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Correction to “On Submodularity and
Controllability in Complex Dynamical Networks”

Tyler H. Summers, Fabrizio L. Cortesi, and John Lygeros

Abstract—We provide a correction to our paper “On Submod-
ularity and Controllability in Complex Dynamical Networks”,
which appeared in Volume 3, Issue 1 of the IEEE Transactions
on Control of Network Systems [4]. At the time of submission,
and after our discovery of the error, we were informed of a
related observation documented in [1].

Our paper “On Submodularity and Controllability in Com-
plex Dynamical Networks” published in Volume 3, Issue 1
of the IEEE Transactions on Control of Network Systems
[4] contains an incorrect proof of Theorem 5. We give a
counterexample1 that invalidates the result.

Let A be a stable system dynamics matrix of a linear
dynamical system and V = {b1, ..., bM} be a set of possible
columns that can be used to form or modify the system input
matrix. For a given S ⊆ V , we form BS = [B0 bs] given
an existing input matrix B0 and using the associated columns
defined by s ∈ S, so that the state space representation is

ẋ(t) = Ax(t) +BSu(t).

We assume that the pair (A,B0) is controllable. We denote
the controllability Gramian associated with S by

WS =

∫ ∞
0

eAτBSB
T
S e

AT τdτ.

The paper contained the following theorem regarding sub-
modularity of the trace of the inverse controllability Gramian
with respect to actuator subsets:

Theorem 1. Let V = {b1, ..., bM} be a set of possible
input matrix columns and WS the controllability Gramian
associated with S ⊆ V . The set function f : 2V → R defined
as

f(S) = −tr(W−1S )

is submodular and monotone increasing.

Unfortunately, further investigation revealed that the proof
of this claim contains a subtle error. It effectively relies on
a statement that for two positive definite matrices P and
Q, P−1 � Q−1 implies that P−2 � Q−2. However, this
is incorrect in general, since the partial ordering of positive
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1Strictly speaking, we provide strong numerical evidence supporting in-
correctness of the result that relies on accuracy of numerical computations
and correctness of the source code of either MATLAB or NumPy. It is
not too difficult to generate other numerical counterexamples, so that the
evidence becomes overwhelming, though it is worth noting that an analytical
counterexample can be constructed, as described in [1].

semidefinite matrices is not necessarily preserved by squaring
(or by any matrix power greater than one).

The following counterexample demonstrates that, unfortu-
nately, the result is also incorrect, not just the proof. Consider
the stable system dynamics matrix

A =


−3.9 −0.2 0.7 −0.4 0
−0.3 −2.2 0.3 1.6 −1.3
0.5 1 −0.5 0.7 −0.3
0 0.6 −1.1 0.6 0.2
0 0.5 1.3 1.2 −2.3


and set of possible input matrix columns V =
{e1, e2, e3, e4, e5}, where ei is the standard basis vector
with 1 in the ith entry and zeros elsewhere. Consider the
actuator subsets S1 = {e2, e3, e5} and S2 = {e3, e4, e5}, so
that S1 ∪ S2 = {e2, e3, e4, e5} and S1 ∩ S2 = {e3, e5}. We
have to the nearest integer

tr(W−1S1
) = 388, tr(W−1S2

) = 420

tr(W−1S1∪S2
) = 226, tr(W−1S1∩S2

) = 515,
(1)

so that

tr(W−1S1
) + tr(W−1S2

)− [tr(W−1S1∪S2
) + tr(W−1S1∩S2

)] = 67.

This violates the definition of submodularity (stated in Defi-
nition 2 of [4]), so the set function defined in Theorem 1 is
not submodular.

All other statements in the paper are, to the best of our
knowledge, correct, including the main results in Theorems 4,
6, and 7.

Finally, the same error affects analogous arguments in [2],
in the context of graph rigidity, and in [3], in the context of
network coherence. It would appear that the same counterex-
ample applies to a related result stated in Proposition 2 of
[5].
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