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Abstract— We propose a distributed optimization method for
solving a distributed model predictive consensus problem. The
goal is to design a distributed controller for a network of
dynamical systems to optimize a coupled objective function
while respecting state and input constraints. The distributed op-
timization method is an augmented Lagrangian method called
the Alternating Direction Method of Multipliers (ADMM),
which was introduced in the 1970s but has seen a recent
resurgence in the context of dramatic increases in computing
power and the development of widely available distributed com-
puting platforms. The method is applied to position and velocity
consensus in a network of double integrators. We find that a few
tens of ADMM iterations yield closed-loop performance near
what is achieved by solving the optimization problem centrally.
Furthermore, the use of recent code generation techniques for
solving local subproblems yields fast overall computation times.

I. INTRODUCTION

One of the grand challenges facing modern society is the
understanding and efficient control of large, complex tech-
nological networks, in which many dynamical subsystems
interact. Such networks include power grids, the Internet,
transportation networks, and unmanned vehicle formations.
From a control perspective, one of the major difficulties is
that there are structural constraints on information flow: each
subsystem, or agent, in the network must act based on lim-
ited information about the whole network, and furthermore,
even if agents could gather global information, determining
optimal inputs may be computationally prohibitive.

In this paper, we consider an optimal consensus problem,
in which a network of dynamically independent subsystems
locally cooperate to optimize a global performance objective.
There is a large and expanding literature on consensus
problems; see e.g. [1], [2] and references therein for an
overview. However, much less attention has been given to
optimally achieving consensus in networks of dynamical
systems, particularly when the subsystems are subject to state
and input constraints.

The existing literature on optimal consensus problems
typically propose variations on distributed model predictive
control. Model predictive control (MPC) is a well-developed
and successful method for controlling systems with state
and input constraints. In MPC, a model of the plant is
used to predict future behavior of the system. At each
measurement instant, an optimization problem is solved to
choose a sequence of inputs that optimize the predicted
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future behavior over a finite horizon. Only the first input
in the sequence is applied to the system, and the process is
repeated when new measurements are received. In distributed
model predictive control schemes, each subsystem solves an
optimization problem using only its own state and local state
information measured or communicated from neighboring
subsystems.

Seminal work on distributed model predictive consensus
includes [3]–[5]. In [4] and [5], the global optimization
problem is broken into smaller problems for each agent, and
sufficient conditions for stability are given. However, there
is only a single communication of information between each
state update rather than an iterative negotiation process, so
these methods rely on neighboring agents not deviating too
much from their plans and as a result are very conservative.
Other related work on optimal consensus problems includes
[6]–[13]. In [12], consensus schemes for systems with single
and double integrator dynamics are considered. Geometric
properties of the optimal path followed by individual agents
are used to guarantee stability. Again, there is no iterative
negotiation process, so the results are very conservative. In
[7], [9], [10], the authors use an incremental subgradient
method based on primal decomposition to negotiate an opti-
mal consensus point. A stability analysis for these methods
is given in [9]. There has also been a significant amount of
work on distributed model predictive control for dynamically
coupled systems, including [14]–[22].

Much of the work on distributed model predictive control
and consensus focuses on deriving conditions that guarantee
stability, but often requires extremely conservative assump-
tions. Moreover, while several different distributed optimiza-
tion algorithms and variations thereof have been proposed to
iteratively negotiate the solution to the optimization problem,
the performance of these algorithms in distributed MPC
problems remains poorly understood, especially in terms of
the closed-loop performance of the policy.

In this paper, we propose to use the Alternating Direction
Method of Multipliers (ADMM) for solving a distributed
model predictive consensus problem. ADMM is an aug-
mented Lagrangian method originally proposed in the 1970s
in [23] and [24], and recently reviewed in [25]. It can be
seen as a variation of dual decomposition that provides
improved theoretical and practical convergence properties.
The main advantages of using this method are: (1) in theory,
convergence is guaranteed for any convex cost functions and
constraints, and (2), in practice, the augmented Lagrangian
term often speeds up convergence. We apply the method
to a flocking problem in a network of double integrators
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and find that a few tens of ADMM iterations yield closed-
loop performance near what is achieved by solving the
optimization problem centrally. We also utilize recent code
generation techniques for convex optimization [26], [27] for
solving the local subproblems, thereby achieving surprisingly
fast overall computation times.

The rest of the paper is organized as follows. Section 2
formulates a distributed model predictive consensus prob-
lem. Section 3 reviews the Alternating Direction Method of
Multipliers and describes how it can be used to solve the
distributed model predictive consensus problem. Section 4
demonstrates the results with a numerical example. Section 5
gives concluding remarks and an outlook for future research.

II. DISTRIBUTED MODEL PREDICTIVE CONSENSUS

A. An Optimal Consensus Problem

We consider a network of N independent agents, who are
required to cooperatively solve an optimal control problem
in a distributed way. The agents are allowed to communicate
information according to a fixed undirected1 graph G =
(V,E), which we refer to as the information architecture.
The vertex set V = {1, ..., N} represents the agents and
the edge set E ⊆ V × V specifies pairs of agents that are
permitted to communicate. If (i, j) ∈ E, we say that agents i
and j are neighbors, and we denote by Ni = {j : (i, j) ∈ E}
the set of neighbors of agent i.

The dynamics for the ith agent are given by the discrete-
time linear state equation

xi(t+ 1) = Aixi(t) +Biui(t), i = 1, ..., N, (1)

where xi(t) ∈ Rni is the state, ui(t) ∈ Rmi is the control
input, and Ai ∈ Rni×ni and Bi ∈ Rni×mi are given
dynamics and input matrices. The global system state and
input are concatenations of local states and inputs: x(t) =
[x1(t)

T , ..., xN (t)T ]T and u(t) = [u1(t)
T , ..., uN (t)T ]T .

The objective is to minimize the infinite horizon cost function

J =

∞∑
t=0

N∑
i=1

`i(xNi
(t), uNi

(t)) (2)

where `i(·, ·) are convex, closed, and proper stage cost
functions and xNi

(t) and uNi
(t) are concatenations of the

state and input vectors of agent i and its neighbors. The
stage cost functions couple the independent agents according
to G. Each agent is subject to convex local state and input
constraints

xNi
(t) ∈ Xi uNi

(t) ∈ Ui,

where Xi and Ui are convex subsets that (possibly) couple
the states and inputs of neighboring agents. The global
constraints are X ⊆ R

∑
i ni and U ⊆ R

∑
imi . In general,

we seek a distributed optimal policy π : X → U whose
structure is specified by the information architecture, i.e. the
policy for agent i should depend only on information from
its neighbors in G.

1Directed graphs are easily incorporated into our framework, but we
restrict attention to undirected graphs to simplify the exposition.

B. Model Predictive Control

We employ a model predictive control scheme, in which a
model is used to predict future behavior of the system, and
the inputs are chosen to optimize a performance index over
a finite horizon. The infinite horizon optimization problem
(2) is replaced by a finite-horizon optimization problem that
is solved at each time instant in a receding horizon fashion.
Only the first input of the optimizer is applied to the system;
the problem is solved again whenever state information is
received. The finite-horizon optimization problem is

minimize J =

T−1∑
t=0

N∑
i=1

`i(xNi
(t), uNi

(t))

+

N∑
i=1

`if (xNi(T ), uNi(T ))

subject to xi(t+ 1) = Aixi(t) +Biui(t),

xNi(t) ∈ Xi, uNi(t) ∈ Ui,
i = 1, ..., N, t = 0, 1, ..., T − 1

xNi(T ) ∈ Xif i = 1, ..., N,

(3)

where `if (·) and Xif are terminal cost functions and terminal
constraint sets, respectively. For centralized problems, there
are various methods for choosing the terminal cost functions
and constraint sets to ensure feasibility and stability of the
closed-loop system; see e.g. [28]. However, for distributed
problems, these quantities should be chosen to reflect the
information architecture, i.e. the terminal cost and constraint
sets for agent i should only depend on xNi

. Recent work has
considered the problem of choosing terminal costs and con-
straint sets with a certain distributed structure for feasibility
and stability [21].

C. Consistency Constraint Form

All coupling variables in the problem can be reduced to so-
called consistency constraints by introducing local copies of
variables at each subsystem and requiring the local copies of
coupling variables to be the same across coupled subsystems.
Specifically, let xi be a local variable vector for agent i that
includes a copy of the state and input vectors over the finite
horizon and also copies of the state and input vectors over
the finite horizon of all neighbors. For example, if agent 1
is connected to agent 2, then x1 includes a local copy of x1,
u1, x2, and u2 over the finite horizon. Likewise, for agent
2, the variable x2 contains a separate local copy of x1, u1,
x2, and u2 over the finite horizon. Let x = [xT1 , ...,x

T
N ]T

be a vector that includes all copies of all variables in the
problem. The problem then has the form

minimize
xi∈Xi

N∑
i=1

fi(xi)

subject to xi = Eix, i = 1, ..., N,

(4)

where Ei is a matrix that picks out components of x that
match components of the local variable xi (to simplify
notation, there may be some redundant coupling constraints
as written, but we assume that redundant coupling constraints



are removed). The constraint set Xi is convex and includes
all constraints for agent i and all of its neighbors. The
problem (4) now has a separable cost function in variables
xi with only coupling equality constraints, which enforce
consistency of local variable copies.

Our focus is on using a distributed optimization method to
solve (4) (hence, (3)) by distributing the computation across
a collection of communicating processors. Several different
distributed optimization methods have been proposed for
solving finite-horizon optimization problem arising from
distributed model predictive control and consensus problems
[3]–[22]. Many of them are based on some version of
standard dual decomposition, in which a partial Lagrangian
is formed by adding the coupling equality constraints to
the objective function. However, these methods provably
converge only under strong assumptions (e.g. that the cost
function is strictly convex) and may also be slow to converge
in practice. The Alternating Direction Method of Multipliers
(ADMM) is an augmented Lagrangian method that guaran-
tees convergence under very mild assumptions and also has
been observed to improve convergence speed in practice. We
briefly review this method in the following section.

III. THE ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

ADMM was originally proposed in the 1970s in [23]
and [24], but has seen a recent resurgence in the context
of increased computational power and distributed computing
platforms. An excellent recent overview of the method with
applications to statistics and machine learning is provided in
[25]; the reader is referred there for details. In this section,
we briefly review the highlights.

A. Dual Decomposition

Consider the optimization problem

minimize
xi∈Xi

f(x) =
N∑
i=1

fi(xi)

subject to Ax = b

(5)

where xi ∈ Rni are subvectors of the global variable
x = [xT1 , ...,x

T
N ]T and A is partitioned comformably A =

[A1 · · ·AN ]. Note that (4) has the same form as problem
(5), with A = diag(Ini

) − E, where E = [ET1 , ..., E
T
N ]T ,

and b = 0. The Lagrangian for problem (5) is

L(x, λ) =

N∑
i=1

(fi(xi) + λTAixi −
1

N
λT b)

=

N∑
i=1

Li(xi, λ)

(6)

where λ are Lagrange multipliers, or dual variables, and the
corresponding dual function is

g(λ) = inf
x
L(x, λ). (7)

Dual decomposition involves applying gradient ascent to
maximize the dual function, yielding the algorithm

xk+1
i = argmin

xi∈Xi

Li(xi, λ
k)

λk+1 = λk + αk(Axk+1 − b)
(8)

where k is an iteration counter and αk is a step size. Since
the Lagrangian is separable in the partition of x, the xi min-
imizations in the first line of the algorithm can be performed
independently and in parallel for all i = 1, ..., N for a given
λk. The residuals Aixk+1

i − bi are then gathered to update
the dual variable in the second line of the algorithm. When
the coupling constraint matrix A has particular structure, as
in problem (4), the dual update need not be performed by a
centralized entity, but rather can be done locally by sharing
information only amongst coupled subsystems.

While dual decomposition yields a distributed algorithm
for solving problem (5), it is only guaranteed to converge for
suitably chosen step size sequences and under rather strong
assumptions on the original problem. One way to improve
the convergence guarantees is to augment the Lagrangian
with an additional penalty term, which we discuss next.

B. The Method of Multipliers

The augmented Lagrangian includes an additional penalty
term:

Lρ(x, λ) = f(x) + λT (Ax− b) + ρ

2
‖Ax− b‖22, (9)

where ρ > 0 is called the penalty parameter, and can be seen
as the unaugmented Lagrangian for the problem

minimize f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b,
(10)

which has the same minimizer as problem (5). The penalty
term has a smoothing effect that renders the dual function
differentiable under mild conditions on the primal problem.
The gradient ascent algorithm on the dual of (10) con-
verges under very mild conditions on the primal problem.
In particular, the primal objective function need not be
strictly convex, finite, or even differentiable. However, while
the convergence properties have improved, the quadratic
penalty term prevents the x minimization in the dual ascent
algorithm from being separable, and therefore cannot be used
to distribute the computation across a set of processors, even
when the objective function f is separable.

C. ADMM

ADMM can be viewed as a way to combine the robustness
of the method of multipliers with the decomposability of
standard dual decomposition. We now focus specifically on
coupling constraints of the form given in (4), which results
in a particular form of ADMM that is referred to in [25]
as “general form global consensus”. A global variable z is



introduced, and the algorithm solves problems of the form

minimize
xi∈Xi

N∑
i=1

fi(xi)

subject to xi − Ēiz = 0, i = 1, ..., N.

(11)

The augmented Lagrangian for problem (11) is

Lρ(x, z, λ) =

N∑
i=1

[
fi(xi)

+λTi (xi − Ēiz) +
ρ

2
‖xi − Ēiz‖22

]
=

N∑
i=1

Lρi(xi, z, λ)

(12)

The ADMM algorithm consists of the iterations

xk+1
i = argmin

xi∈Xi

Lρi(xi, z
k, λk)

zk+1 = argmin
z

Lρ(x
k+1, z, λk)

λk+1
i = λki + ρ(xk+1

i − Ēiz
k+1)

(13)

The method of multipliers for problem (11) would jointly
minimize over x and z, whereas here the algorithm alter-
nates sequentially between x and z minimizations, which
allows the xi minimizations to be done in parallel. In this
particular form, the z minimization also distributes across its
components and can be simplified to

zk+1
i =

1

|Ni|+ 1

∑
j∈Ni

[
(xkj )i +

1

ρ
(λkj )i

]
, (14)

where (xkj )i and (λkj )i denote the components of xj and λj
that map to the ith component of z. It can be shown that
after one iteration, the local average of the dual variables for
each component of z, viz.

∑
j∈Ni

1
ρ (λ

k
j )i, is zero. Hence,

the z update further reduces to

zk+1
i =

1

|Ni|+ 1

∑
j∈Ni∪i

(xkj )i, (15)

i.e. the z update is simply a local averaging of all “opinions”
of each agent on the particular component of z (see [25]).

Algorithm 1 Alternating Direction Method of Multipliers
1: ∀i in parallel:
2: initialize λ = 0, z = 0
3: repeat
4: xk+1

i = argmin
xi∈Xi

Liρ(xi, z
k, λk)

5: communicate x+
i to all j ∈ Ni

6: zk+1
i = 1

|Ni|+1

∑
j∈Ni∪i (x

k
j )i

7: λk+1
i = λki + ρ(xk+1

i − Ēiz
k+1)

8: until convergence or maximum iterations reached

ADMM is a distributed message passing algorithm. In the
context of the distributed model predictive control problem,
the algorithm works as follows. Each agent solves a local

subproblem to minimize its local cost function, which com-
putes a local plan for both its own state and input and also for
states and inputs of neighboring agents over the horizon. The
solution of this problem (step 1 in (13)) can be interpreted
as the agent’s own “opinion” on what it and its neighbors
should do to minimize its local cost. Neighboring agents then
communicate their plans to one another. The global variable
is updated (step 2 in (13)) by averaging the local plans. The
dual variables are then updated (step 3 in (13)) based on the
difference between the local plans and the averaged global
plan. The whole iterative negotiation process takes place
within each sampling period, every time a state measurement
is obtained.

At each iteration of the algorithm, each subsystem solves
a small (relative to the global problem), structured convex
optimization problem. Very recently, code generation tech-
niques for convex optimization have been developed [26],
[27]. By exploiting problem structure, these techniques can
enable extremely fast computation times for small convex
optimization problems (on the order of microseconds to mil-
liseconds, depending on problem size and processor capabili-
ties). ADMM breaks a large optimization problem into many
smaller optimization problems that can be spread across mul-
tiple processors. Combining code generation techniques with
a distributed optimization method like ADMM potentially
allows solving large optimization problems surprisingly fast.

The distributed model predictive control literature often
lacks evaluations of proposed distributed optimization al-
gorithms in terms of computation times and performance
comparison to centralized schemes. In the next section, we
explore the practical performance of ADMM on a distributed
model predictive consensus problem.

IV. NUMERICAL EXAMPLE

In this section, we apply the method to a consensus
problem for a collection of double integrators moving in
three-dimensional space with input constraints. The state
of each agent xi ∈ R6 consists of spatial positions (the
first, third, and fifth components) and velocities (the second,
fourth, and sixth components). The input ui ∈ R3 consists
of force components acting on the agent. After an Euler
discretization with step size Ts, the dynamics and input
matrices for each agent are

Ai = I3 ⊗
[

1 Ts
0 1

]
, Bi = I3 ⊗

[
0

Ts/mi

]
. (16)

where ⊗ is the Kronecker product and mi is the mass of
agent i. We consider input constraints only: Xi = R6 and
Ui = {u ∈ R3 | ‖u‖∞ ≤ umax}.

We consider a flocking problem, in which the objective is
for all agents to converge to a common position and velocity.
One possible stage cost function that encodes this is

`(x(t), u(t)) = x(t)T (I3⊗(L⊗I2))x(t)+u(t)TRu(t), (17)



where L is the weighted graph Laplacian matrix2 and R is
a positive-definite matrix. In the simulations in the section,
we use R = I3 ⊗ IN . We also include process noise that
acts independently on each component of the acceleration
of each agent and has zero-mean and covariance 0.1. We
consider N = 5 agents connected in a simple path graph.
The prediction horizon is T = 10.

To evaluate the method, we generated random initial
conditions and random noise sequences and ran a closed-
loop simulation for 250 steps. At each step, the agents obtain
a state measurement and communicate their state to their
neighbors. Then the agents commence the iterative ADMM
algorithm described in the previous section, communicating
the intermediate results of local optimizations to neighbors
and locally updating global variables and Lagrange multi-
pliers. We fixed the maximum number of ADMM iterations
to 30 and compared the closed-loop performance with the
performance achieved when solving the finite-horizon model
predictive control problem centrally.

Figures 1-3 show example state and input time trajectories
for each spatial component for a randomly generated initial
condition and noise sequence. The solid blue curve shows the
trajectory using ADMM in the closed-loop, and the dashed
red curve shows the trajectory with the finite horizon MPC
problem solved with a centralized solver. Figure 4 shows a
spatial plot of the 5 agents moving through space. We can
see that both methods achieve consensus, but converge to
slightly different points on the consensus manifold. Figure 5
shows a comparison of closed-loop performance (expressed
as percentage of total cost) achieved by a centralized solver
with the performance of ADMM with various maximum
number of iterations. For each maximum iteration number,
we randomly generated 120 initial conditions and noise
sequences, ran a 250-step closed-loop simulation, and av-
eraged the results. If only 1 iteration is performed, the
performance is about 80% worse; however, for this example,
using just 2 iterations achieves performance within 1.5%
of the centralized solver and using 10 or more achieves
performance within 0.5% (on average).

We used C code generated from CVXGEN [26] to solve
the local subproblems. Using a 3.1 GHz Intel Core i5
processor, the local subproblems are solved in under 2
milliseconds; thus, if the local subproblems were solved in
parallel, the total computation time to finish 30 negotiations
to compute the optimal inputs at each sampling time would
be under 60 milliseconds. There is evidence that ADMM
scales very well with problem size; a computational study
in the context of distributed model predictive control is
performed in [22], and in [29], a dynamic energy network
scheduling problem with 10 million variables was reported
to be capable of being solved in a parallel implementation

2The weighted graph Laplacian matrix L ∈ RN×N for a graph G =
(V,E) is defined as follows. We first define the weighted adjacency matrix
A ∈ RN×N , which encodes the communicated state information flow. The
diagonal entries of A are zero, and an off-diagonal entry aij is positive
if agents i and j are neighbors. Then the Laplacian matrix is defined by
lii =

∑
i aij and lij = −aij .

0 50 100 150 200 250
−20

0

20

40

60

80

x 
po

si
tio

n

0 50 100 150 200 250
−0.5

0

0.5

time (s)

x 
in

pu
t

0 50 100 150 200 250
−4

−2

0

2

4

6

8

x 
ve

lo
ci

ty

Fig. 1. x component time trajectories.

0 50 100 150 200 250
−2

0
2
4

y 
ve

lo
ci

ty

0 50 100 150 200 250
−0.5

0

0.5

time (s)

y 
in

pu
t

0 50 100 150 200 250
0

50

100

y 
po

si
tio

n

Fig. 2. y component time trajectories.

in under 1 second. Thus, there is potential to solve very
large problems surprisingly fast by combining distributed
optimization methods like ADMM with fast custom solvers
for local subproblems.

V. CONCLUSIONS

In this paper, we proposed the Alternating Direction
Method of Multipliers (ADMM), which has good theoretical
and practical convergence properties, for solving a distributed
model predictive consensus problem. A numerical example
illustrates that near-centralized performance can be achieved
with only a few tens of iterations of the distributed method.

There are many potential directions for future research. On
the theoretical side, while ADMM has good theoretical and
practical convergence properties, the consistency constraints
of the iterates are only feasible in the limit. So guaranteeing
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closed-loop stability for early stopping is an open problem
and will require arguments different from the standard ones
used in model predictive control. Communication network
non-idealities, e.g. delays and packet drops, are important
and may dominate computation times in a distributed im-
plementation, and should be considered in future research.
Finally, there are many potential applications for distributed
model predictive control and consensus, e.g. to vehicle
formations and power networks.
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