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Abstract—This paper addresses the n-agent formation shape
maintenance problem in the plane. We consider a class of
directed information architectures associated with so called
minimally persistent coleader formations. The formation shape
is specified by certain interagent distances. Only one agent is
responsible for maintaining each distance. We propose a control
law where each agent executes its control using only the relative
position measurements of agents it must maintain its distance
to. The resulting nonlinear closed-loop system has a manifold of
equilibria; thus the linearized system is nonhyperbolic. We apply
center manifold theory to show local exponential stability of the
desired formation shape that circumvents the non-compactness of
the equilibrium manifold. Choosing stabilizing gains is possible
if a certain submatrix of the rigidity matrix has all leading
principal minors nonzero, and we show that this condition holds
for all minimally persistent coleader formations with generic
agent positions.

I. INTRODUCTION

Much attention has been given recently to control of au-

tonomous vehicle formations and mobile sensor networks due

to many promising scientific and engineering applications. Ap-

plications include teams of UAVs performing military recon-

naissance and surveillance missions in hostile environments,

satellite formations for high-resolution Earth and deep space

imaging, and submarine swarms for oceanic exploration and

mapping. For large formations, an overarching requirement

is decentralized implementation, where each agent operates

using only local information.

Precisely controlled formations can maintain a network of

mobile sensing agents in an optimal sensing configuration. In

this paper, we consider the n-agent formation shape main-

tenance problem. The objective is to design decentralized

motion control laws for each agent so that the agents cooper-

atively and autonomously restore the desired formation shape

in the presence of small perturbations from the desired shape.

Formation shape is restored by actively controlling a certain

set of interagent distances.

We utilize information architectures as a basis for designing

control laws that allow decentralized implementation of the
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formation shape control task. The state information exchange

architecture is directed and decentralized in that: (a) only

one agent is responsible for maintaining a given interagent

distance, (b) each agent executes its control law using only

its position information relative to the agents with which it

is responsible for maintaining its distance. In [1], Yu et al

present decentralized nonlinear control laws for a minimally

persistent leader-first-follower (LFF) formation with cycles in

the associated directed graph to restore formation shape in the

presence of small distortions from the desired shape. They

show that choosing stabilizing control gains is possible if a

certain submatrix of the rigidity matrix has all leading princi-

pal minors nonzero and further prove that all minimally per-

sistent LFF formations generically obey this principal minor

condition. In [2], Krick et al present decentralized gradient-

based control laws for a minimally rigid formation (with

undirected information architecture, i.e. a setting where each

distance must be maintained by both the agents associated

with it) to restore formation shape in the presence of small

distortions from the desired shape. Since the linearized system

is nonhyperbolic, they utilize center manifold theory to prove

local exponential stability.

In this paper, we consider formations in the plane with

minimally persistent coleader structure. We present decen-

tralized nonlinear control laws in the sense described above

and analogous to [1]. The nonlinear closed-loop system has

a manifold of equilibria, which implies that the linearized

system is nonhyperbolic. We apply center manifold theory

to show local exponential stability of the desired formation

shape; a key challenge of the argument, in contrast to that of

[2], is to circumvent the non-compactness of the equilibrium

manifold. Again, it becomes possible to choose stabilizing

control gains whenever a certain submatrix of the rigidity

matrix has all leading principal minors nonzero, and we show

that this condition holds for all coleader formations.

The paper is organized as follows. Section II presents back-

ground on the structure of minimally persistent formations

and center manifold theory. In Section III, we describe the

nonlinear equations of motion and show how center manifold

theory can be applied to show local exponential stability of the

desired formation shape. In Section IV we show that the prin-

cipal minor condition holds for coleader formations. Section

V gives concluding remarks and future research directions.

II. BACKGROUND

In this section, we review (1) the structure of information

architectures for minimally persistent formations, and (2) cen-

ter manifold theory, which offers tools for analyzing stability

of dynamical systems near nonhyperbolic equilibrium points.
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A. Minimally Persistent Formations

We model the information architecture as a graph G(V,E)
where V is a set of vertices representing agents and E is a

set of edges representing the set of interagent distances to be

actively controlled to maintain formation shape. We assign the

task of controlling a particular interagent distance to only one

of the involved agents, which results in a directed information

architecture (as opposed to assigning it to both agents which

results in an undirected information architecture). In this case,

G is a directed graph where a direction is assigned to every

edge in E with an outward arrow from the agent responsible

for controlling the interagent distance. In order to maintain

formation shape, G is required to be persistent. Let F (G, p)
denote a formation of n agents in the plane where G(V,E)
is a directed graph and p : V → ℜ2n is a position function

which maps each vertex to a position in the plane. A formation

is called minimally persistent if the information architecture

G is minimally persistent, and G is minimally persistent if

it is minimally rigid and constraint consistent. A minimally

rigid graph on n vertices has 2n − 3 edges which are well-

distributed according to Laman’s Theorem [3]. A constraint

consistent graph precludes certain directed information flow

patterns that make it impossible to control formation shape.

See [4] and [5] for a thorough treatment of persistence. For

the purposes of this paper it suffices to note the following

Theorem 1. A graph G(V,E) is minimally persistent iff the

following hold: ∣E∣ = 2∣V ∣ − 3, for any subgraph G(V ′, E′)
there holds ∣E′∣ ≤ 2∣V ′∣ − 3, and no vertex has more than

two outgoing edges.

This means in particular that one of the following hap-

pens for minimally persistent formations. Type (A) [Coleader

formations]: As in the coleader case of this paper three

agents (known as coleaders), have one outgoing edge each

and all others (known as ordinary followers), have exactly

two such edges each. Type (B) [Leader-First-Follower (LFF)

formations]: One agent known as the leader has no outgoing

edge, another known as the first follower has one out going

edge to the leader, and the remaining, ordinary followers have

two outgoing edges each. Type (C) [Leader-Remote-Follower

(LRF) formations]: One agent known as the leader has no

outgoing edge, another known as the remote follower has one

out going edge to a agent other than the leader, and the remain-

ing ordinary followers have two outgoing edges each. In this

paper, we consider a minimally persistent formation of type

(A) and call it a coleader formation. Figure 1 illustrates several

examples of coleader formations with differing information

flow patterns and coleader connectivity.

The distinction between LFF and coleader formations is

important in the stability analysis for the formation shape

maintenance control laws. In particular, for LFF formations

it is possible to define a global coordinate basis to obtain a

hyperbolic reduced-order system in which local stability can

be ascertained via eigenvalue analysis of the linearized system

(see [1]). The device used in [1] to obtain a global coordinate

system that provides a hyperbolic reduced-order system does

(a) (b) (c) 

(d) (e) 

indicates coleader 

Fig. 1. Examples of coleader formations with connected coleaders: (a) cyclic
coleaders, (b) inline coleaders, (c) v-coleaders. Examples of coleader forma-
tions with non-connected coleaders: (d) one-two coleaders, (e) distributed
coleaders. Each coleader has only one interagent distance to maintain and so
has only one outgoing arrow.

not apply for coleader formations. Consequently, one cannot

draw conclusions about the local stability of the nonlinear

system near the desired formation shape by analyzing the

linearized system alone; more sophisticated techniques are

needed. Center manifold theory provides tools for determining

stability near nonhyperbolic equilibrium points.

B. Center Manifold Theory

Standard treatments of center manifold theory can be found

in e.g [6]–[8]. These concentrate on isolated equilibria. In the

formation shape maintenance problem, the dynamic system

has a manifold of non-isolated equilibrium points correspond-

ing to the desired formation shape that for the coleader case

is not even compact. In [9], Malkin proves a local stability

result where trajectories converge to a point on an equilibrium

manifold. More general results for equilibrium manifolds are

presented by Aulbach in [10]. In [2], Krick emphasizes the

importance of compactness for proving stability of the entire

equilibrium manifold. Here, we state a result for stability of

equilibrium manifolds that sidesteps the issue of compactness,

and offer a concise proof using center manifold theory.

Consider the nonlinear autonomous dynamic system

ẋ = f(x), x ∈ ℜn (1)

where the function f is C
r, r ≥ 2 almost everywhere

including a neighborhood of the origin.. Suppose the origin

is an equilibrium point and that the Jacobian of f (we will

use the notation Jf (x)) at the origin has m eigenvalues with

zero real part and n−m eigenvalues with negative real part.

Then (1) can be transformed into the following form

�̇ = Ac� + g1(�, �)

�̇ = As�+ g2(�, �) (�, �) ∈ ℜm ×ℜn−m (2)

where Ac is a matrix having eigenvalues with zero real parts,

As is a matrix having eigenvalues with negative real parts, and

the functions g1 and g2 satisfy

g1(0, 0) = 0, Jg1(0, 0) = 0

g2(0, 0) = 0, Jg2(0, 0) = 0. (3)
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Definition 1. An invariant manifold is called a center mani-

fold for (2) if it can be locally represented as follows

W c(0) = {(�, �) ∈ U ⊂ ℜm ×ℜn−m∣� = ℎ(�)} (4)

for some sufficiently small neighbourhood of the origin U

where the function ℎ satisfies ℎ(0) = 0 and Jℎ(0) = 0.

We have the following standard result.

Theorem 2 ( [8]). Consider (2) where Ac has eigenvalues

with zero real part, As has eigenvalues with negative real part,

and g1 and g2 satisfy (3). There exists a C
r center manifold

for (2) with local representation function ℎ : ℜm → ℜn−m.

The dynamics of (2) restricted to any such center manifold is

given by the following m-dimensional nonlinear system for �

sufficiently small

�̇ = Ac� + g1(�, ℎ(�)), � ∈ ℜm. (5)

If the origin of (5) is stable (asymptotically stable) (unstable),

then the origin of (2) is stable (asymptotically stable) (unsta-

ble). Suppose the origin of (5) is stable. Then if (�(t), �(t)) is

a solution of (2) for sufficiently small (�(0), �(0)), there is a

solution �(t) of (5) such that as t→∞

�(t) = �(t) +O(e−
t)

�(t) = ℎ(�(t)) +O(e−
t) (6)

where 
 is a positive constant.

This result show that in order to determine stability near

the nonhyperbolic equilibrium point of (1), one can analyze

a reduced-order system, viz. (5). If the origin of the reduced-

order system (5) is stable, then the solutions of the original

system converge exponentially to a trajectory on the center

manifold.

We have the following result when there is a manifold

of equilibria. The proof is omitted due to space limitations

and will be included in a forthcoming journal version [11].

Observe that although the theorem postulates and proves the

existence of a center manifold, it makes no explicit compact-

ness assumptions.

Theorem 3. Consider (1) with f ∈ C
r, r ≥ 2 almost

everywhere including a neighbourhood of the origin. Suppose

there is a smooth m-dimensional (m > 0) manifold of

equilibrium points M1 = {x ∈ ℜn∣f(x) = 0} for (1) that

contains the origin. Suppose at the origin the Jacobian of f

has m eigenvalues with zero real part and n−m eigenvalues

with negative real part. Then

∙ M1 is a center manifold for (1).

∙ There are neighborhoods Ω1 and Ω2 of the origin such

that M2 = Ω2 ∩M1 is locally exponentially stable1 and

for each x(0) ∈ Ω1 there is a point q ∈ M2 such that

limt→∞x(t) = q.

1Saying that M2 is locally exponentially stable means that there is a single
exponent 
 such that all trajectories converge to M2 from the neighbourhood
Ω1 at least as fast as e−
t.

In the formation shape maintenance problem, the manifold

of equilibria will correspond to formation positions with the

desired shape. In the plane, the manifold is three-dimensional

due to the three possible Euclidean motions of the formation

in the plane (two translational and one rotational). In the next

section, we show how the results in this section can be applied

to prove local exponential stability of the desired formation

shape.

III. EQUATIONS OF MOTION

In this section, we present equations of motion for the

formation shape maintenance problem and study the local

stability properties of the desired formation shape. Suppose

the formation is initially in the desired shape. Then the

position of each agent is perturbed by a small amount and

all agents move under distance control laws to meet their

distance specifications in order to restore the desired formation

shape. This shape is realized by every point on a three-

dimensional equilibrium manifold. Even though the manifold

is not compact, a direct application of Theorem 3 proves local

exponential convergence to the invariant manifold.

A. Nonlinear Equations of Motion

Consider a minimally persistent formation F (G, p) of n

agents in the plane where the coleaders are agents n − 2,

n− 1, and n. We define the rigidity function

r(p) = [..., ∣∣pj − pk∣∣
2, ...]T (7)

where the itℎ entry of r, viz. ∣∣pj − pk∣∣
2, corresponds to

an edge ei ∈ E connecting two vertices j and k. Let

d = [..., d∗2jk, ...] represent a vector of the squares of the

desired distances corresponding to each edge. We assume that

there exist agent positions p such that p = r−1(d), i.e. the

set of desired interagent distances corresponds to a realizable

formation. Formation shape is controlled by controlling the

interagent distance corresponding to each edge.

Following [1] and [2], we adopt a single integrator model

for each agent:

ṗi = ui. (8)

Consider an ordinary follower agent denoted by i that is

required to maintain constant distances d∗ij and d∗ik from

agents j and k, respectively, and can measure the instantaneous

relative positions of these agents. We use the same law as in

[1] for the ordinary followers (i = 1, ..., n− 3):

ui = Ki(p
∗

i − pi) = Kifi(pj − pi, pk − pi, d
∗

ij , d
∗

ik) (9)

where Ki is a gain matrix and p∗i is the instantaneous target

position for agent i in which the distances from agents j and

k are correct. Since the perturbations from the desired shape

are small, the instantaneous target positions are well-defined.

For the coleaders (i = n− 2, n− 1, n), we have

ui = Ki(p
∗

i − pi)

= Ki

∣∣pj − pi∣∣ − d∗ij

∣∣pj − pi∣∣
(pj − pi) (10)
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where Ki is a gain matrix and agent j is the agent from which

coleader i is maintaining the constant distance d∗ij .

Equations (9) and (10) represent the dynamics of the

autonomous closed-loop system, which may be written in the

form

ṗ = f(p) (11)

where f : ℜ2n → ℜ2n.

There is a manifold of equilibria for (11) given by

Ψ = {p ∈ ℜ2n∣p = r−1(d)} (12)

corresponding to formations where all distance constraints

are satisfied. The manifold Ψ is three-dimensional because a

formation with correct distances has three degrees of freedom

associated with the planar Euclidean motions (two for trans-

lation and one for rotation). Given these degrees of freedom,

it is evident that Ψ is not compact.

B. Linearized Equations

We represent the position of the formation as p(t) = �p(t)+
p̄, where p̄ is any equilibrium position with desired shape close

to the perturbed formation, and the displacements �p(t) are

assumed to be small. In particular, for agent i we have pi(t) =
�pi(t) + p̄i where p̄i corresponds to the position of agent i

that meet its distance constraints. Let pi(t) = [xi(t), yi(t)]
T ,

p̄i = [x̄i, ȳi]
T , and �pi(t) = [�xi(t), �yi(t)]

T in an arbitrary

global coordinate system.

From [1], the linearized equation for the ordinary followers

(i = 1, ..., n− 3) is given by

[

�̇xi

�̇yi

]

= KiR
−1
ei Rij,ik

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�xi

�yi
�xj

�yj
�xk

�yk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(13)

where Ki is a 2× 2 gain matrix,

Rei =

[

(p̄j − p̄i)
T

(p̄k − p̄i)
T

]

and

Rij,ik =

[

(p̄i − p̄j)
T (p̄j − p̄i)

T 0
(p̄i − p̄k)

T 0 (p̄k − p̄i)
T

]

.

Similarly, the linearized equation for the coleaders (i =
n− 2, n− 1, n) is given by

[

�̇xi

�̇yi

]

= KiR
−1
ei Rij,00

⎡

⎢

⎢

⎣

�xi

�yi
�xj

�yj

⎤

⎥

⎥

⎦

(14)

where Ki is a 2× 2 gain matrix,

Rei =

[

x̄j − x̄i ȳj − ȳi
ȳi − ȳj x̄j − x̄i

]

and

Rij,00 =

[

(p̄i − p̄j)
T (p̄j − p̄i)

T

0 0

]

.

Putting the equations together, we have

�̇p = KR−1
e

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

R1,n−3

rn−2

0
rn−1

0
rn
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�p (15)

where K = diag[K1, ...,Kn] is a block diagonal gain

matrix with each block of size 2 × 2 to be specified,

Re = diag[Re1, ..., Ren] is a block diagonal matrix with each

block being a 2 × 2 submatrix of the rigidity matrix, and

[RT
1,n−3, r

T
n−2, r

T
n−1, r

T
n ]

T ∈ ℜ2n−3×2n is the rigidity matrix.

For a graph theoretic introduction to the rigidity matrix, see

e.g. [12]; for examples of its application to formation control,

see e.g. [1] and [2].

Expanding in a Taylor series about an equilibrium position,

we can express (11) in the form

�̇p = Jf (p̄)�p+ g(�p) (16)

where the first term represents the linearized system given by

(15) and the second term represents the nonlinear part of order

two or higher. The Jacobian Jf (p̄) is rank deficient by three

because of the three rows of zeros; consequently, three of its

eigenvalues are zero. Thus the equilibrium position is non-

hyperbolic, and we can seek to apply center manifold theory

as developed in Section II to determine local stability of the

equilibrium position. Since Jf (p̄) has three zero eigenvalues,

there exists an invertible matrix Q such that

QJf (p̄)Q
−1 =

[

0 0
0 As

]

. (17)

where As ∈ ℜ2n−3×2n−3 is a nonsingular matrix. Let

[�, �]T = Q�p where � ∈ ℜ3 and � ∈ ℜ2n−3. Then (16)

can be expressed in the form

�̇ = g1(�, �)

�̇ = As�+ g2(�, �) (18)

where g1 comprises the first three entries of Qg(Q−1[�, �]T )
and satisfies g1(0, 0) = 0 and Jg1(0, 0) = 0, and g2 com-

prises the last 2n− 3 entries of Qg(Q−1[�, �]T ) and satisfies

g2(0, 0) = 0 and Jg2(0, 0) = 0. This is in the normal form

for center manifold theory.

To apply Theorem 3 we simply need the matrix As to be

Hurwitz. Here, As must be made Hurwitz by a suitable choice

of the gain matrices K1, ...,Kn. Showing that such a choice of

gains is indeed possible is the topic of the next section. Further,

for each p̄ ∈ Ψ there is a neighborhood of p̄ throughout which

the Jacobian is in C2. Thus, if for a given p̄, Jf (p̄) has three

zero eigenvalues and 2n− 3 eigenvalues in the open left half

plane, then Theorem 3 proves that there is a neighborhood of

p̄ such that all trajectories commencing in this neighborhood

converge to a point on Ψ. This point may not be p̄.
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IV. CHOOSING GAINS AND THE PRINCIPAL

MINOR CONDITION

In this section we show that it is possible to choose the

gain matrices for each agent such that all nonzero eigenvalues

of the linearized system have negative real parts. This is the

case if a certain submatrix of the rigidity matrix has all leading

principal minors nonzero. That this condition is satisfied by all

coleader formations is shown in the following. The arguments

are similar but not identical to those of [1].

Let the gain matrices K1, ...,Kn be chosen as follows:

Ki = ΛiRe,i, i = 1, ..., n (19)

where the Λi are diagonal matrices. Re-

order the coleader coordinates as q =
[x1, y1, ..., xn−3, yn−3, xn−2, xn−1, yn, yn−2, yn−1, xn]

T .

An equilibrium position q̄ is defined from p̄ in the same

manner as q is defined from p. Then the linearized system

has the form

�̇q = Λ

[

R̂ R12

0 0

]

�q = Jq(q̄)�q (20)

where Λ ∈ ℜ2n×2n is a diagonal matrix whose diagonal

entries can be chosen independently and R̂ ∈ ℜ2n−3×2n−3 is

a submatrix of the rigidity matrix R that we will now define.

Recall that R has two columns associated with each agent:

one comprised of x-coordinates and one of y-coordinates. The

matrix R̂ is obtained by removing the three columns from the

rigidity matrix R as follows: one associated with each coleader

and not all of x or y-type (i.e. one must remove two x-type

and one y-type or vice versa). We have the following result

from [1].

Theorem 4. Suppose R̂ defined above is a nonsingular

matrix with every leading principal minor nonzero and let

Λ = diag(Λ1,Λ2) with Λ1 ∈ ℜ2n−3×2n−3 diagonal and

Λ2 ∈ ℜ
3. Then there exists a diagonal matrix Λ1 such that the

real parts of all nonzero eigenvalues of the linearized system

are negative.

Thus, 2n − 3 eigenvalues of Jq(q̄) have negative real part

and clearly the remaining three eigenvalues are zero due to the

rank deficiency of Jq(q̄). To make use of Theorem 4, we now

need to show that R̂ satisfies the principal minor condition for

all coleader formations. Let V ′ = {v1, ..., vn−3} represent the

set of ordinary followers, and let agents vn−2, vn−1, and vn
correspond to the coleaders. We have the following result:

Theorem 5. Consider any minimally persistent coleader for-

mation F (G, p) of n agents at generic positions in the plane.

Then there exists an ordering of the vertices of F and an

ordering of the pair of outgoing edges for each vertex such

that all leading principal minors of the associated R̂ are

generically nonzero.

We note the following structure of R̂ ∈ ℜ2n−3×2n−3

R̂ =

[

R(V ′) R̂12

R̂21 R̂22

]

. (21)

R(V ′) ∈ ℜ2n−6×2n−6 is the principal submatrix of R̂ ob-

tained by retaining the rows and columns corresponding to

the elements of V ′. Additionally, consider a subset of ordinary

follower vertices V1 ⊆ V ′ and define R(V1) as the principal

submatrix of R̂ obtained by retaining columns corresponding

to the elements of V1. We have the following results from [1]

for LFF formations, which extend to coleader formations with

identical proof.

Lemma 1. For any minimally persistent coleader formation,

R̂ is generically nonsingular, and R(V1) is generically non-

singular for every V1 ⊆ V ′.

Lemma 1 establishes that the largest leading principal minor

is generically nonzero and that all even order leading principal

minors up to size 2n − 6 are generically nonzero. The proof

that all odd order leading principal minors up to size 2n− 7
are also generically nonzero relies on an appropriate ordering

of edges and is identical to the proof in [1]. It now remains to

show that the second and third largest leading principal minors

(of size 2n− 5 an 2n− 4) are generically nonzero. We have

the following two results that treat separately the case where

the coleaders are connected and the case where the coleaders

are not connected.

Lemma 2. Suppose at most one coleader has its outgoing

edge to V ′, the set of ordinary followers. Then the second

and third largest leading principal minors of R̂ are generically

nonzero.

Proof: If at most one coleader has its outgoing edge to

V ′, then there exists an ordering of the coleaders such that

the second and third largest leading principal submatrices of

R̂ have the structure

M2n−5 =

[

R(V ′) ×
0 xn−2 − {xn−1, xn}

]

M2n−4 =

[

M2n−5 ×
0 xn−1 − xn

]

where × is a “don’t care” vector (only vn may have an edge

to V ′). Since R(V ′) is generically nonsingular, then M2n−5

is generically nonsingular, which then implies that M2n−4 is

generically nonsingular.

Lemma 3. Suppose at least two coleaders have their outgoing

edges to V ′, the set of ordinary followers. Then the second

and third largest leading principal minors of R̂ are generically

nonzero.

Proof: Assume that coleaders labeled n − 2 and n − 1
have outgoing edges to vertices i and j, respectively, both in

V ′. Observe that the hypothesis permits i = j. The argument

below applies regardless of whether i = j and regardless of

whether the sole outgoing edge of n is to an element of V ′.

Introduce two artificial agents labeled n+1 and n+2. Assume

that n+1 has only one outgoing edge and that to n+2; n+2
has no outgoing edge; n − 2 (which was a coleader) has an

additional outgoing edge to n + 1, n − 1 an additional edge

to n + 2 and n an additional edge to either n + 1 or n + 2.
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Using the fact that G is minimally persistent and Theorem 1,

it can be shown that resulting graph is minimally persistent

with a LFF structure, with n+2 the leader and n+1 the first

follower. Call this new graph GLFF = (V2, E2). Consider the

matrices below where Bl is the l-th order principal submatrix

of the matrix obtained by removing the three last columns of

the rigidity matrix of the artificial graph of GLFF .

B2n−5 =

[

R(V ′) a1
b1 xn−2 − xi

]

B2n−4 =

⎡

⎣

R(V ′) a1 a2
b1 xn−2 − xi yn−2 − yi
0 xn−2 − xn+1 xn−2 − xn+1

⎤

⎦

B2n−3 =

[

R(V ′) a1 a2 a3

b1 xn−2 − xi yn−2 − yi 0
0 xn−2 − xn+1 xn−2 − xn+1 0
b2 0 0 xn−1 − xj

]

B2n−2 =
⎡

⎣

R(V ′) a1 a2 a3 a4
b1 xn−2 − xi yn−2 − yi 0 0

0 xn−2 − xn+1 xn−2 − xn+1 0 0

b2 0 0 xn−1 − xj yn−1 − yj
0 0 0 xn−1 − xn+2 yn−1 − yn+2

⎤

⎦

We note that all the even-dimensioned submatrices above are

generically nonsingular, since they are the even-dimensioned

leading principal submatrices of a LFF structure (see [1]).

The third largest leading principal submatrix of R̂ is given

by M2n−5 = B2n−5. Suppose B2n−5 is not generically

nonsingular. Then because of the underlying symmetry of the

x and y columns, neither is the matrix
[

R(V ′) a2
b1 yn−2 − yi

]

.

But this implies that B2n−4 is generically nonsingular, which

establishes a contradiction. Therefore, M2n−5 is generically

nonsingular.

The second largest leading principal submatrix of R̂ is

M2n−4 =

⎡

⎣

R(V ′) a1 a2
b1 xn−2 − xi 0
b2 0 xn−1 − xj

⎤

⎦ .

We now argue that this matrix is nonsingular. Since B2n−2 is

generically nonsingular, an argument similar to above estab-

lishes the generic nonsingularity of B2n−3, which implies the

generic nonsingularity of
⎡

⎢

⎢

⎣

R(V ′) a1 a2 a3
b1 xn−2 − xi yn−2 − yi 0
b2 0 0 xn−1 − xj

0 xn−2 − xn+1 xn−2 − xn+1 0

⎤

⎥

⎥

⎦

.

Finally, another argument similar to above then establishes the

generic nonsingularity of M2n−4.

Thus, all leading principal minors of R̂ are generically

nonzero for all coleader formations. Therefore, one can choose

the diagonal matrix Λ such that the real parts of all nonzero

eigenvalues of the linearized system (20) are negative (and

accordingly the matrix As in (18) is Hurwitz). The stabilizing

gains are designed for a particular equilibrium point in Ψ. It

is important to note here that the control gains proposed in

(19) may not be stabilizing for all other points in Ψ. Theorem

3 can be directly applied to show that for each p̄ ∈ Ψ, there is

a neighbourhood Ω(p̄) of p̄ such that for any initial formation

position p(0) ∈ Ω(p̄) there is a point p∗ ∈ Ψ such that

limt→∞p(t) = p∗ at an exponential rate, i.e. the formation

converges locally exponentially to the desired shape.

V. CONCLUDING REMARKS

In this paper, we have addressed the n-agent formation

shape maintenance problem for coleader formations. We pre-

sented decentralized nonlinear control laws that restore desired

formation shape in the presence of small perturbations from

the nominal shape. The nonlinear system has a manifold

of equilibria, which implies that the linearized system is

nonhyperbolic. We applied center manifold theory to show

local exponential stability of the equilibrium formation with

desired shape. We have also shown that a principal minor

condition holds for all coleader formations, which allows a

choice of stabilizing gain matrices.

There are several possible directions for future research.

First, the stability results here are local, and an immediate

task would be to determine the size of the region of attraction.

Second, one can show that the stability properties of our

control law are translationally, but not rotationally invariant.

One could investigate whether or not it is possible to constrain

the gain matrices in order to obtain rotational invariance.

Preliminary calculations suggest that this will not always

be possible. Finally, non-minimally persistent formations will

eventually be of interest because it may be desirable to control

more than the minimum number of distances for formation

shape maintenance in order to obtain a level of robustness.
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