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Abstract— In this paper, we present recent results on the
closing ranks problem in vehicle formations and sensor net-
works. The closing ranks problem is to determine new sens-
ing/communication links in the event of agent failure in order
to recover certain properties of the underlying information
architecture. We model the information architecture as a graph
G(V,E), where V is a set of vertices representing the agents
and E is a set of edges representing information flow amongst
the agents. We focus on two properties of the graph called
rigidity and global rigidity, which are required for formation
shape maintenance and sensor network self-localization, respec-
tively. We show that while previous results permit local repair
involving only neighbours of the lost agent, the repair cannot
always be implemented using only local information. Utilizing
a graph theoretic substitution principle, we present new results
that can be applied to make the local repair using only local
information. We also describe implementation of the solution
and illustrate the ideas through examples.

I. INTRODUCTION
Autonomous vehicle formations and sensor networks are

being progressively deployed to perform a variety of tasks
including military reconnaissance and surveillance missions,
environmental monitoring, underwater exploration and the
like. Interest in these technologies is reflected by the consid-
erable attention from the literature [1], [2], [3], [4], [5], [6],
[7], [8]. We consider vehicle formations and sensor networks
as collections of agents, each with sensing, communication,
and computation capabilities, that work together to accom-
plish a task.

A primary motivation for using large-scale vehicle for-
mations and sensor networks is robustness to loss of a
single agent. Large-scale formations and sensor networks
are typically composed of relatively inexpensive agents that
may be prone to failure. One could consider addressing
agent loss in two different ways: (1) introduce robustness
into the information architecture a priori such that agent
loss does not destroy desirable properties, or (2) perform a

Tyler H. Summers is supported by the Australian-American Fulbright
Commission. Changbin Yu and Brian D.O. Anderson are supported by
National ICT Australia, which is a national research institute with a
charter to build Australias pre-eminent Centre of Excellence for infor-
mation and communications technology (ICT). NICTA is building capa-
bilities in ICT research, research training and commercialisation in the
ICT sector for the generation of national benefit. NICTA is funded by
the Australian Government as represented by the Department of Broad-
band, Communications and the Digital Economy and the Australian Re-
search Council through the ICT Centre of Excellence program. Email:
{tyler.summers,brad.yu,brian.anderson}@anu.edu.au

“self-repair” operation in the event of agent loss to recover
desirable properties. The former approach is addressed in
[9]; in this paper, we shall focus on the latter. For large-
scale formations and sensor networks in which centralized
computation, communication, and sensing is infeasible, we
require the repair to be made in a decentralized way. Here, we
use the term “decentralized” to encompass two properties: (1)
the formation makes a local repair involving only neighbours
of a lost agent, and (2) the neighbours perform the repair
using only local information (independent of formation size).

We model the information architecture with a graph
G(V,E), where V is a set of vertices representing agents and
E is a set of edges representing information flow amongst the
agents. We focus on two properties, called rigidity and global
rigidity, which are required for formation shape maintenance
and self-localization tasks, respectively, and have received
significant attention recently in the literature (see e.g. [1], [2],
[3], [7], [8], [10]). The formation shape maintenance task is
to maintain all inter-agent distances constant such that the
formation moves as a cohesive whole. In this case, the edge
set E represents the set of inter-agent distances to be actively
held constant via control of individual vehicle motion. If a
suitably large and well-chosen set of inter-agent distances is
held constant, then all remaining inter-agent distances will
be constant as a consequence, thus maintaining formation
shape. The self-localization task is to uniquely determine
positions for each agent from knowledge of a partial set
of inter-agent distances and knowledge of the positions in
a global coordinate basis of several agents (“anchors”). In
this case, the edge set represents the set of known inter-
agent distances. Again, if a suitably large and well-chosen set
of inter-agent distances is known, then the remaining inter-
agent distances may be uniquely determined. Further, if the
positions of three non-collinear agents are also known, then
all other agent positions may be uniquely determined. These
ideas are further explained in the next section.

The “self-repair” approach is related to the closing ranks
problem, which is to determine new sensing/communication
links in the event of agent loss in order to recover rigidity.
In [11], Eren et al present a systematic method to solve the
closing ranks problem with local repair. This result draws
from a graph theoretic theorem given by Tay and Whiteley
in [12] that proves that rigidity can be recovered when a
vertex is removed from a rigid graph by adding edges only
between neighbours of the lost vertex; in terms of formation
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shape maintenance, this is equivalent to assigning further
agent pairs between which the distance should be preserved.
Although the method in [11] determines a minimal local
repair (minimality being in the sense of adding the least
number of links to restore rigidity), it cannot always be
implemented using only local information. The reason for this
is that the effect of adding a particular link may depend on
the information architecture in a non-local way, as described
later.

We propose decentralized sub-optimal solutions to solve
the closing ranks problem in vehicle formations and sensor
networks, providing algorithms to recover both rigidity and
global rigidity. The sub-optimality refers to the fact that
our solutions potentially add more links than required by a
minimal solution (but only up to twice as many). However,
it is this trade-off that allows decentralized implementation,
highlighting a theme that one must often sacrifice a measure
of optimality when faced with certain constraints, such as
decentralization. The results rely on a graph theoretic substi-
tution principle, originally proposed by Whiteley in [13], that
guarantees recovery of certain properties of the underlying
information architecture. We describe implementation of the
results and illustrate them through algorithms and examples.

The paper is organized as follows: In Section II we
present some standard graph theoretic concepts used to model
information architectures in vehicle formations and sensor
networks. We focus on describing the properties of rigidity
and global rigidity. In Section III we formally define the
closing ranks problem. We review previous results and then
present our new results, which are methods to solve the
closing ranks problem in vehicle formations and sensor
networks in a decentralized way. In Section IV we discuss
implementation and illustrate the new results with algorithms
and examples. Finally, Section V provides summarizing and
concluding remarks and identifies a few possible problems
for future consideration.

II. BACKGROUND
In this section, we summarize the graph theoretic concepts

used to model information architectures in vehicle formations
and sensor networks. We describe rigidity and global rigidity,
which are graph theoretic properties required to perform for-
mation shape maintenance and self-localization, respectively.

A. Rigid Graph Theory
A fundamental task for vehicle formations is maintain-

ing some prescribed geometric shape. Drawing from long-
standing traditions in structural engineering and combina-
torics (see e.g. [12] and references therein), rigid graph theory
has been recently introduced in [1], [2], [3] as a means for
describing the information architecture required to maintain
formation shape.

A graph G(V,E), where V is a set of vertices and E ⊆
V ×V is a set of edges, provides a useful high-level model of

the information architecture. We begin by formally defining a
formation F(G, p) as a graph G along with a mapping p :V →
ℜd|V | that assigns to each vertex a position in d-dimensional
Euclidean space. Each agent is abstracted as a vertex in the
graph. An edge is present between two vertices in the graph,
or equivalently a link is present in the formation, whenever
there is active maintenance of the Euclidean distance between
the two agents. If a vertex v j is connected by an edge to vi, we
call v j a neighbour of vi. The distance is maintained using
a control law to govern the motion of one or both agents.
Obviously, some appropriate quantities must be sensed for
use in controlling distances to neighbours. Specifically, in
virtually all formation control algorithms based on distance
maintenance, each agent needs to sense relative positions to
its neighbours in an arbitrary local coordinate basis. This
involves sensing both distances to neighbours and angles
to neighbours from some local reference. Alternatively, one
could sense distances to neighbours and distances between
pairs of neighbours and use the cosine law to obtain the
appropriate angles.

Roughly speaking, a rigid formation is one that preserves
its shape during a smooth motion, i.e. the distance between
every pair of agents remains constant. Consider the function
f : ℜd|V | → ℜ|E| defined by

f (p) = [..., ||(pi − p j)||2, ...] (1)

where the kth entry of f corresponds to the squared distance
between vertices i and j when they are connected by an edge.
Now, suppose the formation moves but f (p) stays constant,
i.e. the edges in E correspond to links where distance is
preserved. Then expanding f (p) about the constant value in
a Taylor series and ignoring higher order terms, we obtain

Jf (p)δ p = 0 (2)

where δ p is an infinitesimal perturbation of the formation,
and Jf (p) is the Jacobian of f . This Jacobian is known as
the rigidity matrix R(p). Equivalently,

Jf (p)ṗ = 0 (3)

for a formation undergoing smooth motion. When the forma-
tion is rigid, the only permissible smooth motions are trans-
lation or rotation of the whole formation. In d dimensions,
this accounts for (1/2)d(d +1) linearly independent vectors.
Thus the kernel of Jf (p) has dimension (1/2)d(d +1). This
leads us to the following linear algebraic characterization of
rigidity:

Theorem 1: A formation F(G, p) is rigid1 if and only if
rank[R(p)] = d|V |−d(d +1)/2, which is the maximum rank
R(p) can have.

Because the rigidity matrix is a Jacobian of a rational
function, it has the same rank for all points but a set of

1Actually, the term infinitesimally rigid is sometimes used. See [12] for
further discussion of different rigidity concepts.
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measure zero (via a nontrivial result of Sard [14]), corre-
sponding to special vertex configurations (e.g. a set of agents
are collinear or occupy the same point) that cause the rank
deficiency. This leads to the notion of generic rigidity. For
generic configurations (when the special configurations are
precluded), information about formation rigidity is contained
in the graph, allowing for the drawing of a purely combi-
natorial consequence of rigidity. The following theorem is
presented as the “Necessary Counts Theorem” in [15]:

Theorem 2: If a graph G(V,E) in ℜd is rigid, then there
exists a subset E ′ of edges such that the induced subgraph
G′(V,E ′) satisfies the following:

• |E ′| = d|V |−d(d +1)/2
• Any subgraph G′′(V ′′,E ′′) of G′ with at least d vertices

satisfies |E ′′|≤ d|V ′′|−d(d +1)/2.
A graph is called minimally rigid if it is rigid and there

exists no rigid graph with the same number of vertices
and a smaller number of edges. Equivalently, a graph is
minimally rigid if removing any edge results in loss of
rigidity. Intuitively, a minimally rigid graph on a prescribed
vertex set must have a minimum number of edges, and the
edges must be properly distributed. The set of basis edges
corresponding to E ′ in Theorem 2 are called independent.
An edge added to a graph is called dependent whenever
the addition results in a subgraph that violates the second
condition in Theorem 2. Equivalently, an edge is called
dependent when the corresponding row of the rigidity matrix
associated with a generic formation connected with the graph
is linearly dependent on rows of the matrix present before
addition of the edge. When a graph remains rigid after
removing any edge, it is called redundantly rigid.

In the plane, we have a complete characterization of
rigidity due to Laman [16]. In particular, the conditions
given in Theorem 2 are both necessary and sufficient for
rigidity. Further, there is a set of two basic operations,
called Henneberg operations, that allow one to “grow” every
minimally rigid graph in the plane from the complete graph
on two vertices [17], [12]. Let j and k be two distinct
vertices of a minimally rigid graph G(V,E). A vertex addition
operation involves adding a vertex i and edges i j and ik. Let
x, y, and z be three distinct vertices of a minimally rigid graph
with edge xy. An edge splitting operation involves removing
xy and adding a vertex w and edges wx,wy,wz. The operations
are illustrated in Figure 1.

A fundamental task for sensor networks is to determine
uniquely the position of each agent from knowledge of
certain inter-agent distances and the positions of a small
number of agents. This task is related to a further concept
called global rigidity. A graph is called globally rigid if two
formations having the same inter-agent distances differ at
most by translation, rotation, and reflection. In [8], Aspnes
et al show that global rigidity is required for unique self-
localization in sensor networks (and when the positions of
any three non-collinear agents are known, global rigidity is
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Fig. 1. Representation of (a) vertex addition operation (b) edge splitting
operation.

sufficient for localizability of every agent). In [18], Jackson
and Jordan prove a conjecture posed by Hendrickson in [19]
that provides a complete characterization of global rigidity
in the plane. The result is as follows:

Theorem 3: A graph G(V,E) in the plane is globally rigid
if and only if it is 3-connected and redundantly rigid.

A graph is called minimally globally rigid if it is globally
rigid and there exists no globally rigid graph with the same
number of vertices and a smaller number of edges, or equiva-
lently, if removing any edge results in loss of global rigidity.
Similarly, the edge splitting operation described above can
be used to “grow” all minimally globally rigid graphs from
the complete graph on four vertices.

We are interested recovering rigidity or global rigidity so
that formation shape maintenance or self-localization can be
performed even in the event of agent loss.

III. DECENTRALIZED CLOSING RANKS
In this section, we describe the closing ranks problem and

show that while previous results permit local repair of the
information architecture involving only neighbours of the
lost agent, the repair cannot always be implemented using
only local information. We then introduce new results that
can be implemented in a decentralized way, using only local
information. The new results permit decentralized recovery
of both rigidity and global rigidity for vehicle formations and
sensor networks in two dimensions.

A. The Closing Ranks Problem
The closing ranks problem is the problem of determining

new sensing/communication links in the event of an agent
loss to recover rigidity or global rigidity [11]. Consider a rigid
(globally rigid) graph G(V,E) which is the underlying graph
of a formation in real d-dimensional space. Let vi denote
a vertex in V , and let Ei denote the set of edges incident
to vi. Now suppose that vi and Ei are removed from G and
denote the resulting graph G∗(V ∗,E∗), where V ∗ =V \vi and
E∗ = E \Ei. The closing ranks problem is to determine the
new edges Enew to add to G∗ such that the resulting graph
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(a) (b)
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Fig. 2. Illustration of Closing Ranks: (a) original rigid formation (b) a
vertex and incident edges are removed (c) the minimum number of new
edges necessary for Theorem 2 are added to regain rigidity. It is sufficient
to add edges to neighbours of the lost vertex.

G′(V ∗,E∗ ∪Enew) is rigid (globally rigid). We call a solution
a rigid cover (globally rigid cover). A minimal cover is one
where |Enew| is minimum. A minimal cover for a closing
ranks problem is illustrated in Figure 2.

We desire the cover to be decentralized, which encom-
passes two properties: (1) local repair involving only neigh-
bours of the lost agent, and (2) designing the repair, i.e.
determining which agent pairs acquire an edge between them,
using only local information. Local repair is provided by the
following result from [12]:

Theorem 4: Let G be a minimally rigid graph with a vertex
vi of degree k. Then there exists at least one set of k−2 edges
among the neighbours of vi such that a minimally rigid graph
is obtained by removing vi and its incident edges and adding
the set of k−2 edges.

Thus, it is sufficient to add edges only between neighbours
of the lost agent to recover rigidity. However, the difficulty in
applying this theorem is to select the k−2 edges. If though
we drop the requirement for minimality, one straightforward
solution to the closing ranks problem is a complete cover:
simply add every possible edge between neighbours of the
lost vertex. Thus, if a vertex of degree k is lost, then k(k−
1)/2 edges are added (O(k2)). This may be significantly more
than the necessary k−2 edges for vertices of large degree.

It turns out that the minimal cover cannot always be
implemented using only local information. The systematic
method presented in [11] to determine a minimal cover
may involve decomposing the entire graph, which uses an
inherently global perspective. Indeed, when adding only the
minimal number of required edges, one must ensure that
each added edge is independent. To identify whether a
proposed new edge will be independent or not, one must
check whether or not there is a minimally rigid subgraph
containing the two vertices on which the proposed new edge
will be incident. A simple observation shows that generally
such a minimally rigid subgraph may be arbitrarily large,
and thus looking for it is not a procedure that involves just
local operations; given a minimally rigid subgraph on three
or more vertices, the edge splitting operation may always
be used to increase indefinitely the size of the minimally
rigid subgraph. This is illustrated in Figure 3. Further, when

(a) (b)

(c) (d)

Fig. 3. Edge splitting creates edge dependency between the highlighted ver-
tices. Repeatedly applying edge splitting increases the size of the dependent
subgraph.

checking for edge independence, there is no way to know a
priori which subgraph to check, and consequently, one may
end up checking the entire graph.

For large formations, it is crucial to be able to implement
a closing ranks solution in a decentralized way. There is
an inherent conflict between the desire to add a minimum
number of new edges and the constraint of using only local
information. Thus, we will seek a decentralized cover that is
sub-optimal in the sense that we may have to add more than
the minimum number of required new edges.

B. Decentralized Rigidity Recovery
We have seen from Theorem 4 that there exists a rigid

cover among neighbours of the lost vertex. We now present
a substitution principle for rigid graphs, originally introduced
in [13].

Theorem 5: Given a rigid graph G(V,E) in d-dimensional
space, if for any vertex subset V ′ the induced subgraph
G′(V ′,E ′) is replaced with a minimally rigid graph Ḡ(V ′, Ē)
on those vertices (V ′), then the modified graph G̃(V, Ẽ) where
Ẽ = (E \E ′)∪ Ē is also a rigid graph in d-dimensional space.

Here, G corresponds to a graph that has lost a vertex
and has been repaired via the method from [11], and V ′

corresponds to the former neighbours of the lost vertex.
Theorem 5 shows that implementing a minimally rigid sub-
graph, which we refer to as a minimally rigid patch (Ḡ in
the theorem), on the former neighbours of a lost vertex will
recover rigidity. It is not necessary to first make the repair
via the method from [11]; one can immediately implement
the minimally rigid patch. The requirement of a minimally
rigid patch is only to reduce the number of new edges added;
the theorem is equally valid with a rigid patch. Effectively,
every minimally rigid patch contains at least one cover
which recovers rigidity. Note that the theorem is valid in
any dimension. The following proposition provides a way to
implement such a patch in 2 dimensions.

Proposition 1: In 2 dimensions, the following “Double
Patch” implemented on the neighbours of a lost vertex is
a rigid cover for the closing ranks problem.

• Double Patch: Choose two vertices among the neigh-
bours of the lost vertex to serve as “coordinators” and
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Fig. 4. Illustration of the Double Patch: The two highlighted vertices serve
as coordinators to which every other vertex is connected.

(a) (b)

(c)

Fig. 5. Utilizing existing cover edges with the Double Patch: (a) the lost
vertex has degree 6, (b) edges exist among neighbours of the lost vertex, (c)
coordinators for the Double Patch are chosen to utilize these existing edges,
and 4 new edges are added - a minimal cover.

connect them with an edge. Then add edges between
every other neighbour and the coordinators.

The Double Patch is illustrated in Figure 4. This process
creates a particular minimally rigid graph on the neighbours
of the lost vertex. We are stacking together triangles with a
common base edge, which is a rigid structure. Equivalently,
we start with a complete graph on the coordinators, and
the remaining vertices are added via the vertex addition
operation, which is a rigid structure. The choice of the two
coordinators is arbitrary and the structure does not depend on
the rest of the graph. Thus, the patch can be created using
only local information.

When a vertex of degree k is lost, we are adding 2k− 3
edges using the minimally rigid patch. Although we add more
edges than with the minimal cover (where k− 2 edges are
added), the number of added edges is still linear in the lost
vertex degree, as opposed to quadratic for a complete cover.

By appropriate choice of coordinators, one could utilize
existing edges among neighbours of the lost vertex, which
we call existing cover edges, to minimize the number of new
added edges. Simple counting arguments can be used to show
that there could be up to k−1 existing cover edges. In fact,
there are certain scenarios in which one adds 2k− 3− (k−
1) = k− 2 new edges, utilizing the existing cover edges to
obtain a minimal cover. This scenario is illustrated in Figure
5.

Remark 1: One might ask whether a “single patch” is suf-
ficient to recover rigidity. That is, could one chose only one
vertex among neighbours of the lost vertex as a coordinator?
In this case, we add k− 1 edges - i.e. potentially only one
more edge than for a minimal cover. Simulations support the
conjecture that there always exists at least one vertex among
neighbours of the lost vertex on which a single patch works.

Fig. 6. Single Patch Counterexample. The two dependent edges cause the
single patch to fail.

In fact, it has recently asserted to us that in 2 dimensions
there are two such vertices. However, we are again faced
with the task of choosing the appropriate vertex; once again,
local information will not suffice to effect the choice. The
counterexample in Figure 6 shows a case where a vertex
with no existing cover edges fails using a single patch even
though k − 1 new edges are added. Ultimately, the single
patch repair approach fails to be decentralized for the same
reason as the minimal cover - one must resort to possibly non-
local checking of each new edge for dependency in order to
choose the appropriate vertex.

C. Decentralized Global Rigidity Recovery

The ideas discussed above for recovering rigidity can
also be applied to recovering global rigidity. The following
theorem extends the substitution principle to globally rigid
graphs.

Theorem 6: Given a globally rigid graph G(V,E) in d-
dimensional space, if any subgraph G′(V ′,E ′) is replaced
with a globally rigid graph on those vertices (V ′), then the
modified graph is also a globally rigid graph in d-dimensional
space.
Proof.2 Assume formation F(G, p) is globally rigid, and
G′(p) is created by the substitution of a globally rigid forma-
tion F ′(p) for a sub-formation F(p) in G(p). By Theorem
5, G′(p) is certainly rigid. If G′(p) is not globally rigid,
then there is a second realization, i.e. formation whose edge
lengths equal those of G′(p), G′(q) which is not congruent.
There is a pair of vertices (i, j) for which the corresponding
inter-agent distance is different for G′(p) and G′(q). By
assumption on F ′, F ′(p) must be congruent to F ′(q). So
i, j cannot both be in F ′ (or F). If we now replace F ′(q)
with F(q) (which will also be congruent to F(p)) then we
will have G(p) and G(q) with all edge lengths the same, but
not congruent, This contradicts the original assumption that
G(p) was globally rigid.

Theorem 6 shows that placing a globally rigid subgraph,
which we refer to as a globally rigid patch, on neighbours of
the lost vertex will recover global rigidity. Again, the theorem
is valid in any dimension. Proposition 2 provides a way to
implement such a patch in 2 dimensions.

2Thanks to Professor Walter Whiteley for his help in contributing this
proof.
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Fig. 7. Illustration of the Wheel Patch: the highlighted vertex serves as the
coordinator and connects to every other vertex in the cycle.

Proposition 2: In 2 dimensions, the following “Wheel
Patch” implemented on the neighbours of a lost agent is a
globally rigid cover for the closing ranks problem.

• Wheel Patch: Choose one vertex among the neighbours
of the lost agent to serve as “coordinator” and connect
it with every other neighbour of the lost agent. Then
create a cycle among the neighbours that excluding the
coordinator.

The Wheel Patch is illustrated in Figure 7. This process
creates a wheel graph on the neighbours of the lost agent,
which is a particular minimally globally rigid graph. A wheel
graph on n vertices is a graph that contains a single vertex
(the “hub”) connected to all vertices of an (n−1)-cycle. The
choice of hub or coordinator is arbitrary and the structure
does not depend on the rest of the graph. Thus, the patch
can be created using only local information. Again, the
coordinator can be chosen to minimize the number of new
edges added.

Remark 2: These results allow decentralized recovery of
rigidity or global rigidity while adding only O(k) edges
(rather than O(k2) for a complete cover). One might argue
that if minimum vertex degree is large, then connectivity
is large, which may lead to redundant rigidity for vertex
loss. However, we must distinguish minimum vertex degree,
connectivity, and rigidity. In particular, there are graphs
with large minimum vertex degree which are neither highly
connected nor redundantly rigid.

IV. IMPLEMENTATION

In this section, we describe implementation of our de-
centralized closing ranks solutions and illustrate with ex-
amples. An explicit discussion of underlying assumptions
is worthwhile. First, we assume that neighbours of a lost
agent recognize the loss immediately. That is, we are not
dealing with the separate problem of determining whether
agent loss has occurred. Agent loss could occur when an
agent has been deployed for another task, or in the event of
agent failure. There are in principle many different ways in
which an agent could fail, from complete loss of an entire
agent (e.g. a UAV crashes) to failure of a single sensor,
actuator, or communication link. Of course, recognizing
various failure modes is an important consideration for actual
implementation, but here we use a “vaporize” agent failure
model (that is, regard any failure as complete loss of agent)

and assume neighbour agents immediately recognize the loss.
Second, we assume that each agent has a unique ID. This
is necessary so that the agents can distinguish amongst one
another when determining which new links to add.

At each agent store the following local information: a
list of links for all neighbours and 2-hop neighbours. This
information is local in the sense that it is independent of the
size of the formation or sensor network. Since all neighbours
of a lost agent will be at most 2-hop neighbours of one
another, they each can search the aforementioned list of links
to form the subgraph involving all neighbours of the lost
agent and existing cover edges. From this subgraph, each
neighbour of the lost agent can choose coordinators and
determine the new links to add in order to implement one
of the patches discussed previously. This can be done in
two ways: (1) choose coordinator(s) based on agent ID (e.g.
agents with lowest two IDs are coordinators for the double
patch), or (2) choose coordinator(s) to minimize number
of links added. For the wheel patch, the cycle can also
be created using agent ID. Then, the agents establish the
appropriate links to recover rigidity or global rigidity. The
process is captured in the following algorithms (using agent
ID to choose coordinators and cycle order) and illustrated in
Figures 8 and 9.

Remark 3: Establishing an link between two agents ef-
fectively requires the ability of each agent to sense IDs.
Existence of a link between two agents means that the agents
actively maintain the Euclidean distance constant. As noted
before, this involves sensing relative position. Any given
agent will have multiple links to maintain and may also have
other non-neighbour agents within its sensing range. For each
particular link, each agent must be able to distinguish ID
through sensing amongst other agents in its sensing range in
order to adjust its distance to the appropriate agent.

if agent fails then
for neighbours of lost agent do

n = get(lost agent neighbours);
coordinator1 = minID(n);
coordinator2 = secondMinID(n);
if I am a coordinator then

establish links w/ all n;
else

establish links w/ coordinators;
end

end
end

Algorithm 1: Double Patch

V. CONCLUDING REMARKS
In summary, we have presented decentralized solutions for

the closing ranks problem in vehicle formations and sensor
networks. The results can be used for self-repair in formations
and sensor networks in the event of agent loss. We reviewed
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Fig. 8. Double Patch: (a) rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss, (c) coordinators 1 and 2 are chosen via
minimum agent ID and links established.

if agent fails then
for neighbours of lost agent do

n = get(lost agent neighbours);
coordinator = minID(n);
cycle = orderID(n\coordinator);
m = getCycleNeighbours(cycle);
if I am coordinator then

establish links w/ all n;
else

establish links w/ coordinator & m;
end

end
end

Algorithm 2: Wheel Patch
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Fig. 9. Wheel Patch: (a) globally rigid formation with agent IDs, (b) agent 0
fails, neighbours recognize the loss, (c) coordinator 1 is chosen via minimum
agent ID, cycle formed via agent ID ordering, and links established.

rigid graph theoretic ideas that have been used as high-
level models for information architectures. We described an
existing solution (the minimal cover) and showed that while
repair can be made among neighbours of the lost agent,
it cannot be implemented using only local information. By
contrast, our solutions are decentralized in two senses: (1)
the repair involves only neighbours of the lost agent, and
(2) the repair requires only local information, independent of
formation size. We described implementation of the results
and illustrated with examples.

The ideas in this paper could be extended in several
directions. First, as noted previously, another way to deal with
losing an agent is to robustify the formation or sensor network
a priori by adding certain redundant edges. Suppose, one
could obtain this level of robustness; could the closing ranks
and patch ideas presented here be used to reestablish the
property of redundant rigidity? One could also consider the

problem of determining when an agent has failed and how the
strategy might change if the failure was just a single sensor
or actuator. Finally, one could investigate how the patch ideas
presented here relate to how properties such as rigidity and
global rigidity could be checked in a decentralized way.
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