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decisions that intelligently manage risks in the network to achieve
a trade-off between economic efficiency and system security.

Introduction

The current widespread increase in penetration of intermittent
renewable energy in power networks comes with an increase in
uncertainty of supply. As penetration levels of such sources reach
substantial fractions of total supplied power, current techniques
for handling supply uncertainty become expensive, and the system
is exposed to increasing operational risks. On the other hand, there
is active ongoing research on obtaining forecasts of intermittent
power supplied from renewable sources over various time scales
[20]. The most sophisticated available forecasts are probabilistic,
including not only point forecasts over a time horizon, but also
information about probability distributions of forecast errors that
describes spatiotemporal variations and dependencies. It is widely
agreed that appropriate use of such forecasts and strategies for
responding to forecast errors are required to make operational
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One of the fundamental decision problems in power networks is
optimal power flow (OPF), where power schedules for controllable
devices in a power system, such as generators, storage, and con-
trollable loads, are determined to minimize operating cost under
various device and network constraints. OPF is central to economic
and secure operation and control of power systems and markets
[27]. Future power networks will require the coordination of thou-
sands of devices and joint optimization of millions of variables and
increasingly the explicit incorporation of information about uncer-
tainties. There are many OPF problem variations, including unit
commitment, reserve scheduling, economic dispatch, security-con-
strained, DC approximations, full AC formulations and relaxations,
and others. In this paper, we use a relatively simple but widely
used linearized DC approximation to illustrate our results,
although of course corresponding extensions and variations are
interesting and necessary for the methods to be useful in practice.

Historically, many OPF formulations have only accommodated
uncertainty in a rather rudimentary manner by choosing fixed
reserve margins without using other known or estimated proba-
bilistic information about forecast errors. More recent work that
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does explicitly handle uncertainty includes methods based on (1)
chance constraints and the so-called scenario approach [19,34,
31,9,30,22], in which decisions are made based on finite sampling
of uncertain parameters from an assumed statistical model, or (2)
robust optimization [33],in which knowledge of uncertainty bounds
is assumed and device and network constraints are enforced for
every possible uncertainty realization. Both approaches suffer from
theoretical and practical drawbacks. Methods based on chance con-
straints involve incoherent risk measures that penalize frequency
but not severity of constraint violations. Furthermore, the scenario
approach in practice can be conservative as a result of drawing a
large number of samples to get probabilistic constraint satisfaction
guarantees. Methods based on robust optimization can be very con-
servative in enforcing constraints for every possible uncertainty
realization, since some realizations deemed possible may in fact
be extremely unlikely. Bienstock et al. have also recently considered
power flow problems subject to chance constraints assuming that
the uncertainties are Gaussian [3].

There are other risk measures, such as expected shortfall and
conditional value at risk (CVaR), which are well known in finance
[23], but have only received limited attention in the context of
power networks. Some of these are discussed in the context of
electricity markets in [11], which illustrates the use of these met-
rics in the context of individual power producers, retailers, and
consumers managing financial risk in electricity markets. A recent
related paper [35] also considers the use of CVaR for managing
financial risk of wind power producers in a network.

Here we present an approach to solving a stochastic optimal
power flow problem based on convex approximations of chance
constraints [18]. We take the perspective of a transmission system
operator managing operational risks across the network rather
than that of an individual power supplier and use stochastic for-
mulations of network and device constraints. The family of convex
approximations of chance constraints we consider indicates two
broad alternative approaches for handling uncertainty in optimal
power flow problems that effectively interpolate between chance
constraints and robust constraints. The first is a CVaR approach
that limits both frequency and severity of constraint violations
and requires uncertainty sampling. The second is a distributionally
robust approach that allows probabilistic information to be incor-
porated into a single second order cone constraint and does not
require any uncertainty sampling. We use a multistage stochastic
programming formulation with affine reserve policies, which spec-
ify how controllable devices in the network should respond to fore-
cast errors and can be computed tractably. This formulation allows
strong temporal forecast error dependencies and time-coupled
device costs and constraints to be incorporated. Our main con-
tribution is to bring together these chance constraint alternatives
with DC OPF and the use of reserve policies.

A preliminary version of this work appeared in [28]. Here, we
extend [28] in several ways. We elaborate on the distributionally
robust framework to handle multiple constraints jointly, to include
information on the distribution support in addition to moment
information, and to include a unimodality assumption on the dis-
tribution. We also raise the issue of pricing under probabilistic con-
straints and show that nodal prices arising from congestion in the
network do not decompose in a straightforward way as they do in
formulations with deterministic or robust constraints.

We demonstrate that this formulation can achieve alternative
trade-offs between efficient and secure network operation while
also reducing the conservatism of previous approaches. Based on
network knowledge and a probabilistic model for forecast errors
that accounts for spatiotemporal variations and correlations, risk
can be intelligently distributed across the network. The results
and various trade-offs are illustrated numerically on a simple
two-bus example.

The rest of the paper is organized as follows. Section ‘Network
model and optimal power flow’ describes the network model and
formulates a stochastic optimal power flow problem that explicitly
accounts for information about uncertainty. Section ‘Convex
approximations of chance constraints’ describes a family of convex
approximations of chance constraints and shows the approx-
imations indicate two broad approaches for handling uncertainty
in the optimal power flow problem. Section ‘Elaborations on dis-
tributionally roBUST OPF’ elaborates on the distributionally robust
framework. Section ‘Pricing under probabilistic constraints’ illus-
trates the trade-offs with a simple numerical example.
Section ‘Numerical example’ raises issues with pricing under
probabilistic constraints, and Section ‘Conclusions and outlook’
gives concluding remarks and an outlook for future research.

Network model and optimal power flow

We consider the operation of N devices connected via a trans-
mission network over a planning time horizon of T discrete time
steps. The devices may include generators; fixed, deferrable, and
curtailable loads; and storage devices such as batteries that can
act as either generators or loads. We distinguish between two
types of devices: those with fixed and (possibly) uncertain power
flows that cannot be affected by decision variables (e.g., renewable
infeeds or fixed loads), and those with controllable power flows
that can be affected by decision variables (e.g., conventional ther-
mal and hydro generation, deferrable/curtailable loads, or storage
devices). The notation follows [33].

We do not consider here the unit commitment problem, which
includes binary variables encoding whether generating units are
on or off. We assume that this computation has already been done
and is encoded into the power limits of controllable devices.
Integrating unit commitment into our framework is left for future
work.

Devices with fixed power flows

The fixed power flow for device i is given by r; + G;6 with posi-
tive values denoting net power injection into the network. The vec-
tor r; € R" represents the nominal forecasted power over the
planning horizon, and the linear function G; € R™™7 of the random
vector § € ACR™ represents the prediction error of the power
injection or extraction for device i. If uncertainty of device i is
not explicitly considered, we set G; = 0.

We assume that information about the joint probability dis-
tribution of ¢ is known. The distribution captures spatial variations
and dependencies among devices and temporal variations and
dependencies across the horizon. This information can come in
the form of knowledge of the full distribution, knowledge of certain
moments such as the mean and variance, or a model of ¢ from
which we can draw samples.

Devices with controllable power flows

The power flows of controllable devices are governed by given
dynamics. Device i at time k has internal state xi € R", where n;
is the state dimension. The dynamics of device i are assumed to
be governed by the discrete-time linear dynamical system

x;<+1 = Aixjc + Biu;a (1)

where A; e R"" is the dynamics matrix, B € R"™ is the input
matrix, and u; € R™ is an input that controls the net power injec-
tion. The first element [x}], of the state vector x| represents the
power injection of device i at time k into the network at a certain
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bus; other elements model internal dynamics such as state of
charge of a battery or memory of previous states, which can be used
to encode ramping constraints for thermal generation. For compact
notation, we concatenate the states and inputs over the planning
horizon: x = [(x)",...,(x)'] e R* and w =[u),... (ui_) e
R™T, which will be decision variables in the optimization problem
we formulate in the following. Note that future states can be
expressed as a linear function of the input sequence and the current
state xi) according to the dynamics (1):

X' = Aixi) + B, )
where

A BB 0 0

A: AB B
A B— AB; B 0

Al A’B; AB; B;

Cost functions and constraints

We associated a cost function with each device J; : R*" x R™T —
R that encodes the cost for the device to produce a given power
schedule over the planning time horizon. The cost functions are
assumed for mathematical convenience to be convex quadratic:

T 1 T 1
Jixi,w) = fox; + ix,-THiXx,» + oW+ iu,-TH,-uui + ¢, (3)
where H;, and H;, are positive semidefinite matrices.
There are three types of constraints: local device constraints,
power balance constraints, and line flow constraints. The local con-
straints are linear inequalities of the form

Tixi -+ U,'lli + V,5 <w, (4)

where T; € R U; € R¥™T v; ¢ R"™T. These can be used to
encode a wide variety of constraints; for example, constraints on
the allowable power injection range, or time coupling constraints
on ramp rates of a generator.

The remaining two types of constraints are imposed by the net-
work. In general, the steady-state active and reactive power flows
in a network are related to the complex bus voltages in the net-
work via nonlinear power flow equations. We consider a widely
used approximation in which it is assumed that voltage phase
angle differences between buses are small, bus voltage magnitudes
are constant and close to 1 per unit, and lines are lossless. Under
these assumptions, the reactive flows are neglected, and the active
line flows are proportional to the phase differences between bus
voltages. These assumptions amount to a linearization of a nonlin-
ear AC OPF problem. For more details on modeling for linearized
and decoupled OPF problems, see [26,1]. Although these approx-
imations are widely used in practice, it should be recognized that
they do not fully capture the full nonlinear flows and do not
account for nodal voltage constraints.

The second type of constraint is a power balance constraint. The
net power injection from all devices in the network must be zero
for all times in the planning horizon, which can be encoded with
the T linear equality constraints

M=

(Ti +Go+ C,‘X,‘) =0. (5)

i=1

Third, the power flow should also satisfy line rating constraints on
all transmission lines in the network. If there are L transmission
lines in the network and we consider constraints on lines flows in

both directions, these can be encoded by the 2LT additional inequal-
ity constraints

N
> ri(ri + Gio + Cixi) < P, (6)

i=1

where I'; € R*™T. The matrices I'; map the power injections of each
device to its contribution to each line flow and can be constructed
from network line impedances (see [10]).

Reserve policies

In a standard OPF problem, uncertainty is ignored, e.g., by set-
ting the prediction error vector § to zero, and the device inputs
u; are chosen to minimize the sum of the device cost functions,
which is a quadratic program. To explicitly account for uncertainty,
in addition to computing such a nominal plan, we would also like
to find an optimal strategy for responding to forecast errors. To do
this, we allow the device inputs to depend on the uncertainty via a
policy for each device u; = 7;(5), where 7; : R™" — R™" is a func-
tion that belongs to a set of causal policies denoted by IT. over
which we would like to optimize.

Furthermore, the objective function and constraints both depend
on the random variable §, so these terms in the OPF problem need to
be recast into stochastic forms. For the objective function, we con-
sider optimizing the expected value of the sum of device cost func-
tions. There are a variety of ways to recast the constraints. We will
require the power balance equality constraints to hold for any possi-
ble uncertainty realization (after application of the policy). The
inequality constraints could be enforced for any possible uncertainty
realization based on assumed knowledge of uncertainty bounds, as
in the robust setting of [33]. Alternatively, they could be “softened”
and enforced in some weaker probabilistic sense based on assumed
knowledge of the uncertainty probability distribution.

Here we enforce the equality constraints robustly and the
inequality constraints probabilistically; however, one can consider
other mixtures of robust and stochastic constraint formulations.
For example, the power balance equality constraint could be for-
mulated as two inequality constraints, and these could also be
reformulated probabilistically. Further, some local device con-
straints, e.g., upper and lower generation limits, may be most
appropriately modeled as robust constraints. In any case, when
constraints are violated, further manual action will be required of
the system operator, which is typical of current operational prac-
tice. The idea of including stochastic constraints is to limit the fre-
quency and severity with which the operator must take such
actions.

Substituting the policy, eliminating x; using (2), and recasting
the constraints leads to the following multistage stochastic pro-
gramming formulation of the optimal power flow problem:

N
migimize ED_ Ji(Ax; + Bm(3). 7(9), (7a)
N .
subject to Z(ri + Gid + Ci(Aixy + Bimi(9))) =0, V9, (7Db)
i=1
N .
R(Zfi(r,‘+Gi5+Cj(A,‘X6+Bi7T,'((3))) —-p< 0), (7C)
i=1

R(T,’(Aixf)+B,‘TE1'((S))+U1'7T,'(5) —wW; < O) i= 1,....N. (7d)
Here R denotes a generic transformation of the inequality con-
straints into stochastic versions, using probabilistic uncertainty
information and possibly introducing auxiliary variables. The
details of these transformations will be introduced in the next
section.
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The infinite-dimensional optimization over the set of admissi-
ble causal functions I1. is intractable. Inspired by the formulation
of [14] in the context of robust model predictive control, we
restrict each function 7; to the class of causal affine policies,

7i(0) = Did + e, (8)

where each D; € R™™T js block lower-triangular (to enforce causal-
ity) and represents a system of planned deviations with respect to a
nominal plan e; € R”. Since the device cost functions are quadratic,
the cost then becomes a linear function of the first and second
moments of the distribution of . The robust equality constraints
are equivalent to

N N
> (ri+ Ci(Ax; +Bie;)) =0, > (Gi+ CiBiD;) = 0. 9)
i-1 i=1
In the robust approach of [33], constraints (7c) and (7d) are
required to hold for all uncertainty realizations. After reformulating
they become linear in the decision variables D; and e; and some
extra auxiliary matrix variables.

A linear variation of the solution in response to uncertainty also
coincides with the way Automatic Generator Control (AGC) mecha-
nisms often apply specific gains to different participating genera-
tors such that automatic changes in their output compensate a
certain fraction of demand uncertainty for the whole system. The
restriction (8) permits the convenient interpretation of diagonal
entries of the matrices D; as generator AGC parameters [33].

In the next section we discuss other reformulations that allow
for the possibility of some degree of constraint violation in
exchange for reduced solution cost.

Convex approximations of chance constraints

In this section, we discuss chance constraints and a family of
convex approximations based on [18]. We highlight how two par-
ticular functions in the family of approximations indicate two broad
approaches for handling uncertainty that lie in a sense in between
chance and robust constraints that have been the focus of most power
systems applications. The first function is piecewise linear and offers
a conditional value at risk approach that limits both frequency and
severity of constraint violation and requires sampling. The second
function is quadratic and offers a distributionally robust approach
that also effectively limits both frequency and severity of constraint
violation and requires knowledge of only mean and covariance of
the uncertainty. At the end of the section we formulate two
prototypical stochastic OPF problems based on these approaches.

Chance constraints

Consider the chance-constrained optimization problem

minimize fy(x), 10
subject to P(f(x,6) <0) > 1—«, (10)
where x € R" is the decision variable, § € R?is arandom variable with
distribution P, and, for the time being, f(x, 5) : R® x R? — Ris a single
scalar constraint function that is convex in x for each J§; we discuss
how to deal with multiple constraint functions later. We assume that
fo(x)is aconvex cost function, and o is a safety parameter specified by
the modeler. This problem is convex in only a few special cases. For
example, when f(x, 6) = a(x)"6 + b(x), with a(x) and b(x) affine in x,
and § is normally distributed, then the chance constraint can be
expressed as a second-order cone constraint:

a(x)'d + b(x) + 7' (1 - 2)||=a(x)], <O, (11)

where &7 is the Gaussian quantile function, § = E§ is the mean of 5,
and E = E66" — 507 is the covariance matrix of . In other cases, the
random parameter is typically sampled from a distribution and a
constraint is added for each of the sampled values, leading to a
deterministic convex program. Recent research has focused on
quantifying the probability and determining the required number
of samples such that the solution of the sampled problem is feasible
for the original problem [5,7]. Chance constraints are closely related
to Value at Risk (VaR), a risk measure often used in finance [23].
Chance constraints have several drawbacks. They penalize fre-
quency but not severity of constraint violation. Moreover, the asso-
ciated VaR is not a “coherent” risk measure, i.e., it has some
undesirable properties for certain types of uncertainty distributions
[23]. Also, when using a sampling approach, the number of samples
required to guarantee a certain probabilistic feasibility level can be
large, which can make the sampled optimization problem difficult
to solve. This can also potentially render the solution very con-
servative in practice, though there are sampling-and-discarding
heuristics that can alleviate this in principle to some extent [8].

Convex approximation of chance constraints

One can obtain a family of related probabilistic constraints by
making a conservative convex approximation. In particular, one
can replace the constraint in problem (10) with another constraint
whose feasible set is contained in the feasible set of problem (10).

First, note that for a random variable z and for any
t>0,P(tz > 0) =P(z = 0) = E[1)p,)(tz)] where 1k(-) is the indica-
tor function over the set K. Now let iy : R — R be a non-negative,
convex function with y(z) > y(0) =1 for all z > 0, which is called
the generating function that will generate a family of convex
approximations for the chance constraint. Since y(tz) > 1(tz)
Viz € R, it follows that Ey(tz) = Elj.,(tz) =P(z = 0), ie., the
function Ey(tz) is an upper bound on the probability that z > 0.

Replacing z with f(x, 5) and changing t to t~! yields

Ey(t'f(x,9))] = P(f(x,6) > 0). (12)
Thus, the constraint
inf (CE[(t 'f(x,0))] - t2) < 0 (13)

is a sufficient condition for the chance constraint in (10) to be satis-
fied. This constraint can be shown to be jointly convex in (t,x) [18].
There are several candidates for the generating function:

e Markov: y(z) = [1+7],.
o Chebyshev: y(z) = ([1 +2],)*.

o Traditional Chebyshev: y(z) = (1 + z)°.
o Chernoff/Bernstein: y/(z) = e*.

where [], = max(-,0). Each function places a different penalty on
the severity of constraint violation. We will focus on two functions,
namely the Markov and traditional Chebyshev, that indicate two
broad methods for handling uncertainty in constraints.

Markov generating function & conditional value at risk

The constraint obtained from the Markov generating function is
closely related to the Conditional Value at Risk (CVaR), which is
also a well known, coherent risk measure in finance [23]. The
CVaR constraint can be written as

E[f(x,0) + 1], < ta, (14)

with t an optimization variable. In contrast to the chance constraint
in (10), this CVaR constraint limits both frequency and expected
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severity of constraint violation, which is arguably more appropriate
for many types of constraints. Although this CVaR constraint is
jointly convex in (t,x), the expectation cannot be evaluated explic-
itly in closed form due to non-smoothness of the Markov generating
function. However, the constraint can be approximated using sam-
ple average approximation methods, which have received signifi-
cant recent attention in the operations research literature, e.g., in
[16,24,32], and have been shown to be effective in many practical
problems [15]. In our numerical examples below we observe that
accurate solutions can be obtained with a moderate number of
samples.

Traditional Chebyshev generating function and distributional
robustness

The traditional Chebyshev approximation provides a more con-
servative approximation of the chance constraint that has a dis-
tributionally robust interpretation. An important advantage is
that in certain cases, the expectation can be evaluated analytically.

To illustrate we turn to the case f(x,8) = a(x)"s + b(x), where a(x)
and b(x) are affine in x, and 6 has mean ES =4 and variance
Ed" — 50" = E. The constraint obtained from the traditional
Chebyshev generating function can be written as

\/ H"”z Xl < (15)

which is a second-order cone constraint that depends only on the
mean and variance of 5. Note that (15) has the same form as (11)
but with a larger, more conservative parameter multiplying the sec-
ond term. This is because (11) assumes a Gaussian distribution,
whereas (15) is agnostic in the sense that it works for all dis-
tributions with the same mean and variance, as discussed below.

The constraint associated with the traditional Chebyshev
generating function is an example of a distributionally robust con-
straint [6,12,13,36,25]. In particular, it can be shown that the con-
straint is equivalent to

P(a(x)"d + b(x) < 0) >

where P(5,Z) is the set of all distributions of  with mean 6 and
variance E [6]. In other words, if (15) holds, then the corresponding
chance constraint holds for any distribution of 6 with the given
mean and variance. In practice, probability distributions are not
known and must be estimated from limited historical data. So the
advantages are that it is typically easy to obtain good estimates
for the mean and variance from data and that the reformulation
as a single second-order cone constraint means that no sampling
is required. A drawback is that such distributionally robust con-
straints can be very conservative because the corresponding worst
case distributions are often unlikely to be encountered in practice.
However, the conservatism can be reduced by assuming or estimat-
ing more about the distribution, e.g., the support [36], unimodality
[25] and/or knowledge of higher moments [21].

a(x)'s + b(x

1—-a, YPcPOE),

CVaR OPF and distributionally robust OPF

Based on the above approximations, we can formulate the
corresponding stochastic optimal power flow problems with asso-
ciated stochastic versions of the local device and line flow con-
straints. Each line constraint k at each time step, associated with
a row in (6), can be written in the form

flc(D7 €, 6) = [¢(D)]k5 + [b(e)}k? (16)

where D := (Dy,...,Dy),e:= (ey,...,ey),[], denotes the kth row of a
matrix or the kth element of a vector. The optimization variables D;
and e; for i = 1,... N enter linearly into @ and b as follows:

) :XN:FiCiBiDi, (17)

i=1

N
b(e) := —p+ Y _Li(ri + Gid + CAX, + CiBje;). (18)
i=1

A similar form can be obtained for each local device constraint
j=1,...,l; for each device i, which we denote individually as
g;(D.e,d).

Using the Markov generating function, we obtain the following
CVaR stochastic optimal power flow problem

minimize EZ Ji(Ax + Bi(Did + €;), Did + €;)

i=1

subject to Z(ri + Ci(Axg + Bier) = 0,
i=1
N
> (Gi+CiBDi)) =0
i=1
E[fk(D> e, 5) + tk]+ < tkalﬁ
E[g;(Di,ei,0) +tj], < tyoty,

k=1,...)2LT

i=1,...,N,j=1,...,l;, (CVaR OPF)
where ¢ := (ty,...,tour, t11,...,tny,). This is a convex optimization
problem in (D, e, t), the expected value in the last two sets of con-
straints can be approximated by a sample average. Since the cost
functions are assumed to be convex quadratic, the expected value
there can be explicitly evaluated in terms of the first and second
moments of 4.

Here we have treated the individual chance constraint indepen-
dently, and « are independent parameters associated with each
constraint. In the following section, we discuss how a set of chance
constraints can be considered jointly by choosing the «
appropriately.

Using the traditional Chebyshev generating function, we obtain
the following distributionally robust stochastic optimal power flow
problem

N
ming?ize EZ],-(A,-xb +Bi(Did +€;),Dié + ;)

N
subjectto » (ri+ Ci(Aix} + Bie;)) =0,

i=1
N
ZG+CBD =0

‘lfotk

fu(D,e,8)+ IE2[@(D)]fll, <0, k=1,..2LT

k
= 1—0{,']' —1/2 T - .
gi(Di,ei,0) + o 1= [(I)g(D)]inzéO, i=1,...,N, j=1,....I.
y

(Distribution ally Robust OPF)

The last two sets of constraints are second order cone constraints
that depend only on mean and the variance of forecast errors; once
the mean and variance have been estimated from data, no sampling
of the uncertainty is required to solve the optimization problem.

Elaborations on distributionally robust OPF

In this section, we elaborate on the distributionally robust
framework in several ways that improve the basic setup from
Section ‘Convex approximations of chance constraints’.
Specifically, we describe how multiple constraints can be handled
simultaneously, how distribution support information can be incor-
porated in addition to the first and second moments, and how a
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unmodality assumption can reduce conservatism. These improve-
ments are based on resultsin [36,25] and can easily be included into
the stochastic OPF formulations.

Distributionally robust joint chance constraints

Consider the distributionally robust joint chance constrained
problem

minimize fy(x)
subject to  P(a;(x)"'6+b;i(x) <0,i=1,...,m) > 1—a,
VP € P(3,5), (19)

where a;(x) and b;(x) are affine in x. Here, the probability of joint
satisfaction of the constraints is specified by the modeler to be at
least 1 — o for any distribution of § with mean 6 and variance Z.

A basic sufficient condition for joint chance constrained prob-
lems can be obtained using the Boole inequality (also known as
the Bonferroni inequality). In particular, if each of the distribution-
ally robust individual chance constraints are satisfied with safety
parameter o; and [, o; < o, then the joint chance constraint will
also be satisfied with safety parameter «. However, this condition
is not tight in general. Recently, Zymler et al. presented an
improved condition formulation that can be shown to be “essen-
tially” exact [36].

Associate a scaling parameter 7y;, i =1,...,m with each con-
straint, and let

Q= -
o7 1

240687 5}

The main result from [36] is the following in a semidefinite pro-
gramming reformulation of the distributionally robust joint chance
constrained problem

minimize f(x)

subject to [5+étr(QM) <0, M =0
0 La(x (20)
- T : ( ) t 07
Jai(x)” 7:bi(x) - B
i=1,....,m,

in variables x e R",pc R, and M = M" ¢ R*"*%*!, The “essential”
exactness means that there exist scaling parameters y; such that
the reformulation is exact. Unfortunately, the problem is not jointly
convex when the y; are included as decision variables, but heuristic
sequential convex optimization methods can be used to improve
them.

Including support information

The support of the uncertainty is typically a strict subset of R
due to physical limitations. For example, any uncertain power
injection of a wind farm is limited between zero and the maximum
rated capacity of the farm. Disregarding this information when
formulating stochastic constraints can render decisions
unnecessarily conservative. Suppose the support of § is given by
a finite set of quadratic and linear inequalities

T o
A—{éeRd m w,{ﬂ <1, i—l,...l},

where W; are positive semidefinite symmetric matrices. Then the
distributionally robust joint chance constrained program can be
expressed using the S-procedure [4] as

minimize fy(x)

subject to /}+%tr(QM) <0, 7,>0,70=0
I
M“'ZTOJW]’ =0,

=
! 0 La;(x)
M+3 "W — | 2
; o Lai(x)T Vibi(x) — p

which is again a semidefinite program in variables x, € R,M =
M" e R*™1 and 1; € R [36].

%07 i=1,..m, (21)

Distributional robustness with unimodal distributions

The worst case distributions associated with the distribution-
ally robust constraint discussed so far are unlikely to be encoun-
tered in practice. Another way to reduce the conservativeness is
to assume additional properties on the distribution beyond knowl-
edge of the mean and variance. One natural such property is uni-
modality. Roughly speaking, unimodal distributions have a single
mode with large deviations from the mode less likely than small
deviations (see [29,25] for precise definitions). All of the dis-
tributionally robust formulations so far can also be extended to
the unimodal case, based on recent work from Stellato [25] and
Van Parys et al. on generalized Gauss inequalities [29].

Consider the distributionally robust problem

minimize f;(x)

subject to P(a(x)'6 +b(x) <0) > 1—a, (22)
VP € Pui(6,E),

where P,;i(9,Z) is the set of all unimodal distributions of § with

mean o6 and variance =. The constraint can again be expressed as
a single second-order cone constraint

a(x)"d + b(x) + fuu(0)|E?a(x)], <0, (23)

where f,,;(«) is a safety factor function associated with unimodal
distributions described in [25]. Note again that the constraint has
the same form as both (11) and (15) but with an intermediate safety
factor function, yielding a constraint that does not require assuming
a normal distribution, which may underestimate risk of violation,
and is less conservative than the constraint from the Chebyshev
approximation.

Pricing under probabilistic constraints
Efficient pricing under hard constraints

Standard pricing theory in optimal power flow suggests that
efficient nodal prices consist of a common base price plus a loca-
tion-dependent modification arising from congestion on the net-
work. When uncertainty is added to the OPF problem, the notion
of efficient reserve prices can be defined. In terms of problem (7),
efficient prices for power schedules e; and reserve policies D; are
any prices 4; and II; for which the optimal OPF solution is to be
found among the minimizers of the following expression with
respect to e; and D; for each participant i:

EJ;(D;, e, %) — ATe; — tr{II'D;}. (24)

Expression (24) corresponds to the profit accruing to participant i,
and is the component of the Lagrangian of problem (7) correspond-
ing to participant i's decision variables.

In [33] it was shown that efficient prices 2} and IT} for the
hard-constrained version of (7) (|33], problem (10)) have the
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following form, for participant i. For real power output e; the asso-
ciated efficient price has the structure

W= —B[Cl (WX + ITv¥), (25)

where 1* € R is the multiplier at optimum corresponding to con-
straint (7b) and v* € R*" is that corresponding to the line con-
straint. Similarly, reserve policy prices consist of a base
component IT* arising from the system-wide constraint (robust
power match constraint) and a locational component I'7¥* arising
from the line constraints:

¥ .= —B[C[ (IT* + ] ¥*). (26)

As noted in [33], product BI CT is for most practical modeling cases
an identity matrix, and the minus sign arises from the sign conven-
tion used to write the problem’s constraints.

Efficient pricing under distributionally robust constraints

When hard constraints are replaced with the probabilistic con-
straints used in the present paper, the way in which the efficient
prices 2* and IT' are constructed from the optimal dual variables
of problem (7) changes. Consider the version of (7) in which the
Chebyshev generating function has been used - problem
(Distributionally Robust OPF). A partial Lagrangian of
(Distributionally Robust OPF) can be formed by relaxing the first
three constraints. Assigning multipliers 4 and IT to the first two con-
straints as in [33], and p, to each element k of the third constraint,
the partial Lagrangian takes the form

N
L(D,e, 2,11, 1t) = EY_ Ji(Aixy + Bi(Did + €:), Di + e))
i=1
N :
+ 1y (ri + Ci(Ag + Bie))

i=1
N

+ tr{HTZ(G,- + CiBiDi)}
i=1

2LT

2 M [fkw,a 8) + 1;—;’“”5”2 @(D)JZ»Z} :
7 @7)
Assuming the prediction error is zero-mean, é = 0, we have
fi(D,e,d) = [b(e)]; (28)
and
IE2 (@D, = D17 + -+ + Dyl (29)

for some coefficients Y%, ..., yk for each k. Lagrangian (27) is not, in
contrast to Lagrangian (11) in [33], separable between participants
i, since the matrices D; appear nonlinearly. This means the simple
pricing interpretation described above for the hard-constrained ver-
sion of (7) is not available for this version. However it is possible to
write a comparable version of (24) to account for the dis-
tributionally-robust constraints:

EJ;(D;, e;,%)) — Al e;

2LT
—tr (—BZC{H + >

T
1_“kYik> D Y. (30)
Olk

k=1

The price 4; has the same form as (25) with v replaced by
W= [y, ..., Wy]". The price associated with matrix D; has a similar
structure except that the locational element differs. Matrix coeffi-
cients Y; are defined as the matrix derivative of the

distributionally-robust constraint function with respect to matrix
D;, evaluated at the optimal solution (e*,D}), to problem
(Distributionally Robust OPF):

T ==

=@ D)1 31)

iy
oD;

p=D*"

Pricing under other probabilistic constraint formulations

Section B above assumed a traditional Chebyshev generating
function for the probabilistic constraints; the pricing interpretation
differs when other generating functions are used. For example, effi-
cient prices under the Markov generating function, i.e., correspond-
ing to the solution to (CVaR OPF), are a function of the disturbance
samples that are used to generate the relevant constraints.
Unfortunately, the analysis presented above is difficult to repeat
in this case, since the left hand side term E[f, (D, e, d) + t;], is diffi-
cult to characterize in terms of a series of realizations of 6.

Operational implications

It is common for many system operators to derive nodal prices
from the multipliers returned from an optimal power flow prob-
lem. These nodal prices diverge when transmission line constraints
are binding. However, as shown in subsections A and B above, the
nature of this price divergence depends on the way the system
operator has modeled the constraint. This has implications on
the fairness of the prices that result. It is possible that biases in
the prices can arise from a failure of the system operator to model
the line constraint faithfully, since congestion rents will not be
split in a manner that reflects the way participants’ actions con-
tribute to hitting the physical constraint. This subject may warrant
further study.

Numerical example

This section illustrates the results via a numerical example. We
consider the two-bus network shown in Fig. 1. A wind farm and a
relatively inexpensive thermal generation unit are connected to
bus 1, and a relatively expensive thermal generation unit and a
fixed load are connected to bus 2. Table 1 shows the network and
device parameters in terms of the notation in Section ‘Network
model and optimal power flow’. Section ‘Static case study’ illus-
trates the relative performance of different approximations
described above, and Section ‘Dynamic case study’ illustrates that
the benefit of using time-coupled reserve policies depends on
whether the line constraint is treated robustly or probabilistically.

Our numerical example is intentionally simple so that the
approaches described above can be compared as clearly as possi-
ble. Computational scaling of our methods is of course important.
However, a strong indication of the scaling can be found in recent
work that solves similar problems, including [30,22]| for OPF prob-
lems with uncertainty sampling and [3] for OPF problems with sec-
ond-order cone constraints.

Static case study

We first consider a single-stage stochastic optimal power flow
problem to illustrate the basic trade-off between cost and network
security in terms of frequency and severity of constraint violation.
The wind farm has maximum capacity 700 MW and the forecasted
output for the next time step is 500 MW. For illustrative purposes,
the forecast errors are drawn from a Gaussian probability dis-
tribution with zero mean and a standard deviation of 37.5 MW.
The fixed load at bus 2 is 1000 MW. The transmission line from
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Wind infeed Generator 2

Generator 1 Load

Fig. 1. Two bus power network.

bus 1 to bus 2 has a maximum rating of 950 MW. In this example,
we consider only this line constraint; there are no other local
device constraints.

In this example, there is a trade-off between cost and system
security. To minimize cost, one would like to use a larger share
of the less expensive thermal generation unit at bus 1, but commit-
ting too much from this generator may overload the line if the
wind output is much higher than expected. In particular, if the line
constraint is ignored, then the optimal affine policies are

e =433, Dy =-067, e, =67, D,=-033, (32)

which means that the nominal injections from generators 1 and 2
are 433 MW and 67 MW, respectively, and that generators 1 and
2 agree to adjust their injections in the event of wind power excess
or shortage by 67% and 33% of forecast error, respectively. Under
this policy, the line constraint is violated with a frequency of about
9% by about 6.5 MW on average from integrating the Gaussian
distribution.

If the constraints are enforced robustly as in [33] based on an
assumption that the forecast error is upper bounded by 200 MW,
then the optimal affine policies are

e; =431.6, D;=-091, e,=684, D,=-0.09. (33)

The nominal injections are almost the same, but more of the excess
wind power is absorbed by reducing the output of the cheaper
generator 1 in order to robustly satisfy the constraint, leading to
increased cost. Under this policy, the line constraint is (almost)
never violated. The optimal cost associated with the reserve poli-
cies, on the other hand, is 26% higher than the case in which the line
constraint is ignored.

The line constraint can be softened to reduce costs by allowing
limited violation, with a limit on the frequency of violation and a
penalty on the severity of violation. The trade-off can be explicitly
adjusted by changing the parameter oc which governs the allowable
frequency of violation and by choosing the type of constraint refor-
mulation, and one can effectively interpolate between ignoring the
line constraint and enforcing it robustly.’

Fig. 2 shows how the optimal cost varies with the constraint
violation parameter « in relation to the no constraint and robust
cases for four different stochastic reformulations of the line con-
straint: a chance constraint assuming that the forecast error is
Gaussian using (11), the Markov approximation using (14) and
evaluating the expectation with 1000 samples, the traditional
Chebyshev approximation using (15), and a chance constraint
using the scenario approach.” The specified constraint violation

1 An alternative method to achieve this interpolation is to combine robust and
chance constraint approaches by enforcing robustness to a subset of the support
rather than the full support [2,17]. If the subset is chosen appropriately, one
effectively enforces a chance constraint with a certain amount of probability mass cut
out by the subset. The interpolation is achieved by adjusting the size of the subset.

2 We used a standard scenario approach with confidence parameter 10~ described
in [5]. There are more sophisticated variations that can be used to reduce
conservatism by over-sampling and strategically removing samples.

Table 1
Network parameters (generator models as in [33]).

Device Description

Linear fuel cost $30/MWh
Quadratic fuel cost $0.05/(MWh)?
Quadratic ramping cost $1/(MWh)?

Linear fuel cost $60/MWh
Quadratic fuel cost $0.10/(MWh)?

Generator 1

Generator 2

Wind infeed See description in Table 2
Load Fixed at 1000 MW, no uncertainty
Transmission line Maximum rating 950 MW

Chebyshev
+ Gaussian
x Markov
151 scenario i
— robust
- - - no constraint

relative cost of reserve policies

0.5 P« 1
X
o X0
te., OO0
e, X
ob----l ETTURRARA .Mf%ﬁxwxxx%xmxxxxxﬁxxﬁx*
0 0.05 0.1 0.15 0.2 0.25

constraint violation parameter o

Fig. 2. Optimal cost of operating reserves vs. the constraint violation parameter for
different stochastic reformulations of the line constraint.

level for the Gaussian chance constraint matches the actual violation
level since the uncertainty used in this example is Gaussian (for
o = 0.09, the cost is the same as ignoring the constraint); however,
if the uncertainty is not Gaussian, then this constraint can under-
estimate the risk. As expected, the Markov approximation is more
conservative than the Gaussian chance constraint because it includes
a penalty on severity of violation, but it is only marginally more con-
servative. It is less smooth than the Gaussian and Chebyshev cases
due to the sample estimation of the expectation. The Chebyshev
approximation is more conservative still and can even be more con-
servative than the robust case for small values of o since uncertainty
bounds are not explicitly accounted for. The chance constraint with
scenario approach is also less smooth than the Chebyshev and
Gaussian cases and in this case is more conservative than the
Markov approximation due to sampling.

Each type of constraint reformulation gives a different cost and
different probabilistic guarantees and penalties on constraint vio-
lations. The most appropriate reformulation depends on many fac-
tors, and it is possible to mix and match different constraint types
for different constraints.

Dynamic case study

A synergy between the use of time-coupled reserve decisions
and the use of stochastic constraints is revealed when the two
are combined. We demonstrate this by considering a dynamic case
study in which expected short-run operating costs are minimized
over a limited time horizon.

As demonstrated in [33], it is instructive to compare the cost
outcomes under two different structural restrictions on the
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Table 2
Specification of uncertain wind infeed.

Static case study, Section ‘Static case study’:

Nominal infeed 500 MW.

Stochastic case: E[0] = 0, E = 37.52 MW?.

Robust case: 6 < 200 MW

Dynamic case study, Section ‘Dynamic case study’:

Nom. infeed [500.0 584.1 590.9 514.1 424.3 404.1 472.1 565.7] MW.

Stochastic case: E[§] = 0, Z (in units 10> MW?):
1.05 1.02 1.04 1.06 1.07 1.02 1.06 1.07
1.02 2.01 2.00 2.02 204 197 2.02 199
1.04 2.00 3.07 3.17 3.18 3.10 3.14 3.09
1.06 2.02 3.17 434 436 425 425 420
1.07 2.04 3.18 436 549 536 536 528
1.02 197 3.10 425 536 626 624 6.19
1.06 2.02 3.14 425 536 624 731 7.25
1.07 199 3.09 420 528 6.19 7.25 8.25

Robust case: —3 - [E'2],, < 6, < 3 - [E?],, MW, Vk.

Table 3
Costs for dynamic case study.

Test Robust Gaussian chance constraint, o = 0.09
Full LT policy $64,489 $49,437

Diagonal policy $65,183 $49,991

Cost increase +0.45% +1.01%

6 Value of time—coupled reserve policy under Chebyshev approximation
1.6 T T T T T T T

5 —— Chebyshev

=) — Gaussian

- 14} —— Markov
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Fig. 3. Relative benefit of time-coupled response to uncertainty observed under
different approximate treatments of the chance constraint, for different risk
parameters o.

matrices D; (note that these matrices were scalars in the static case
study above):

(1) Diagonal-only: [Dj];, = 0 for j # k. This represents the best
possible linear, time-decoupled response to uncertainty.

(2) Full lower-triangular: [D;];, = O for k > j. This represents the
best causal, linear, time-coupled response to uncertainty.

The expected operating costs were minimized given a current
operating point of 250 MW for both generators, and the nominal
wind infeed forecast and uncertainty statistics given in Table 2
(E was generated with the Monte Carlo model used in [33]). The
following cases were compared: (1) the line flow constraint is
enforced robustly assuming the uncertainty ¢ is restricted to the
set A described in Table 2; (2) the line flow constraint is enforced
in a probabilistic sense, using a conditional value at risk constraint
based on the Markov function, a distributionally robust constraint
based on the traditional Chebyshev function, and a Gaussian-as-
sumption chance constraint.

The results are shown in Table 3. The benefit of allowing full
lower-triangular decision rules was 0.45% in the robust case, and
1.01% in the Gaussian chance constraint case. In other words, the
benefit of using a time-coupled response to uncertainty was
greater when the constraint was treated probabilistically as
opposed to robustly.

Results for the different approximations of the chance con-
straint are shown in Fig. 3. While the Markov and Gaussian-as-
sumption approaches report a consistent benefit for time-
coupled responses to uncertainty, the Chebyshev approximation
brings about a lower relative benefit from time-coupled policies
at lower risk levels.

Conclusions and outlook

A stochastic optimal power flow problem was formulated, for
which a family of convex approximations can be used to trade
off cost against security in different ways. We highlighted two
broad approaches that emerge from our analysis and occupy the
space in between chance constrained and robust approaches that
have until now been the main focus in power systems applications.
In a conditional value at risk approach, a limit is placed on both fre-
quency and severity of constraint violation. This approach offers a
good approximation but at a potentially higher computational cost
because sampling is required. In a distributionally robust approach,
stochastic constraints can be expressed as single second-order
cone constraints and require knowledge of only point forecasts
and the variance of forecast errors. This approach offers relative
computational simplicity but can lead to conservative results. We
also described some variations on this approach that can reduce
conservatism. A simple numerical example illustrated the basic
trade-offs of economic efficiency and system security. The dynamic
case study demonstrated that the apparent benefit of planning a
time-coupled response to uncertainty depends strongly on how
the problem’s constraints are approximated.

The use of probabilistic constraints also has interesting implica-
tions on the way in which nodal prices are derived. The differences
in nodal prices arising from different line constraint character-
izations could be studied in more detail.

In future work the stochastic formulation of network and device
constraints considered in this paper could be explored in OPF
variations such as unit commitment, security constrained, or relax-
ations of full AC models. Of significant practical interest would also
be to develop distributed optimization algorithms for large scale
networks that can be implemented on modern distributed com-
puting platforms.
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