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Abstract— A primary motivation for using large-scale vehi-
cle formations and sensor networks is potential robustness to
loss of a single agent or a small number of agents. In this
paper, we address the problem of agent loss by introducing
redundancy into the information architecture such that limited
agent loss does not destroy desirable properties. We model
the information architecture as a graph G(V,E), where V is
a set of vertices representing the agents and E is a set of
edges representing information flow amongst the agents. We
focus on two properties of the graph called rigidity and global
rigidity, which are required for formation shape maintenance
and sensor network self-localization, respectively. In particular,
our objective in this paper is to investigate the structure of
graphs in the plane with the property that rigidity or global
rigidity is preserved after removing any single vertex (we call the
property 2-vertex-rigidity or 2-vertex-global-rigidity, respectively).
Information architectures with such properties would allow
critical tasks, such as formation shape maintenance or self-
localization, to be performed even in the event of agent failure.
We review a characterization of a particular class of 2-vertex-
rigidity and develop a separate class, making significant strides
toward a complete characterization. We also present for the first
time a characterization of a particular class of 2-vertex-global-
rigidity. Finally, we list several related open problems and suggest
directions for further research.

I. INTRODUCTION

Autonomous vehicle formations and sensor networks are
being progressively deployed to perform a variety of tasks
including military reconnaissance and surveillance missions,
environmental monitoring, and underwater exploration. In-
terest in these applications is reflected by the considerable
attention from the literature [1]–[7]. We consider vehicle
formations and sensor networks as collections of agents, each
with sensing, communication, and computation capabilities,
that work together to accomplish a task.

A primary motivation for using large-scale vehicle forma-
tions and sensor networks is robustness to loss of a single
agent or a small number of agents. The loss could occur in
a number of ways: due to enemy attack or jamming; due to
random mechanical or electrical failure; or due to intentionally
deploying an agent for a separate task. Further, large-scale
formations and sensor networks are typically composed of
relatively inexpensive agents that may be prone to such
failures.

One could consider addressing agent loss in two separate
ways: (1) perform a “self-repair” operation in the event of
agent loss to recover desirable properties, or (2) introduce
redundancy into the information architecture a priori such that
agent loss does not destroy desirable properties. The “self-
repair” approach is reactive in that the formation reacts to
an agent loss event. In contrast, the redundancy approach

is proactive in that redundancy is built into the formation a
priori in anticipation of an agent loss event. The “self-repair”
approach is addressed in [8]; in this paper, we consider the
redundancy approach.

We model the information architecture with a graph
G(V,E), where V is a set of vertices representing agents and
E is a set of edges representing information flow amongst the
agents. We focus on two properties, called rigidity and global
rigidity, which are required for formation shape maintenance
and self-localization tasks, respectively, and have received
significant attention recently in the literature (see e.g. [1]–
[3], [6], [7], [9]). The formation shape maintenance task is
to maintain all inter-agent distances constant such that the
formation moves as a cohesive whole. In this case, the edge
set E represents the set of inter-agent distances to be actively
held constant via control of individual vehicle motion. If a
suitably large and well-chosen set of inter-agent distances is
held constant, then all remaining inter-agent distances will be
constant as a consequence, thus maintaining formation shape.
The self-localization task is to uniquely determine positions
for each agent from knowledge of a partial set of inter-
agent distances and knowledge of the positions in a global
coordinate basis of several agents (“anchors”). In this case,
the edge set represents the set of known inter-agent distances.
Again, if a suitably large and well-chosen set of inter-agent
distances is known, then the remaining inter-agent distances
may be uniquely determined. Further, if the positions of three
non-collinear agents are also known, then all other agent
positions may be uniquely determined. These ideas are further
explained in the next section.

The objective of this paper is to investigate the structure
of graphs with the property that rigidity or global rigidity
is preserved after removing any single vertex, which we
call 2-vertex-rigidity1 or 2-vertex-global-rigidity, respectively.
Information architectures with these properties would allow
critical tasks, such as formation shape maintenance or self-
localization, to be performed even in the event of loss of
any single agent. Currently, there are some subtle graph
theoretic features that make obtaining a complete theoretic
characterization of these properties difficult. However, we are
motivated to work toward a complete characterization because
it will be fundamental for further theoretic and practical
developments, such as securing robustness to loss of more than
one agent or developing efficient algorithms for determining
whether a graph is 2-vertex-rigid or 2-vertex-globally-rigid.

1The reader may wonder why we use the term 2-vertex-rigidity, rather
than 1-vertex-rigidity. As explained later, these definitions are analogous to
the standard definitions for graph connectivity.
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In the main part of the paper, we overview general concepts
in redundant rigidity, drawing from developments in the char-
acterization of global rigidity due to Hendrickson, Jackson,
and Jordan [10], [11] and the recent work by Yu and Anderson
in [12]. We review the characterization of a particular class
of 2-vertex-rigidity, which we call strongly minimal, given by
Servatius in [13]. The original contributions of the paper are
as follows: we develop a separate class of 2-vertex-rigidity,
which we call weakly minimal, which makes significant strides
toward a complete characterization. We also present for the
first time a characterization of what we call strongly minimal
2-vertex-global-rigidity. The results here are for formations
and sensor networks in two dimensions.

The paper is organized as follows: In Section 2 we present
some standard graph theoretic concepts used to model in-
formation architectures in vehicle formations and sensor net-
works. We focus on describing the properties of rigidity and
global rigidity. In Section 3, we review redundant rigidity
concepts, particularly the work on strongly minimal 2-vertex-
rigidity in [13], and present new developments for weakly
minimal 2-vertex-rigidity. In Section 4, we present a complete
characterization of strongly minimal 2-vertex-global-rigidity.
Finally, Section 5 provides some summarizing and concluding
remarks and identifies a few possible problems for future
consideration.

II. BACKGROUND

In this section, we summarize the graph theoretic concepts
used to model information architectures in vehicle formations
and sensor networks. We describe rigidity and global rigidity,
which are graph theoretic properties required to perform for-
mation shape maintenance and self-localization, respectively.

A. Rigid Graph Theory

A fundamental task for vehicle formations is maintaining
some prescribed geometric shape. Drawing from long-standing
traditions in structural engineering and combinatorics (see
e.g. [14] and references therein), rigid graph theory has been
recently introduced in [1]–[3] as a means for describing the
information architecture required to maintain formation shape.

A graph G(V,E), where V is a set of vertices and E ⊆V ×V
is a set of edges, provides a useful high-level model of
the information architecture. We begin by formally defining
a formation F(G, p) as a graph G along with a mapping
p : V → ℜd|V | that assigns to each vertex a position in d-
dimensional Euclidean space. Each agent is abstracted as a
vertex in the graph. An edge is present between two vertices
in the graph, or equivalently a link is present in the formation,
whenever there is active maintenance of the Euclidean distance
between the two agents. If a vertex v j is connected by an edge
to vi, we call v j a neighbour of vi. The distance is maintained
using a control law to govern the motion of one or both
agents. Obviously, some appropriate quantities must be sensed
for use in controlling distances to neighbours. Specifically, in
virtually all formation control algorithms based on distance
maintenance, each agent needs to sense relative positions to

its neighbours in an arbitrary local coordinate basis. This
involves sensing both distances to neighbours and angles to
neighbours from some local reference. Alternatively, one could
sense distances to neighbours and distances between pairs of
neighbours and use the cosine law to obtain the appropriate
angles.

Roughly speaking, a rigid formation is one that preserves
its shape during a smooth motion, i.e. the distance between
every pair of agents remains constant. Consider the function
f : ℜd|V | → ℜ|E| defined by

f (p) = [..., ||(pi − p j)||2, ...] (1)

where the kth entry of f corresponds to the squared distance
between vertices i and j when they are connected by an edge.
Now, suppose the formation moves but f (p) stays constant,
i.e. rhw edges in E correspond to links where distance is
preserved. Then expanding f (p) about the constant value in
a Taylor series and ignoring higher order terms, we obtain

Jf (p)δ p = 0 (2)

where δ p is an infinitesimal perturbation of the formation,
and Jf (p) is the Jacobian of f . This Jacobian is known as the
rigidity matrix R(p). Equivalently,

Jf (p)ṗ = 0 (3)

for a formation undergoing smooth motion. When the for-
mation is rigid, the only permissible smooth motions are
translation or rotation of the whole formation. In d dimensions,
this accounts for (1/2)d(d +1) linearly independent vectors.
Thus the kernel of Jf (p) has dimension (1/2)d(d + 1). This
leads us to the following linear algebraic characterization of
rigidity:

Theorem 1: A formation F(G, p) is rigid2 if and only if
rank[R(p)] = d|V |−d(d +1)/2, which is the maximum rank
R(p) can have.

Because the rigidity matrix is a Jacobian of a rational
function, it has the same rank for all points but a set of measure
zero (via a nontrivial result of Sard [15]), corresponding to
special vertex configurations (e.g. a set of agents are collinear
or occupy the same point) that cause the rank deficiency.
This leads to the notion of generic rigidity. For generic
configurations (when the special configurations are precluded),
information about formation rigidity is contained in the graph,
allowing for the drawing of a purely combinatorial conse-
quence of rigidity. The following theorem is presented as the
“Necessary Counts Theorem” in [16]:

Theorem 2: If a graph G(V,E) in ℜd is rigid, then there
exists a subset E ′ of edges such that the induced subgraph
G′(V,E ′) satisfies the following:

• |E ′| = d|V |−d(d +1)/2
• Any subgraph G′′(V ′′,E ′′) of G′ with at least d vertices

satisfies |E ′′| ≤ d|V ′′|−d(d +1)/2.

2Actually, the term infinitesimally rigid is sometimes used. See [14] for
further discussion of different rigidity concepts.
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Fig. 1. Representation of (a) vertex addition operation (b) edge splitting
operation.

A graph is called minimally rigid if it is rigid and there
exists no rigid graph with the same number of vertices
and a smaller number of edges. Equivalently, a graph is
minimally rigid if removing any edge results in loss of rigidity.
Intuitively, a minimally rigid graph on a prescribed vertex set
must have a minimum number of edges, and the edges must
be properly distributed. The set of basis edges corresponding
to E ′ in Theorem 2 are called independent. An edge added
to a graph is called dependent whenever the addition results
in a subgraph that violates the second condition in Theorem
2. Equivalently, an edge is called dependent when the corre-
sponding row of the rigidity matrix associated with a generic
formation connected with the graph is linearly dependent on
rows of the matrix present before addition of the edge. When
a graph remains rigid after removing any edge, it is called
redundantly rigid.

In the plane, we have a complete characterization of rigidity
due to Laman [17]. In particular, the conditions given in
Theorem 2 are both necessary and sufficient for rigidity. Fur-
ther, there is a set of two basic operations, called Henneberg
operations, that allow one to “grow” every minimally rigid
graph in the plane from the complete graph on two vertices
[14], [18]. Let j and k be two distinct vertices of a minimally
rigid graph G(V,E). A vertex addition operation involves
adding a vertex i and edges i j and ik. Let x, y, and z be three
distinct vertices of a minimally rigid graph with edge xy. An
edge splitting operation involves removing xy and adding a
vertex w and edges wx,wy,wz. The operations are illustrated
in Figure 1.

A fundamental task for sensor networks is to determine
uniquely the position of each agent from knowledge of certain
inter-agent distances and the positions of a small number of
agents. This task is related to a further concept called global
rigidity. A graph in the plane is called globally rigid if two
formations having the same inter-agent distances differ at
most by translation, rotation, and reflection. In [7], Aspnes
et al show that global rigidity is required for unique self-
localization in sensor networks (and when the positions of
any three non-collinear agents are known, global rigidity is
sufficient for localizability of every agent). In [11], Jackson

and Jordan prove a conjecture posed by Hendrickson in [10]
that provides a complete characterization of global rigidity in
the plane. The result is as follows:

Theorem 3: A graph G(V,E) in the plane is globally rigid
if and only if it is 3-vertex-connected and redundantly rigid.

A graph is called minimally globally rigid if it is glob-
ally rigid and there exists no globally rigid graph with the
same number of vertices and a smaller number of edges, or
equivalently, if removing any edge results in loss of global
rigidity. This equivalency is related to the fact that the edge
splitting operation described above can be used to “grow” all
minimally globally rigid graphs from the complete graph on
four vertices [19].

We are interested in graphs that preserve rigidity or
global rigidity so that formation shape maintenance or self-
localization can be performed even in the event of agent loss.
We would like to find a complete characterization and similar
operations that would allow one to “grow” such graphs.

III. REDUNDANT INFORMATION
ARCHITECTURES

In this section, we investigate the structure of graphs in the
plane with the property that rigidity is preserved when any sin-
gle vertex and its incident edges are removed. Information ar-
chitectures with this structure would allow vehicle formations
to maintain formation shape even in the event of agent loss.
We review general redundant rigidity definitions and concepts,
and overview characterization of a particular class of 2-vertex-
rigidity, which we call strongly minimal, given by Servatius in
[13]. We then present new developments of a particular class
of 2-vertex-rigidity, which we call weakly minimal, making
significant strides toward a complete characterization.

A. REDUNDANT RIGIDITY CONCEPTS

In [13], Servatius introduced the notions of edge birigidity
and vertex birigidity of a graph. A graph is called edge birigid
if it remains rigid after removing any edge. As discussed
previously, this property is used to characterize global rigidity
(it is simply called redundant rigidity in that context). A
graph is called vertex birigid if the graph remains rigid after
removing any vertex and its incident edges.

In [12], Yu and Anderson introduced the generalized terms
k-edge-rigidity and k-vertex-rigidity. A graph is called k-edge-
rigid if it remains rigid after removing any k−1 edge(s). Sim-
ilarly, a graph is called k-vertex-rigid if it remains rigid after
removing any k−1 vertices. (For consistency of the results, it
is convenient to define any graph with fewer than 3 vertices
in two dimensions as nonrigid.) This notation is analogous
to the standard notation for connectivity: a graph is k-edge-
connected (k-vertex-connected) if it remains connected after
removing any k−1 edges (vertices). In [12], Yu and Anderson
characterize the relationship between k-edge-rigidity and k-
vertex-rigidity, confirming the natural intuition that vertex-
rigidity is a more demanding concept than edge-rigidity. They
also explore redundant rigidity properties for special types of
graphs, including the complete graph, the wheel graph, and
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powers of a graph. We shall use the terminology of [12] and
restrict our attention in this paper to 2-vertex-rigidity.

Remark 1: A graph is more vulnerable to loss of a vertex
with large degree than a vertex with smaller degree because
more edges are removed. For example, consider the wheel
graph on n vertices, which consists of a single vertex (the
“hub”) connected to every vertex in a (n− 1)-cycle. If any
vertex in the cycle is removed, the graph remains rigid.
However, if the hub is removed, the resulting graph is not
rigid, and one must add n− 3 new edges to recover rigidity.
The hub is in a sense more important than the other vertices
since the health of the formation is more vulnerable to its
failure than to failure of any other vertex.

B. STRONGLY MINIMAL 2-VERTEX-RIGIDITY

It is natural to seek a characterization of minimal 2-vertex
rigidity analogous to the way that a graph being rigid implies
existence of a minimally rigid subgraph. However, as we
will show in the following, the concept of minimality in
2-vertex-rigid graphs gives rise to a subtlety that contrasts
with minimality in rigid graphs. Given a rigid graph G(V,E),
minimality is characterized equivalently by either of the fol-
lowing statements: (1) G has the minimum possible number
of edges (|E|= 2|V |−3), and (2) removing any edge destroys
rigidity. For 2-vertex-rigid graphs, an attempt to generalize
these statements gives rise to two distinct types minimally
2-vertex-rigid graphs, which we call strongly minimal and
weakly minimal:

• A 2-vertex-rigid graph is called strongly minimal if it
has the minimum possible number of edges on a given
number of vertices.

• A 2-vertex-rigid graph is called weakly minimal if it has
more than the minimum possible number of edges on
a given number of vertices, but has the property that
removing any edge destroys 2-vertex-rigidity.

In [13], Servatius provides a characterization of strongly
minimal 2-vertex-rigidity and gives an example that shows
existence of a weakly minimal 2-vertex-rigid graph, which
we now overview.

We begin with the following result, which gives a lower
bound on the number of edges in a 2-vertex-rigid graph in
terms of the number of vertices.

Lemma 1: If G(V,E) is a 2-vertex-rigid graph on 5 or more
vertices, then |E| ≥ 2|V |−1.

Proof: Suppose G(V,E) is a 2-vertex-rigid graph on
5 or more vertices with |E| = 2|V | − 2. The average degree
in a graph on |V | vertices with |E| = 2|V | − 2 is 4− 4/|V |.
Thus, such a graph on 5 or more vertices has a vertex of
degree at least 4. Removing such a vertex results in a graph
G′(V ′,E ′) where |E ′| = 2|V ′| − 4. Thus, G′ cannot be rigid,
which contradicts our original assumption that G was 2-vertex-
rigid.
Servatius uses the concept of excess to distinguish between
our terms strongly and weakly minimal. The excess of a rigid
graph G(V,E) in 2 dimensions is defined as |E|− (2|V |−3).
A minimally rigid graph has excess zero (i.e. |E| = 2|V |−3).

(a) (b)

Fig. 2. Examples of the two possible partitions of the edge set for strongly
minimal 2-vertex-rigid graphs: (a) the degree three vertices are adjacent, and
(b) the degree three vertices are non-adjacent.

A minimally globally rigid graph has excess one (i.e. |E| =
2|V | − 2). On 4 or fewer vertices, it is impossible to have
|E| ≥ 2|V |−1, and a graph must be complete to be 2-vertex-
rigid. A strongly minimal graph (on 5 or more vertices) has
excess two while a weakly minimal graph has excess more
than two.

The following two results from [13] give a complete char-
acterization of the structure of strongly minimal 2-vertex-rigid
graphs.

Theorem 4: Let G(V,E) be a strongly minimal 2-vertex-
rigid graph on 5 or more vertices. Then G has exactly two
vertices with degree 3 and the remaining have degree 4, which
implies |E| = 2|V |−1.

Theorem 5: A graph G(V,E) is strongly minimal 2-vertex-
rigid if and only if G has exactly two vertices of degree 3 and
there is a partition of the edge set E

E = E1 ∪E2 ∪·· ·∪Ek

such that the graph induced by E \Ei is minimally redundantly
rigid for all i, where either

• E1 and E2 are the edges incident to the two non-adjacent
vertices of degree 3, respectively, and Ei is a single edge
for 3 ≤ i ≤ k

• E1 is the union of the edges incident to the two adjacent
vertices of degree 3, and Ei is a single edge for 2 ≤ i ≤ k.

This can be thought of as a Laman-type characterization,
analogous to minimal rigidity: there must be a minimum
number of edges (|E| = 2|V | − 1), and the edges must be
properly distributed, as described in the theorem conditions.
The two possible partitions of the edge set correspond to
whether or not the two degree 3 vertices are adjacent.

Figure 2, originally from [13], shows examples of strongly
minimal 2-vertex-rigid graphs with each type of partition. Note
that triangles could be “stacked” together in such a fashion to
produce arbitrarily large 2-vertex-rigid graphs of excess two.

In fact, Servatius also provides a way to “grow” all strongly
minimal 2-vertex-rigid graphs using an operation similar to the
edge splitting operation discussed previously. This operation
gives an increase of |V | by 1 and an increase of |E| by 2, and
thus preserves the constraint |E| = 2|V | − 1. Thus, we have
a complete characterization and a way to obtain all strongly
minimal 2-vertex-rigid graphs.

C. WEAKLY MINIMAL 2-VERTEX-RIGIDITY

Can one simply add edges to a strongly minimal 2-vertex-
rigid graph to obtain every (non-minimal) 2-vertex-rigid graph
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Fig. 3. Example of a weakly minimal 2-vertex-rigid graph. The graph has
excess three, but removing any edge destroys 2-vertex-rigidity. Thus, this
graph cannot be obtained by adding an edge to a graph described by Theorem
5.

Fig. 4. Smallest example of a weakly minimal 2-vertex-rigid graph in the
class defined by the Servatius example.

(as can be done for rigid graphs)? The answer to this question
is no. The example in Figure 3, originally shown in [13],
shows existence of a weakly minimal 2-vertex-rigid graph,
which contains more than the minimum possible number of
edges yet has the property that removing any edge destroys
2-vertex-rigidity.

Proposition 1: The graph G(V,E) in Figure 3 is weakly
minimal 2-vertex-rigid.

Proof: Every vertex has degree 4; thus, |E|= 2|V |, which
is excess three. Observe that the subgraphs induced by the left
and right nine vertices (call them GL and GR) both have excess
one. Removing any vertex in G results in a graph of excess
one that has exactly one subgraph of excess one, which is
rigid. Thus, the graph is 2-vertex-rigid.

Now remove any edge outside of GL; call the new graph
G′. Then remove any degree 4 vertex in G′ \GL. The resulting
graph, call it G′′, has an excess of zero with a subgraph
of excess one (viz GL), and so G′′ is not rigid by Laman’s
theorem. Therefore, G′ is not 2-vertex-rigid. Obviously, the
same argument applies if we remove any edge outside of GR.
Hence, removing any edge in G destroys 2-vertex-rigidity, and
thus G is weakly minimal 2-vertex-rigid.

This example points to a particular class of weakly minimal
2-vertex-rigid graphs that generally consist of two redundantly
rigid subgraphs connected by four edges. The smallest such
graph, presented here for the first time in Figure 4, consists
of two complete graphs on four vertices connected by four
edges. Further, we can use what is called the X-replacement
operation, which is shown to preserve rigidity and redundant
rigidity in [20], to “grow” arbitrarily large weakly minimal
2-vertex-rigid graphs. The operation is illustrated in Figure 5
and described below.

Definition 1: Given two non-adjacent edges ux and wy in
a graph G(V,E), an X-replacement adds a degree 4 vertex

w

x

z

u

y

w

x

u

y

Fig. 5. Representation of the X-replacement operation.

(b)(a)

Fig. 6. A new class of weakly minimal 2-vertex-rigidity: (a) a weakly
minimal 2-vertex-rigid graph with excess three, (b) adding a degree 3
vertex to create a weakly minimal 2-vertex-rigid graph with excess four. By
successively adding a degree 3 vertex to either end, one can obtain weakly
minimal 2-vertex-rigid graphs with arbitrarily large excess.

z to construct the graph G′(V ′,E ′), where V ′ = V ∪{z} and
E ′ = E \{ux,wy}∪{uz,wz,xz,yz}.

Since the X-replacement preserves redundant rigidity, it can
be applied successively to each redundantly rigid subgraph in
Figure 4 (that is, each complete subgraph on four vertices) to
create a class of weakly minimal 2-vertex-rigid graphs with
excess three, which includes the Servatius example in Figure
3. Indeed, one can easily verify that the graph in Figure 4 can
be obtained by repeatedly applying the reverse X-replacement
operation on the left and right subgraphs in Figure 3.

In [13], Servatius poses an open question regarding ex-
istence of other weakly minimal 2-vertex-rigid graphs with
larger excess. We have discovered such a new class that can
have arbitrarily large excess. The graph shown in Figure 6(a)
illustrates an example with excess three, and the graph shown
in Figure 6(b) illustrates an example with excess four obtained
by applying what we call a degree 3 vertex addition. Let i, j,
and k be three distinct vertices in a graph G(V,E). A degree 3
vertex addition operation adds a vertex l and edges il, jl, and
kl. This operation preserves weakly minimal 2-vertex-rigidity
under certain conditions given in [13] and also increases the
excess by one. By successively applying the operation as
shown, one can obtain weakly minimal 2-vertex-rigid graphs
with arbitrarily large excess.

Proposition 2: The class of graphs illustrated in Figure 6
is weakly minimal 2-vertex-rigid.

Proof: Let G(V,E) be the graph in Figure 6(a). One
can easily verify that |E| = 2|V | (excess three) and that
removing any vertex from G results in a rigid graph; thus,
G is 2-vertex-rigid. Now, remove any edge not incident to the
top vertex, then remove the top vertex, resulting in a graph
G′(V ′,E ′). We have |E ′| = 2|V ′| − 4, which implies that G′
is not rigid. The same argument holds when removing any
edge not incident to the bottom vertex, then removing the
bottom vertex. Thus, removing any edge in G destroys 2-
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vertex-rigidity, and therefore G is weakly minimal 2-vertex-
rigid. The same analysis holds for the graph in Figure 6(b)
and all other graphs in this class.

Clearly, the existence of weakly minimal 2-vertex-rigid
graphs make a complete characterization of 2-vertex-rigidity
rather subtle and difficult. We conclude this section with a
conjecture that the X-replacement and degree 3 vertex addition
operations are sufficient to “grow” all weakly minimal 2-
vertex-rigid graphs. We have already observed that these
operations preserve weakly minimal 2-vertex-rigidity under
certain conditions. For a complete characterization, we need
to show that the reverse operations can always be applied to
a weakly minimal 2-vertex-rigid graph.

Conjecture 1: Let G(V,E) be a weakly minimal 2-vertex-
rigid graph with at least 9 vertices. Then there exists either (a)
a degree 4 vertex on which a reverse X-replacement operation
can be performed to obtain a weakly minimal 2-vertex-rigid
graph, or (b) there exists a degree three vertex on which a
reverse degree 3 vertex addition can be performed to obtain a
weakly minimal 2-vertex-rigid graph.

IV. STRONGLY MINIMAL
2-VERTEX-GLOBAL-RIGIDITY

In this section, we investigate the structure of graphs with
the property that global rigidity is preserved when any single
vertex and its incident edges are removed. Analogously, a
graph is called 2-vertex-globally-rigid if it remains globally
rigid after removing any single vertex. Information architec-
tures with this structure would allow self-localization in sensor
networks to be performed even in the event of loss of any one.
We provide a complete characterization of strongly minimal
2-vertex-global-rigidity.

We begin with the following result, which gives a lower
bound on the number of edges necessary for 2-vertex-globally-
rigidity.

Lemma 2: If G(V,E) is a 2-vertex-globally-rigid graph on
5 or more vertices, then |E| ≥ 2|V | (excess three or more).

Proof: Suppose G(V,E) is a 2-vertex-globally-rigid
graph on 5 or more vertices with |E| = 2|V |−1. The average
degree in a graph on |V | vertices with |E| = 2|V | − 1 is
4− 2/|V |. Thus, such a graph on 5 or more vertices has a
vertex of degree at least 4. Removing such a vertex results
in a graph G′(V ′,E ′) with |E ′| = 2|V ′| − 3, which cannot
be redundantly rigid and therefore cannot be globally rigid.
This contradicts our original assumption that G was 2-vertex-
globally-rigid.

The following two results completely characterize the struc-
ture of strongly minimal 2-vertex-globally-rigid graphs.

Theorem 6: Let G(V,E) be a strongly minimal 2-vertex-
globally-rigid on 5 or more vertices. Then we have the
following:

• |E| = 2|V |.
• Every vertex in G has degree 4.

Proof: For the first condition, removing an edge results
in a graph of excess two, which is not 2-vertex-globally-rigid
by Lemma 2. Further, Figure 7 shows a 2-vertex-globally rigid

graph where |E| = 2|V |. For the second condition, since G is
globally rigid, it contains no vertex of degree less than 3.
Suppose v is a vertex of degree 3. Remove a neighbour of
v. In the resulting graph, v has degree 2 and this graph is
not globally rigid. Since |E| = 2|V |, then the average vertex
degree is 4. Since there are no vertices of degree 3 or fewer,
then there cannot be any vertices of degree 5 or more. Thus,
all vertices must have degree 4, which completes the proof.

Theorem 7: A graph G(V,E) is strongly minimal 2-vertex-
globally-rigid if and only if the following conditions hold

• |E| = 2|V |
• G is 4-vertex-connected
• G is redundantly strongly minimal 2-vertex-rigid (i.e.

removing any edge results in a strongly minimal 2-vertex-
rigid graph).
Proof: For sufficiency, suppose the conditions hold for

a graph G. Note first that since G is 4-vertex-connected, a
graph obtained by removing a vertex and its incident edges
is 3-vertex-connected. Further, 4-vertex-connectivity implies
that every vertex has degree at least 4, (see e.g. [21]), and
since |E| = 2|V | then every vertex has precisely degree 4.
Now choose any vertex v in G and remove any edge incident
to this vertex. The resulting graph is 2-vertex-rigid by the third
condition. Remove another edge incident to v. Via the edge
partition in Theorem 5, the resulting graph consists of v with
degree 2 attached to a redundantly rigid graph. Now we can
remove v and the resulting graph is redundantly rigid. By the
second condition, it is also 3-vertex-connected and therefore
is globally rigid. The argument holds for any vertex v in G,
which proves that G is 2-vertex-globally-rigid, and thus the
conditions are sufficient.

The 4-vertex-connectivity of G is obviously necessary be-
cause G minus any vertex must be 3-vertex-connected. Further,
|E| = 2|V | is necessary because if |E| < 2|V | then there is a
vertex with degree 3, which implies that G is not 4-vertex-
connected. Now we need to prove the necessity of the final
condition. To obtain a contradiction, suppose G is a 2-vertex-
globally-rigid graph with an edge e that when removed does
not result in a 2-vertex-rigid graph. Remove such an edge e
and call the resulting graph G′. This implies that there exists
a vertex v in G′ that when removed results in a non-rigid
graph G′′. There are two cases: First, if e is incident to v, then
effectively we have removed v from G to obtain a non-rigid
graph G′′. Thus, G is not 2-vertex-globally-rigid, contradicting
our assumption. Second, if e is not incident to v, then if G is
2-vertex-globally-rigid, we should be able to reinsert e into G′′
to obtain a globally rigid graph. However, it is impossible to
add a single edge to a non-rigid graph to make it redundantly
rigid. This again contradicts our assumption, which proves the
necessity of the final condition and completes the proof.

Theorem 7 is clearly analogous to the characterization of
global rigidity given by Theorem 3. An example of a 2-
vertex-globally-rigid graph is given in Figure 7. This example
is a C2 graph, which can be obtained starting with a cycle
on n vertices and connecting 2-hop neighbours. One could
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Fig. 7. Example of a strongly minimal 2-vertex-globally-rigid graph
described in Theorem 7.

also obtain a different 2-vertex-globally-rigid graph by starting
with a cycle on n vertices and connecting 3-hop neighbours.
The smallest strongly minimal 2-vertex-globally-rigid graph
is the complete graph on 5 vertices.

Operations to “grow” all strongly minimal 2-vertex-
globally-rigid graphs and existence of weakly minimal 2-
vertex-globally-rigid graphs remain open questions. In addi-
tion, note that generalizing Theorem 7 will require a com-
plete characterization of 2-vertex-rigidity, again emphasizing
the importance of resolving the difficulties discussed in the
previous section.

V. CONCLUDING REMARKS

In summary, we have addressed the problem of agent loss
by introducing redundancy into the information architecture
such that agent loss does not destroy desirable properties.
Specifically, we have investigate the structure of graphs with
the property that rigidity or global rigidity is preserved after
removing any single vertex, which we call 2-vertex-rigidity
or 2-vertex-global-rigidity, respectively. Information architec-
tures with such properties would allow critical tasks, such
as formation shape maintenance or self-localization, to be
performed even in the event of loss agent any single agent.
We have reviewed a characterization from [13] of what we
call strongly minimal 2-vertex-rigidity and further developed
the class of what we call weakly minimal 2-vertex-rigidity,
making significant strides toward a complete characterization.
We have also presented for the first time a characterization of
strongly minimal 2-vertex-global-rigidity.

The existence of weakly minimal 2-vertex-rigidity makes a
complete characterization of 2-vertex-rigidity rather subtle and
difficult, in comparison to rigidity. The existence of weakly
minimal 2-vertex-global-rigidity remains open. However, we
remain motivated to work toward complete characterizations
because it will be fundamental for further theoretic and
practical developments. For example, such characterizations
will likely be instrumental in investigating k-vertex-rigidity
and k-vertex-global-rigidity for k > 2, which would address
robustness to loss of more than one agent. Moreover, complete
characterizations would be helpful in developing efficient
algorithms for determining whether a graph is 2-vertex-rigid
or 2-vertex-global-rigid.
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