BR�1BT )M MTG
GTN 0 GTM ��I

3

775 � 0

� �I +GTPG � 0,


X I
I P

�
⌫ 0.

(SDP)

optimization problem in variables P and ¯P

maximize Tr(P )

subject to


R+BT

¯PB BT

¯PA
AT

¯PB Q+AT

¯PA� P

�
⌫ 0

¯P = P + PG(�2I �GTPG)

�1GTP

P ⌫ 0.

(8)

Unfortunately, this problem is not convex. For stochastic lin-
ear quadratic regulator problems considered in [7] (recovered
with � !1 and thus ¯P ! P ), the situation is easier since
the problem becomes a semidefinite program in P and is
also concave in (Q,R).

III. PERFORMANCE BOUND FOR PROBLEMS WITH INPUT
CONSTRAINTS

This section describes a method to obtain lower bounds on
performance for min-max problems with input constraints.
The central idea is to find an unconstrained problem whose
optimal cost, which as shown in the previous section can be
efficiently computed, is a lower bound on the optimal cost of
the constrained problem. To this end, we associate Q � 0,
R � 0, � > 0 with the stage cost of some unconstrained
problem and denote by P , K and K

w

the corresponding
optimal cost and gain matrices given by (5)–(6). The closed-
loop system for this unconstrained problem is x+

= A
cl

x
where A

cl

= A+BK +GK
w

. We also define the set

X={x 2 Rn|K
w

(A+BK +GK
w

)

kx 2W, 8k 2 N}, (9)

which corresponds to the set of states for which the optimal
unconstrained disturbance sequence always remains in W.
We have the following result, which gives a basic lower
performance bound for initial states in X:

Lemma 1: Suppose Q, R, � and s 2 R satisfy

xTQx+ uTRu� �2wTw + s  `(z, w),

8x 2 Rn, 8u 2 U, 8w 2W.
(10)

Then we have for ↵ 2 (0, 1)

xT

0 Px0 +
s

1� ↵
 V (x0), 8x0 2 X (11)

where P is the optimal cost matrix for the unconstrained
min-max problem associated with Q, R, and �.

Proof: Observe that (10) implies

min

⇡2⇧
max

w2W

1X

t=0

↵t

[xT

t

Qx
t

+ uT

t

Ru
t

� �2wT

t

w
t

+ s]

 min

⇡2⇧
max

w2W

1X

t=0

↵tl(z, w).

(12)

The inequality (12) remains valid if the input constraint in
the set of admissible policies on the outer left-hand-side
minimization is dropped. If a given x0 is in the set X then
the constraint in the inner left-hand-side maximization over
disturbance sequences can be dropped without changing the
value because the constraint is never active by the definition
of X . The term involving s in the left-hand-side of (12)
can be taken out of the optimizations and evaluated to yield
the second term on the left-hand-size of (11). The rest of the
left-hand side is then the unconstrained optimal min-max cost
and the right-hand-side is the optimal cost of the constrained
problem, and the result follows immediately.

A. Optimizing the bound

Lemma 1 gives a basic but efficiently computable lower
bound on the value function V for our constrained minimax
problem. We next consider the problem of maximizing this
lower bound by allowing the parameter R�1 in (SDP) to
vary1. Let J⇤

(R�1
) denote the optimal value of (SDP).

To optimize the lower bound, we can solve the following
optimization problem over the parameters R�1 and s

maximize J⇤
(R�1

) +

s

1� ↵
subject to (10), R�1 � 0.

(13)

This problem presents two difficulties. First, since (SDP) is
a minimization problem and (13) is a maximization problem,
the optimization cannot be done jointly over P , X , R�1

and s. We can however form the dual of (SDP) and
maximize jointly over R�1, s and the dual variables. This
results in the following bilinear problem with variables R�1,

1One could also contemplate allowing Q�1 to vary. Here, since we do
not consider state constraints, (10) must hold on all of Rn, and one does
not gain anything by allowing Q�1 to vary. Therefore, as in [7], we fix Q
to the cost for the constrained problem.
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s and dual variables Z, � and ⇤:

max � �Tr(Z) +Tr(F (R�1
)⇤) + 2Tr(�12) +

s

1� ↵

subject to �22 + I +GTZG = 0, (10), R�1 � 0

�11 +ATN⇤11N
TA�N⇤11N

T

+ 2ATN⇤12

+ 2ATN⇤13M
TA� 2N⇤13M

T

+ ⇤22

+ 2⇤23M
TA+ATM⇤33M

TA

�M⇤33M
T

= 0

Z ⌫ 0, � =


�11 �12

�

T

12 �22

�
⌫ 0

⇤ =

2

4
⇤11 ⇤12 ⇤13 ⇤14

⇤T
12 ⇤22 ⇤23 ⇤24

⇤T
13 ⇤T

23 ⇤33 ⇤34

⇤T
14 ⇤T

24 ⇤T
34 ⇤44

3

5 ⌫ 0.

(14)
where F (R�1

) :=

2

664

0 0 0 NTG
0 ��Q�1 0 0
0 0 ��MTBR�1BTM MTG

GTN 0 GTM ��I

3

775 . (15)

Observe that there is a product term involving ⇤33 and R�1

in the dual objective, so this problem is bilinear, and conse-
quently non-convex. However, local and global methods for
solving such bilinear optimization problems (e.g. PENBMI
[11]) are available. In the next section we adopt the simplest
approach, of alternately solving semidefinite programs by
fixing one variable in the product and optimizing over the
other. We show via numerical example that this method can
be used to produce improved lower bounds.

The second difficulty is that (10) is a semi-infinite constraint
in general since it must hold for all points in Rn, U and W.
As shown in [7], we recall in the following subsections that
when `(z, w) is quadratic the constraint (10) can be enforced
exactly when U is a finite set, and that it can be replaced
with a conservative approximation via the S-procedure in
other cases.

Remark 2: The reason why the dual of (SDP) is preferred
to the dual of (7) is that the latter has primal variables
multiplying D which we allow to vary in the dual problem.
As a consequence, the associated dual problem has bilinear
equality constraints. Since R�1 enters as a constant term in
(SDP) , the dual problem has the bilinearity in the objective,
which we find more convenient to work with.

B. Verifying valid initial states

The bound (11) is valid only for initial states x0 2 X , which
is characterized by an infinite set of constraints in (9). We
now describe a procedure to verify that a given x0 is indeed
contained in X . Suppose we have a symmetric matrix S and
scalar � 2 R such that ¯W = {w 2 Rl|wTSw  �} ✓W.
Suppose also that xTHx is a dissipated quantity for the
optimal unconstrained closed-loop system x+

= A
cl

x, where
A

cl

= A+BK+GK
w

(i.e. H satisfies AT

cl

HA
cl

�H � 0).

To show x0 2 X , it is sufficient to show

xTHx  x0Hx0 ) xTKT

w

SK
w

x  �.

By the S-procedure (see e.g. [12]) this is equivalent to the
existence of � � 0 satisfying

KT

w

SK
w

� �H, ��  ��xT

0 Hx0.

Thus, to verify x0 2 X it is sufficient to show that there
exists H and 1/� satisfying the LMI conditions

(1/�)KT

w

SK
w

� H, ��/�  �xT

0 Hx0,

AT

cl

HA
cl

�H � 0, 1/� > 0, H ⌫ 0.
(16)

If a feasible point is found, the bound is valid for all
initial states in the set {x 2 Rn|xTHx  xT

0 Hx0}. For
a particular initial state, this procedure may be somewhat
conservative. The conservatism can be reduced by evaluating
a finite number of the constraints in X and then solving the
feasibility problem from the last state evaluated.

C. Finite input sets

Suppose that `(z, w) is a quadratic function in the form

`(z, w) = xTQ0x+ uTR0u� �2
0w

Tw

(with �0 = 0 possible) and the input constraint set is finite
(U = {u1, ..., uk

}). If we fix Q = Q0 and � � �0, then (10)
reduces to

uT

i

Ru
i

+

s

1� ↵
 uT

i

R0ui

, i = 1, ..., k, (17)

which can be expressed using Schur complements as LMIs
in R�1 and s:

"⇣
uT

i

R0ui

� s

1�↵

⌘
uT

i

u
i

R�1

#
⌫ 0, i = 1, ..., k. (18)

Replacing (10) in (14) with (18) and solving the bilinear
problem can yield an improved lower bound.

D. S-Procedure relaxation

Suppose again the stage costs are quadratic and now that we
have R1, ..., RM

and s1, ..., sM for which

U ✓ ¯U = {u|uTR
i

u+ s
i

 0, i = 1, ...,M}. (19)

Setting Q = Q0 and � � �0 again, a sufficient condition
via the S-procedure (see [12] and [7]) for (10) to hold is the
existence of nonnegative �1, ...,�M

satisfying

R�R0 �
MX

i=1

�
i

R
i

,
s

1� ↵


MX

i=1

�
i

s
i

. (20)

The first inequality can be written using Schur complements
as an LMI in R�1


R0 +

P
M

i=1 �i

R
i

0

0 R�1

�
⌫ 0. (21)

Again, replacing (10) in (14) with (21) and solving the
bilinear problem can yield an improved lower bound.
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IV. NUMERICAL EXAMPLE

In this section we compute a performance bound for an
example system in which the input constraint set U is a
box. The disturbance constraint set is taken to be a unit
ball, and the cost is taken to be quadratic: `(z, w) =

xTQ0x+ uTR0u� �0w
Tw. System and cost matrices with

dimensions n = l = 4, m = 2, and p = 6 were randomly
generated, with entries from A, B, G, and Cholesky factors
of Q0 and R0 drawn from a standard normal distribution.
The disturbance weight �0 was set to ten percent larger than
the unconstrained H1 optimal value, and the discount factor
was set to ↵ = 0.95.

For the associated unconstrained problem, we set Q = Q0

and � = �0. The problem (SDP) is first solved with
R = R0 to obtain a basic lower bound. Then the bound
is optimized by solving (14) by alternately fixing R�1 and
⇤33. The corresponding semidefinite programs were solved
using the modeling language YALMIP [13] and the cone
solver SeDuMi [14].

A box constraint is defined by

U = {u 2 Rm| kuk1  U
max

}.
This constraint can be represented by a set of quadratic
inequalities as follows

uT e
i

eT
i

u  U2
max

, i = 1, ...,m,

where e
i

is the ith unit vector. In relation to (19), we have
R

i

= e
i

eT
i

and s
i

= �U2
max

.

We now describe a specific example. The system matrices
are:

A =

2

64

0.434 0.050 0.212 0.007
0.264 0.001 0.092 0.419
0.307 0.255 0.371 0.359
0.364 0.003 0.291 0.427

3

75 , B =

2

64

0.739 0.550
0.371 0.748
0.323 0.760
0.491 0.472

3

75

G =

2

64

0.802 0.666 0.737 0.629
0.471 0.677 0.866 0.793
0.203 0.9425 0.991 0.449
0.576 0.7701 0.504 0.524

3

75 , R0 =


0.262 0.560
⇤ 1.33

�

Q0 =

2

64

0.105 0.286 0.221 0.271
⇤ 0.929 0.618 0.687
⇤ ⇤ 1.22 0.854
⇤ ⇤ ⇤ 0.873

3

75 .

Solving (SDP) with Q = Q0, R = R0 and � = �0 we
obtain an optimal value of 3.526. We then run an alternating
semidefinite programming procedure on (14) and obtain the
value 6.42, which is 82% improvement on the basic bound
obtained from (SDP). Sets of initial states for which these
bounds are valid can be computed via (16).

V. CONCLUSIONS

This paper developed a method to compute performance
bounds for infinite-horizon linear min-max control problems
with input constraints. The method requires a bilinear matrix
inequality to be solved. We showed that improved bounds can

be computed by solving semidefinite programs in an alter-
nating fashion. Further research directions include computing
bounds for problems with state constraints and comparison
of the bound with suboptimal policies.

APPENDIX

A. Infinite-horizon discounted H1 problem

This section derives the solution of the infinite-horizon
unconstrained linear min-max optimal control problem with
a discounting factor. The quadratic form zTQz is denoted
by kzk2

Q

. Given the system

x+
= Ax+Bu+Gw,

consider the problem of minimizing the worst-case dis-
counted cost function with discount factor ↵ 2 (0, 1)

J(x0,⇡,w) :=

1X

k=0

↵k

(kxk2
Q

+ kuk2
R

� �2kwk2).

The Isaacs equation is

V = min

u

max

w

[`(x, u, w) + ↵V (Ax+Bu+Gw)] ,

= min

u

⇥kxk2
Q

+ kuk2
R

+ J(x, u)
⇤

where

J(x, u) := max

w

⇥�(�2
)kwk2 + ↵V (Ax+Bu+Gw)

⇤
.

Assume that V (x) = xTPx. The inner maximization prob-
lem can be solved explicitly by rewriting it first as

J(x, u)

= max

w

⇥��2kwk2 + ↵kAx+Bu+Gwk2
P

⇤

= max

w

h
�kwk2(�2

I�G

T (↵P )G) + wTGT

(↵P )(Ax+Bu)
i

+ kAx+Buk2
↵P

The optimizer w⇤
(x, u) for the above is

w⇤
(x, u) =

⇥
�2I �GT

(↵P )G
⇤�1

GT

(↵P )(Ax+Bu),

so that

J(x, u) = (Ax+Bu) ¯P (Ax+Bu)

¯P := (↵P ) + (↵P )G
�
�2I �GT

(↵P )G
��1

GT

(↵P ).

The value function can then be written as
V (x) = min

u

⇥kxk2
Q

+ kuk2
Q

+ J(x, u)
⇤

= min

u

⇥kxk2
Q

+ kuk2
Q

+ (Ax+Bu)T ¯P (Ax+Bu)
⇤
.

The rest of the argument then follows along the lines of those
in [10], yielding

P = Q+AT

¯PA�AT

¯PB(R+BT

¯PB)

�1BT

¯PA (22)
¯P := (↵P ) + (↵P )G

�
�2I �GT

(↵P )G
��1

GT

(↵P ). (23)

The optimal input and disturbance policies are

K
u

= �(R+BT

¯PB)

�1BT

¯PA,

K
w

= (�2I �GT

(↵P )G)

�1GT

(↵P )(A+BK
u

).
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We can now try to equate a solution of the above to some
other undiscounted problem. Rewrite (23) as

¯P = (↵P ) +

1

↵
(↵P )G

✓
�2

↵
I �GTPG

◆�1

GT

(↵P )

= ↵ ·
h
P + PG

�
�̃2I �GTPG

��1
GTP

i
= ↵ · ¯P

where �̃ := �/
p
↵ and

¯P := P + PG
�
�̃2I �GTPG

��1
GTP.

Then substitute ¯P = ↵ ¯P into (22) to obtain

P =Q+AT

(↵ ¯P)A�AT

(↵ ¯P)B(R+BT

(↵ ¯P)B)

�1BT

(↵ ¯P)A

= Q+

˜AT

¯P ˜A� ˜AT

¯P ˜B(R+

˜BT

¯P ˜B)

�1
˜BT

¯P ˜A

where ˜A :=

p
↵A and ˜B :=

p
↵B. The conclusion is that

the solution to the discounted H1 problem can be obtained
by solving the equations

¯P = P + PG
�
�̃2I �GTPG

��1
GTP

P = Q+

˜AT

¯P ˜A� ˜AT

¯P ˜B(R+

˜BT

¯P ˜B)

�1
˜BT

¯P ˜A

i.e. by solving an undiscounted problem using the problem
data ˜A p↵A, ˜B  p↵B and �̃  �/

p
↵.

The value function for the discounted problem is then
V (x) = xTPx, where P comes from the solution to the
undiscounted H1 problem using the modified problem data.

Remark 3: We note that the control that minimizes the
infinite-horizon discounted cost is not necessarily stabilizing
for the system (1), even if the optimal cost is finite. However,
only the cost is used when determining a lower bound.

B. Equivalence of Riccati Inequality and Bounded-Real LMI

This section demonstrates the equivalence between the Ric-
cati inequality obtained by replacing = with ⌫ in (5) and the
bounded-real LMI in (7). We first recall a result from [8].

Theorem 1 (Thm. 2.2, [8]): For the system

x+
= Ax+Gw

z = Cx,
(24)

the following statements are equivalent:

1) A is a stable matrix and kC(zI �A)

�1Gk1  �.
2) There exists a stabilizing solution P = PT ⌫ 0 to the

Riccati equation

P =ATPA+
1

�2
ATPG(I� 1

�2
GTPG)

�1GTPA+CTC. (25)

Claim 1: If one substitutes A! (A+BK) and C ! (C+

DK) in (25) with K as in (6), then (25) , (5).

Proof: We have from (25)

P = ATPA+ATPG
⇥
�2 �GTPG

⇤�1
GTPA+ CTC

= ATPA+AT

(

¯P � P )A+ CTC = AT

¯PA+ CTC,

where the first step uses the definition of ¯P from (5).

Next replace A! (A+BK) and C ! (C +DK) to get

P = (A+BK)

T

¯P (A+BK) + (C +DK)

T

(C +DK)

= (A+BK)

T

¯P (A+BK) +Q+KTRK

= AT

¯PA+Q+KT

(R+BT

¯PB)K

+AT

¯PBK +KTBT

¯PA, (26)

where the first step comes from the assumptions DTD = R,
CTC = Q, and CTD = 0. Recalling the definition of K in
(6), the final three terms in (26) can be rewritten as

KT

(R+BT

¯PB)K +AT

¯PBK +KTBT

¯PA (27)
= �AT

¯PB(R+BT

¯PB)

�1BT

¯PA. (28)

Substituting this into (26) results in

P = AT

¯PA+Q�AT

¯PB(R+BT

¯PB)

�1BT

¯PA,

which is identical to (5).

Finally, if we now relax (25) by replacing = with ⌫, apply
the Schur complement lemma three times and substitute A!
(A+BK) and C ! (C +DK), we arrive at the bounded-
real LMI in (7).
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