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Abstract—We propose methods to solve time-varying, sensor
and actuator (SaA) selection problems for uncertain cyber-
physical systems. We show that many SaA selection problems
for optimizing a variety of control and estimation metrics can be
posed as semidefinite optimization problems with mixed-integer
bilinear matrix inequalities (MIBMIs). Although this class of op-
timization problems are computationally challenging, we present
tractable approaches that directly tackle MIBMIs, providing both
upper and lower bounds, and that lead to effective heuristics
for SaA selection. The upper and lower bounds are obtained via
successive convex approximations and semidefinite programming
relaxations, respectively, and selections are obtained with a slicing
algorithm from the solutions of the bounding problems. Custom
branch-and-bound and combinatorial greedy approaches are also
developed for a broad class of systems for comparison. Finally,
comprehensive numerical simulations are performed to compare
the different methods and illustrate their effectiveness.

Index Terms—Sensor and actuator selection, cyber-physical
systems, linear matrix inequalities, controller/estimator design.

I. INTRODUCTION & BRIEF LITERATURE REVIEW

MANY emerging complex dynamical networks, from
critical infrastructures to industrial cyber-physical sys-

tems (CPSs) and various biological networks, are increas-
ingly able to be instrumented with new sensing and actua-
tion capabilities. These networks comprise growing webs of
interconnected feedback loops and must operate efficiently
and resiliently in dynamic and uncertain environments. The
prospect of incorporating large numbers of additional sensors
and actuators (SaAs) raises fundamental and important prob-
lems of jointly and dynamically selecting the most effective
SaAs, in addition to simultaneously designing corresponding
estimation and control laws associated with the selected SaAs.

There are many different quantitative notions of network
controllability and observability that can be used as a ba-
sis for selecting effective SaAs in uncertain and dynamic
cyber-physical networks. Notions based on classical Kalman
rank conditions for linear systems focus on binary structural
properties [2]–[5]. More elaborate quantitative notions based
on Gramians [6]–[12] and classical optimal and robust con-
trol and estimation problems [13]–[20] for linear systems
have also been studied. For selecting SaAs based on these
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metrics, several optimization methods are proposed in this
literature, including combinatorial greedy algorithms [8], [9],
[17], [19], [21], convex relaxations using sparsity-inducing
`1 penalty functions [13]–[16] and reformulations to mixed-
integer semidefinite programming via the Big-M method or
McCormick’s relaxation [12], [20], [22]. As a departure from
control-theoretic frameworks, the authors in [23] explore rou-
tines for reconstructing the initial states of nonlinear systems
while optimally selecting a fixed number of sensors.

Despite the recent surge of interest in quantifying network
controllability and observability and in associated SaA se-
lection problems, a much wider set of metrics are relevant
for uncertain cyber-physical systems. The existing literature
tends to focus mainly on classical metrics (e.g., involving
Kalman rank [2], Gramians [9], [11], [17], Linear Quadratic
Regulators [12], [17], [18], and Kalman Filters [19], [20]) and
deterministic linear time-invariant systems. Methods for time-
varying systems with various uncertainties, constraints, and
nonlinearities are also important to broaden applicability. It
is well known that a broad variety of systems and control
problems can be cast in the form of semidefinite programs
(SDP) and linear matrix inequalities (LMIs) [24], but many
of these more recent formulations have not been considered
in the context of SaA selection. In general, the selection of
sensors or actuators and design of associated estimation and
control laws for many metrics can be posed as semidefinite
optimization problems with mixed-integer bilinear matrix in-
equalities (MIBMIs) as we have recently shown in [25]. A
general MIBMI formulation for the selection problem is also
discussed in the ensuing sections.

Here we propose methods to solve time-varying sensor and
actuator (SaA) selection problems for uncertain CPSs. Our
methods can be applied to any of the broad range of problems
formulated as MIBMIs. Although this class of optimization
problems is computationally challenging, we present tractable
approaches that provide bounds and lead to effective heuristics
for SaA selection. The bounds are obtained via successive
convex approximations and SDP relaxations, respectively, and
selections are obtained with a slicing algorithm from the
solutions of the bounding problems.

A preliminary version of this work appeared in [25] where
we developed customized algorithms for actuator selection.
Here we significantly extended the methodology with the
successive convex approximation and convex relaxation ap-
proaches and provide comprehensive numerical simulations.
The extended version of this paper can be found in [1]. It
includes significant additions to the paper: (1) extensions of
this work to include a variety of other control and estimation
metrics with sensor/actuator selection; (2) an alternate formu-
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lation for the SaA selection problem via the Big-M method that
amounts to solving mixed-integer SDPs, in comparison with
the convex relaxations and approximations we develop in this
paper; and (3) a thorough discussion on greedy algorithms,
and extended numerical tests for another dynamical system
with different network size and properties.

II. CPS MODEL AND PAPER CONTRIBUTIONS

We consider time-varying CPSs with N nodes modeled as

ẋ(t) = Ajx(t) +Bj
uΠ

ju(t) +Bj
ww(t) +Bj

fφ
j(x), (1a)

y(t) = ΓjCjx(t) +Dj
uu(t) +Dj

vv(t), xj(t0) = xj0 (1b)

The network state x(t) ∈ Rnx consists of each of N nodal
agent states xi ∈ Rnxi , i = 1, . . . , N . Each nodal agent
has a set of available inputs ui ∈ Rnui and measurements
yi(t) ∈ Rnyi . The mapping from the input to state vector can
thus be written in the form Bu = blkdiag(Bu1 , . . . ,BuN

).
The system nonlinearity can be expressed as φ(x) ∈ Rnx

and Bf represents the distribution of the nonlinearities. The
vectors w(t) ∈ Rnw and v(t) ∈ Rnv model unknown inputs
and data perturbations. In summary, the system has nx states,
nu control inputs, ny output measurements, nw unknown
inputs, and nv data perturbations, which are common in CPSs.
Superscript j denotes the time-period and transitions in state-
space matrices are assumed to be known.

The model (1) includes binary variables πi, i = 1, . . . , N ,
where πi = 1 if the actuator of the i-th nodal agent is selected,
and 0 otherwise. Similarly, we define binary variables γi, i =
1, . . . , N , where γi = 1 if the sensor of the i-th nodal agent
is selected, and 0 otherwise. Variables πi and γi are organized
in vectors π and γ, i.e., Π = blkdiag(π1Inu1

, . . . , πNInuN
)

and Γ = blkdiag(γ1Iny1
, . . . , γNInyN

).
The formulations in this paper are building on SDP ap-

proaches for robust control and estimation routines; see [24],
[26]. To set the stage, control and estimation formulations as
SDPs are succinctly summarized in [1, Appendix E], where
the system dynamics, controller/observer form, optimization
variables, and the optimization problem are stated. The listed
formulations are instrumental in formalizing the SaA selection
problem since the LMIs share a similar structure. Many
other control and estimation laws can fit directly into the
proposed methodologies. The main contributions of this paper
are detailed next.
• First, we show that a large array of optimal control and

estimation problems with SaA selection share a similar
level of computational complexity of solving optimization
problems with MIBMIs (Section III).

• Second, we develop one-shot convex relaxation that pro-
duces a lower bound to the original problem with MIBMIs.
Two successive convex approximations that yield upper
bounds are also developed. Theoretical guarantees on the
convergence of the convex relaxations and approximations
are provided. The convex approximations draw from pre-
vious general methods [27], [28], but this paper develops
specialized algorithms for the MIBMI problem structures
that stem specifically from sensor and actuator selection.
We also develop simple algorithms to recover the binary

selection of SaAs, in addition to the state-feedback gains
and performance indices (Sections IV–VI).

• Third, we include a general formulation that utilizes the Big-
M method, thereby transforming the optimization problem
that includes MIBMIs to a mixed-integer semidefinite pro-
gram (MISDP)—this approach is detailed in the extended
version of this manuscript [1]. Finally, comprehensive nu-
merical examples are provided in Section VII. The numeri-
cal results corroborate the theoretical results, and the neces-
sary assumptions needed to obtain convergence are satisfied.
The next section presents the developed framework of time-
varying SaA selection for uncertain dynamic systems.

III. TIME-VARYING SAA SELECTION WITH VARIOUS
METRICS: A UNIFYING MIBMI FRAMEWORK

In this section, we show that a plethora of control or
estimation problems with time-varying SaA can be written
as nonconvex optimization problems with MIBMIs. This ob-
servation considers different formulations pertaining to var-
ious observability and controllability metrics. In particular,
replacing Bu with BuΠ and C with ΓC in the SDPs
in [1, Appendix E] significantly increases the complexity
of the optimization problem. This transforms the SDPs into
nonconvex problems with MIBMIs, thereby necessitating the
development of advanced optimization algorithms—the major
contribution of this paper.

For concreteness, we only consider the actuator selection
problem for robust L∞ control of uncertain linear systems (see
the second row of [1, Table III] or [29]), and leave the other
SDP formulations with different control/estimation metrics as
simple extensions. Focusing on the robust control with actuator
selection, we can write the system dynamics as:

ẋ(t) = Ajx(t) +Bj
uΠ

ju(t) +Bj
ww(t) (2a)

z(t) = Cj
zx(t) +Dj

wzw(t), (2b)

where Πj is binary matrix variable (cf. Section II) and z(t) is
the control performance index. The time-varying sequence of
selected actuators and stabilizing controllers is obtained as the
solution of the following multi-period optimization problem:

minimize
{S,Z,ζ,π}j

Tf∑
j=1

(η + 1)ζj + α>π π
j (3a)

subject to

 AjSj + SjAj> + αSj

−Bj
uΠ

jZj −Zj>ΠjBj>
u Bj

w

Bj>
w −αηI

 � O (3b)

 −Sj O SjC
j>
z

O −I D>wz
Cj
zS

j Dj
wz −ζjI

 � O (3c)

Hπ ≤ h, π ∈ {0, 1}N . (3d)

In (3), the optimization variables are matrices (S,Z,Y )j , the
actuator selection πj (collected in vector π for all j), and the
robust control index ζj for all j ∈ {1, . . . , Tf}, where α and
η are predefined positive constants [29]. Given the solution
to (3), the stabilizing control law for the L∞ problem can be
written as u∗(t) = −Z∗j(S∗j)−1x(t) for all t ∈ [tj , tj+1).
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This guarantees that ‖z(t)‖2 ≤
√

(η + 1)ζ∗‖w(t)‖∞. Note
that the L∞ control LMIs represented here and in [1, Table III]
are slightly different from the ones in [29], as some assump-
tions are made to simplify this robust control formulation.

The logistic constraint Hπ ≤ h couples the selected
actuators across time periods, and is discussed in Appendix A.
The optimization problem (3) includes MIBMIs due to the
term Bj

uΠ
jZj . The bilinearity together with the integrality

constraints bring about the need for specialized optimization
methods. It should be emphasized that (3) is not a mixed-
integer convex program. Therefore, general-purpose mixed-
integer convex programming solvers are not applicable.

Interestingly, the design of the remaining controllers and
observers in [1, Appendix E] largely share the optimiza-
tion complexity of (3). It can be observed that all design
problems in [1, Appendix E] feature MIBMIs with the form
BuΠZ+Z>ΠB>u or a similar one. This simple idea signifies
the impact of finding a solution to optimization problems with
MIBMIs. In fact, many LMI formulations for control problems
in [24] become MIBMIs when SaA selection is included.
Using (3) as an exemplification for other problems with similar
non-convexities, custom optimization algorithms to deal with
such MIBMIs are proposed in the ensuing sections.

IV. FROM MIBMIS TO BMIS

This section along with Sections V and VI develops a
series of methods to deal with MIBMIs that all have the same
starting point: Relaxing the integer constraints to continuous
intervals. The resulting problem is still hard to solve, as it
includes bilinear matrix inequalities (BMIs). For clarity, we
consider a single-period version of the L∞ problem with
actuator selection, i.e., problem (3) with Tf = 1. This section
presents some preparatory material that will be useful in the
next sections. We start by considering the actuator selection
problem with optimal value denoted by f∗.

f∗ = minimize
S,Z,ζ,π

(η + 1)ζ +α>π π (4a)

subject to

 AS + SA> + αS
−BuΠZ −Z>ΠB>u Bw

B>w −αηI

 � O
(4b) −S O SC>z

O −I D>wz
CzS Dwz −ζI

 � O (4c)

Hπ ≤ h (4d)

π ∈ {0, 1}N . (4e)

The following standing assumption regarding the feasibility
of (4) is made throughout the paper.

Assumption 1. Problem (4) is feasible for πi = 1, i =
1, . . . , N with constraints (4b), (4c), and (4d) holding as strict
inequalities.

The previous assumption essentially postulates that when
all actuators are selected, then S,Z, ζ can be found so that
matrix inequalities (4b) and (4c) hold with O on the left-hand
side replaced by −εI , and (4d) with h replaced by h − ε′1,

for sufficiently small ε > 0 and ε′ > 0. Such a point does
not need to be the optimal solution of (4); Assumption 1 only
requires the existence of such a point in the feasible set. It
follows from the previous discussion that finding such a point
is a convex optimization problem.

The methods developed in Sections V and VI rely on
substituting the integer constraint (4e) with the box constraint

0 ≤ π ≤ 1. (5)

Problem (4) with (4e) substituted by (5) can be written as

L = minimize
p

f(p) (6a)

subject to G(p) � O (6b)

where the shorthand notation p =
[vec(S)> ζ vec(Z)> π)>]> denotes the optimization
variables. The objective is f(p) = (η + 1)ζ + α>π π, and
G(p) is a matrix-valued function that includes the left-hand
sides of (4b), (4c), (4d), and the two sides of (5), in a
block diagonal form. Problem (6) has the general form of
a nonlinear SDP [30]. The dimensions of p and G(p) are
respectively given by p ∈ Rd and G(p) ∈ Sκ, where d and κ
can be inferred from (4). The notation DG(p) is used for the
differential of G(p) at p, i.e., DG(p) maps a vector q ∈ Rd
to Sκ as follows

[DG(p)]q =

d∑
i=1

qi
∂G(p)

∂pi
. (7)

The optimal value serves as an index to formally compare
the various formulations to be developed in the sequel. But
comparison with respect to control metrics is also important,
therefore, the resulting controllers are also evaluated in terms
of the system closed-loop eigenvalues in the numerical tests of
Section VII. The relationship between the optimal value of (4)
and (6) is formalized in the following proposition.

Proposition 1. With L denoting the optimal value of prob-
lem (6), it holds that L ≤ f∗.

Proof of Proposition 1: The proposition holds be-
cause (5) represents a relaxation of (4e).

Problem (6) is still hard to solve, because it contains the
BMI (4b). Since the problem is nonconvex, several algorithms
seek to find a stationary point of (6), instead of a globally op-
timal one. Before formally stating the definition of stationary
point, the Lagrangian function of (6) is given next:

L(p,Λ) = f(p) + trace[ΛG(p)], (8)

where Λ is a Lagrange multiplier matrix. Stationary points
of (6) abide by the following definition.

Definition 1. A pair (p∗,Λ∗) is a KKT point of (6), and
p∗ is a stationary point of (6), if the following hold: 1)
Lagrangian optimality: ∇pL(p∗,Λ) = 0; 2) primal feasi-
bility: G(p∗) � O; 3) dual feasibility: Λ∗ � O; and 4)
complementary slackness: Λ∗G(p∗) = O.

Conditions 1)–4) above are the KKT conditions for (6).
These become necessary conditions that locally optimal so-
lutions of (6) must satisfy, when appropriate constraint qual-
ifications hold. Constraint qualifications are properties of the
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feasible set of an optimization problem. To make this concept
concrete, two typical constraint qualifications are presented
next [30].

Definition 2. Problem (6) satisfies Slater’s constraint qualifi-
cation if there is a point p0 ∈ Rd satisfying G(p0) ≺ O.

Slater’s constraint qualification guarantees zero duality gap
for problems of the form (6) when f(p) and G(p) are convex.
Though G(p) is not convex for the problem at hand, we will
use Slater’s constraint qualification for convex approximations
of (6) in the sequel. A constraint qualification useful for
nonconvex nonlinear SDPs is given next.

Definition 3. The Mangasarian-Fromovitz constraint qualifi-
cation (MFCQ) holds at feasible point p0 if there exists a
vector q ∈ Rd such that

G(p0) + [DG(p0)]q ≺ O. (9)

Under MFCQ, the KKT conditions become necessary for
local optima of (6).

Lemma 1. Let p∗ be a locally optimal solution of (6).
Then under MFCQ, there exists a Lagrange multiplier matrix
Λ∗ that together with p∗ satisfies the KKT conditions of
Definition 1.

Proof of Lemma 1: This result is typical in the literature
of nonlinear SDPs; see [31, Sec. 4.1.3].

The significance of Lemma 1 is that it characterizes the
points which are local minima of (6). For future use, we
mention next two refinements of the KKT conditions of Defi-
nition 1. Specifically, the complementary slackness condition
implies that rank[G(p∗)] + rank(Λ∗) ≤ κ [30, p. 307]. A
stricter condition is defined as follows.

Definition 4. A KKT point of (6) satisfies the strict comple-
mentarity if rank[G(p∗)] + rank(Λ∗) = κ.

To state the second condition, the definition of a feasible
direction for problem (6) is provided next.

Definition 5. Let p0 be a feasible point of (6). A vector q ∈
Rd is called a feasible direction for problem (6) at p0 if p0+εq
is feasible for (6) for all sufficiently small ε > 0.

The KKT conditions are of first order, i.e., they involve the
gradient of the Lagrangian. The following definition states a
second-order condition.

Definition 6. Let (p∗,Λ∗) be a KKT point of (6). The second-
order sufficiency condition holds for p∗ if for all feasible
directions q at p∗ satisfying ∇pf(p∗)>q = 0, it holds that
q>∇2

pL(p∗,Λ∗)q ≥ µ‖q‖2, for some µ > 0.

The second-order sufficiency condition will be useful for
the convergence of one of the algorithms to solve BMIs in
the sequel. Sections V and VI develop algorithms for solving
problems of the form (6) that include BMIs. These algorithms
typically return vectors π with non-integer, real entries. Based
on the solutions produced by these algorithms, Appendix D
details the procedure of actuator selection.

V. SDP RELAXATIONS (SDP-R): A LOWER BOUND ON (6)

This section develops a solver for BMI problems based
on SDP relaxation of the BMI constraint. To this end, we
introduce an additional optimization variable G = ΠZ. With
this change of variables, ΠZ is replaced by G and G>

replaces Z>Π in (4b), while the constraint G = ΠZ is added
to the problem. Effectively, we have pushed the bilinearity into
a new constraint G = ΠZ, which can actually be manipulated
to much simpler constraints due to the diagonal structure of Π.

Specifically, Z and G are stacks of N matrices

Z =

Z1

...
ZN

 , G =

G1

...
GN

 (10)

where Zi and Gi (i = 1, . . . , N ) are both in Rnui
×nx . Due

to the diagonal structure of Π, the constraint G = ΠZ is
equivalent to

Gi = πiZi, i = 1, . . . , N. (11)

Denote the (l,m) entries of matrices Zi and Gi by Zi,(l,m)

and Gi,(l,m), respectively, where l = 1, . . . , nui
and m =

1, . . . , nx. Then, (11) is equivalent to the constraint

Gi,(l,m) = πiZi,(l,m), i = 1, . . . , N, l = 1, . . . , nui ,

m = 1, . . . , nx. (12)

It follows that problem (6) is equivalent to

L = minimize
S,Z,ζ,π,G

ζ +α>π π (13a)

subject to

AS + SA> + αS
−BuG−G>B>u Bw

B>w −αηI

 � O(13b)

(4c), (4d), (5), (12). (13c)

The next step is to relax (12) into an SDP constraint. To this
end, define

E =

0 0 0
0 0 1
0 1 0

 , e =

2
0
0

 . (14)

The SDP relaxation of (13) is provided in the next proposition.

Proposition 2. The following SDP is a relaxation of (13) and
yields a lower bound on the optimal value of (6):

L̃ = minimize
S,Z,ζ,π,G,V

(η + 1)ζ +α>π π (15a)

subject toAS + SA> + αS
−BuG−G>B>u Bw

B>w −αηI

 � O (15b)

trace
(
EVi,(l,m)

)
− e>

Gi,(l,m)

Zi,(l,m)

πi

 = 0 (15c)

 Vi,(l,m)

∣∣∣∣∣∣
Gi,(l,m)

Zi,(l,m)

πi
Gi,(l,m) Zi,(l,m) πi 1

 � O (15d)
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∀ i = 1, . . . , N, l = 1, . . . , nui
, m = 1, . . . , nx

(4c), (4d), (5) (15e)

where Vi,(l,m) ∈ R3×3 are auxiliary optimization variables
collected in V for all i, l, and m. The optimal value of (15)
has the property that L̃ ≤ L. If, in addition, rank

[
Vi,(l,m)

]
=

1 holds for all i, l, and m for the solution of (15), then L̃ = L.

Proof of Proposition 2: Introduce an auxiliary optimiza-
tion variable v>i,(l,m) =

[
Gi,(l,m) Zi,(l,m) πi

]
∈ R3. One

can verify that

πiZi,(l,m) −Gi,(l,m) = v>i,(l,m)Evi,(l,m) − e>vi,(l,m). (16)

A relaxation trick can be used at this point. In particular,
introduce an additional optimization variable Vi,(l,m) ∈ R3×3

and the constraint Vi,(l,m) = vi,(l,m)v
>
i,(l,m). We have that

v>i,(l,m)Evi,(l,m) = trace
(
v>i,(l,m)Evi,(l,m)

)
= trace

(
Evi,(l,m)v

>
i,(l,m)

)
= trace

(
EVi,(l,m)

)
. (17)

The previous development reveals that constraint (12) is equiv-
alent to the constraint trace

(
EVi,(l,m)

)
− e>vi,(l,m) = 0,

which is linear in Vi,(l,m) and vi,(l,m), as long as the constraint
Vi,(l,m) = vi,(l,m)v

>
i,(l,m) is imposed, which is nonconvex.

The constraint Vi,(l,m) = vi,(l,m)v
>
i,(l,m) is equivalent to[

Vi,(l,m) vi,(l,m)

v>i,(l,m) 1

]
� O, rank(Vi,(l,m)) = 1. (18)

The rank constraint above is nonconvex, and by dropping it,
we obtain the convex relaxation (15) of (13). As a relaxation
of (13), its optimal value has the property that L̃ ≤ L.

Proposition 2 asserts that L̃ = L if rank
[
Vi,(l,m)

]
= 1.

Since the rank constraint is nonconvex, it is reasonable to
consider surrogates for the rank in an effort to make the re-
laxation (15) tighter; one such convex surrogate is the nuclear
norm of a matrix [32]. Thus, the constraint ‖Vi,(l,m)‖∗ ≤ 1
can be added to promote smaller rank for Vi,(l,m); the optimal
value of (15) is impacted as follows.

Corollary 1. Let L̆ be the optimal value of (15) with the
added constraint ‖Vi,(l,m)‖∗ ≤ 1. It holds that L̆ ≥ L̃.

Proof of Corollary 1: Adding the constraint restricts the
feasible set of (15), yielding the stated relationship between
the optimal values.

VI. CONVEX APPROXIMATIONS: AN UPPER BOUND ON (6)

The common thread between the previous and the present
section is to replace the nonconvex feasible set given by
constraints (4b), (4c), (4d), and (5) with convex sets. While the
previous section relies on convex relaxations of the nonconvex
feasible set, this section develops convex restrictions, i.e.,
replaces the nonconvex feasible set with a convex subset.
The premise is to solve a series of optimization problems, in
which the convex subset is improved. Thus, the algorithms
in this section fall under the class of successive convex
approximations (SCAs). Two SCA algorithms are developed

in this section. Due to the convex restriction, the algorithms
solve optimization problems that yield upper bounds for the
optimal value L of problem (6).

Because the SCA algorithms rely on forming convex subsets
of the feasible nonconvex set, they must be initialized at inte-
rior points of the nonconvex feasible set. The next proposition
asserts that such points indeed exist under Assumption 1.

Proposition 3. Under Assumption 1, problem (6) is strictly
feasible, i.e., it satisfies Slater’s constraint qualification.

Proof of Proposition 3: Consider a point p0 that satisfies
Assumption 1 (in particular, π0 = 1 holds). Constraints (4b),
(4c), (4d), and (5) can be written in the form of a block
diagonal matrix inequality (6b). The implication is that G(p0)
is negative definite, i.e., all its eigenvalues are negative.
By continuity of the eigenvalues as functions of the matrix
elements [33, Appendix D], there is a ball of sufficiently small
radius around p0 such that for all p is this ball, the eigenvalues
of G(p) remain negative. Any point within the ball satisfying
π < 1 together with the associated S, ζ,Z yields a strictly
feasible point for constraints (4b), (4c), (4d), and (5).

A. SCA using difference of convex functions (SCA-1)

The main idea is to replace (4b) with a surrogate convex
inequality constraint. To this end, the left-hand side of (4b)
is replaced by a convex function in the variables Z, Π,
which is denoted by C(Π,Z; Π0,Z0), where Π0,Z0 are
given matrices to be specified later. This approach has been
investigated in the context of BMIs for control problems
with bilinearities arising in output feedback control problems;
see [27]. We first define the following linear function of Π,Z
with parameters Π0,Z0

Hlin(Π,Z; Π0,Z0) =

BuΠ0Π
>
0 B
>
u −BuΠΠ>0 B

>
u −BuΠ0Π

>B>u

+ BuΠ0Z
j
0 −BuΠZ

j
0 −BuΠ0Z

j

+ Z>0 Π0B
>
u −Z>0 ΠB>u −Z>Π0B

>
u

+ Z>0 Z0 −Z>0 Z −Z>Z0. (19)

The following proposition introduces a convex function that
upper bounds the left-hand side of (4b).

Proposition 4. It holds for all Π,Z and Π0,Z0 that AS + SA> + αS
−BuΠZ −Z>ΠB>u Bw

B>w −αηI

 � C(Π,Z; Π0,Z0) (20)

where function C(Π,Z; Π0,Z0) is defined as follows and is
convex in Π,Z:

C(·) =


AS + SA> + αS

+ 1
2

(
BuΠ−Z>

) (
BuΠ−Z>

)>
+ 1

2Hlin(Π,Z; Π0,Z0) Bw

B>w −αηI

 . (21)

The proof of Proposition 4 is included in Appendix B.
Given this result, convex approximation of the BMI is ob-
tained by replacing constraint (4b) with the convex constraint
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C(Π,Z; Π0,Z0) � O. The resulting problem has a restricted
feasible set due to (20). Although C(Π,Z; Π0,Z0) is a convex
function in Π and Z, it is not linear in Π and Z. Therefore,
when we replace (4b) by the constraint C(Π,Z; Π0,Z0) � O,
a convex constraint is obtained, but not an LMI. Fortunately,
the constraint C(Π,Z; Π0,Z0) � O can be equivalently
written as an LMI as follows.

Lemma 2. It holds that

C(Π,Z; Π0,Z0) � O ⇐⇒ Cs(Π,Z; Π0,Z0) =
AS + SA> + αS

+ 1
2
Hlin(Π,Z;Π0,Z0) 1√

2

(
BuΠ−Z>

)
Bw

1√
2

(
BuΠ−Z>

)> −I O

B>w O −αηI

 � O.
(22)

Proof of Lemma 2: Applying the Schur complement to
C(·) � O yields the LMI Cs(·) � O.

To summarize, the convex approximation to (4) at Π0,Z0

is formed by replacing the integer constraints by the box
constraints (5), and the BMI (4b) by the LMI constraint in (22).
This problem is stated as follows:

L̂ = minimize
S,Z,ζ,π

(η + 1)ζ +α>π π (23a)

subject to (4c), (4d), (5), (22). (23b)

Problem (23) is an SDP with optimal value denoted by L̂,
whose relationship with L is as follows.

Corollary 2. The optimal value of the convex approxima-
tion (23) for all Π0,Z0 is an upper bound on the optimal
value of (6), that is, L ≤ L̂.

Proof of Corollary 2: Due to (20) and (22), problem (23)
has a restricted feasible set with respect to problem (6).

The convex approximation (23) depends on the point
Π0,Z0, and can be successively improved. The main idea is
to solve a sequence of convex approximations given by (23),
where the values of Π0,Z0 for the next approximating prob-
lem are given by the solution of the previous problem.

Let k = 1, 2, . . . denote the index of the convex approxima-
tion to be solved, and let Sk, ζk,Πk,Zk denote its solution.
The k-th problem is obtained by adding a strictly convex
regularizer to the objective (23a), which ensures that the
problem has a unique solution. The k-th problem is thus

L̂
(1)
k = minimize

{S,Z,ζ,π}
(η + 1)ζ +α>π π + ρJk (24a)

subject to Cs(Π,Z; Πk−1,Zk−1) � O (24b)
(4c),Hπ ≤ h, 0 ≤ π ≤ 1, (24c)

where Jk = ‖ζ − ζk−1‖22 + ‖S −Sk−1‖2F + ‖Z −Zk−1‖2F +
‖Π−Πk−1‖2F ; the linearization point is given by Π0 = Πk−1,
Z0 = Zk−1; ρ is the weight of the quadratic regularizers.
For k = 1, the point Π0,Z0 can be selected as any interior
point of (6); such is guaranteed to exist due to Proposition 3.
Note that the regularization term ρJk penalizes the difference
between the new solution and the previous. Upon algorithm
convergence, the two successive solutions should be close to

each other, which means that at optimality, the entire term ρJk
should be close to zero.

Notice that for every k, problem (24) has the form of (6), but
the objective is a strictly convex quadratic, and the constraint
function is convex. The convergence is established in the
following proposition.

Proposition 5. Let pk,Λk denote a KKT point of (24).
Suppose that the feasible set of (6) is bounded, and that the
following hold for problem (24) for k = 1, 2, 3, ...

i) Slater’s constraint qualification holds.
ii) The Lagrange multiplier Λk is locally unique.

iii) Strict complementarity holds for the KKT point.
iv) The second-order sufficiency condition holds for the KKT

point.
Then, the following are concluded:
a) It holds that f(pk) ≥ L and L(1)

k ≥ L for k = 1, 2, 3, ...
b) The sequence {f(pk)}∞k=1 is monotone decreasing, and

converges to a limit f̂ (1) ≥ L.
c) Every limit point of the sequence {pk,Λk}∞k=1 is a KKT

point of (6). If the set of KKT points of (6) is finite, then
the entire sequence {pk,Λk}∞k=1 converges to a KKT point
of (6).

The proof of Proposition 5 is included in Appendix B.
Albeit some of the conditions of the previous proposition may
be hard to verify in practice, we encountered no case where
the SCA algorithm did not converge. In particular, we tested
the algorithm on a variety of dynamic systems with varying
sizes and conditions in Section VII.

B. Parametric SCA (SCA-2)

In this section, we depart from the difference of two convex
functions approach used in the previous SCA, and use another
approach to obtain an upper bound on the bilinear terms.
The developments in this section follow the spirit of the
methods presented in [28], where the authors investigate a new
approach to solve BMIs that are often encountered in output
feedback control problems.

First, let F1(p) denote the left-hand side of (4b). Given Πk

and Zk, define ∆Π = Π−Πk and ∆Z = Z −Zk. For any
Q ∈ Snx

++, define further the following function:

K1(p;pk,Q) =

[
−BuΠkZk −Z>k ΠkB

>
u Bw

B>w −αηI

]

+

 AS + SA> + αS −BuΠk∆Z
−∆Z>ΠkB

>
u −Bu∆ΠZk −Z>k ∆ΠB>u O

O O


+

[
Bu∆ΠQ∆ΠB>u + ∆Z>Q−1∆Z O

O O

]
. (25)

Similar to Proposition 4, an upper bound on F1(p) is
provided by the next proposition.

Proposition 6. It holds for all p, Πk,Zk and Q ∈ Snu
++ that

F1(p) ≤ K1(p;pk,Q). (26)

The proof of Proposition 6 is included in Appendix B.
The previous proposition suggests that constraint (4b) can be
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replaced by K1(p;pk,Q) � O. There are two challenges
to be addressed though. First, although K1(p;pk,Q) is a
convex function of p, it is not linear, and thus constraint
K1(p;pk,Q) � O is not an LMI. Second, although Q can
remain constant, the approximation can be tightened if Q is
allowed to be an optimization variable. The former challenge
is addressed by Lemma 3, which is analogous to Lemma 2.

Lemma 3. Constraint K1(p;pk,Q) � O is equivalent to

K(p;pk,Q) =


Ω(p;pk) Bw Bu∆Π ∆Z>

B>w −αηI O O
∆ΠB>u O −Q−1 O

∆Z O O −Q

 � O,

(27)
where

Ω(p;pk) = −BuΠkZk −Z>k ΠkB
>
u +AS + SA> + αS

−BuΠk∆Z −∆Z>ΠkB
>
u −Bu∆ΠZk −Z>k ∆ΠB>u .

Proof of Lemma 3: Use the Schur complement.
When Q is an optimization variable, function K(p;pk,Q)

is not convex in p and Q. An upper bound of K(p;pk,Q)
that is linear in p and Q is given in Lemma 5. The following
lemma gives a particular matrix property that becomes the
foundation for Lemma 5.

Lemma 4. Let Q(x) : Rn → Sm++ be a mapping defined
as Q(x) =

∑n
i=1 xiQi where Qi ∈ Sm. The following

inequality holds, where the right-hand side is the linearization
of −Q(x)−1 around xk:

−Q(x)−1 � −2Q(xk)−1 +Q(xk)−1Q(x)Q(xk)−1. (28)

Lemma 5. It holds for all p, Q ∈ Snu
++, Πk,Zk, and Qk ∈

Snu
++ that

K(p;pk,Q) � Ks(p,Q;pk,Qk) (29)

where Ks(p,Q;pk,Qk) =
Ω(p;pk) Bw Bu∆ΠQk ∆Z>

B>w −αηI O O
Qk∆ΠB>u O −2Qk +Q O

∆Z O O −Q

 . (30)

The proofs of Lemmas 4 and 5 are included in Appendix B.
Given these results, the constraint Ks(p,Q;pk,Qk) � O
yields a restricted feasible set relative to constraint (3b).
Similarly to Section VI-A, k = 1, 2, 3, ... is the index of the
optimization problem to be solved, and pk,Qk denotes its
solution. The k-th problem is an SDP and is stated as follows

L̂
(2)
k = minimize

{S,Z,ζ,π,Q}
(η + 1)ζ +α>π π + ρJk (31a)

subject to Ks(p,Q;pk−1,Qk−1) � O (31b)
c1I � Q � c2I, −2Qk−1 +Q � −c3I (31c)

(4c), Hπ ≤ h, 0 ≤ π ≤ 1, (31d)

where ρ, c1, c2, and c3 are positive constants, and Jk is the
same regularizer as the one in (24). Constraint (31c) guarantees
that Q is positive definite, sequence {Qk}∞k=1 is bounded,
and that −2Qk + Q, which appears as a diagonal block
in (30) is negative definite for all k. Similar to the first convex

approximation, the above problem can be initialized by letting
{S0,Z0, ζ0,π0} be any interior point of (6) and Q0 = I .
The algorithm convergence is characterized by the following
proposition.

Proposition 7. Assume that the MFCQ holds for every feasible
point of (6) and that the sequence {pk}∞k=1 is bounded. Then,
the following are concluded:

a) It holds that f(pk) ≥ L and L(2)
k ≥ L for k = 1, 2, . . .

b) The sequence {f(pk)}∞k=1 is monotone decreasing, and
converges to a limit f̂ (2) ≥ L.

c) Every limit point of {pk}∞k=1 is a stationary point of (6).

The proof of Proposition 7 is included in Appendix B.
Algorithm 1 in Appendix C provides the option to implement
one of the two developed convex approximations [cf. (24)
and (31)] sequentially until a maximum number of iterations
or a stopping criterion are met. The next section compares the
two approximations in terms of computational effort and their
convergence claims.

C. Comparing the SCAs and Recovering the Integer Solutions

The first convex approximation is simpler to implement
and involves a smaller number of SDP constraints and vari-
ables; see the difference in dimensions between constraints
Ks(p,Q; zk,Qk) � O and Cs(Π,Z; Πk,Zk) � O. In
addition, constraint (31c) is added, and an extra variable Q
is needed in (31). Both methods rely on constructing a series
of feasible sets that are subsets of the original nonconvex
feasible set in (6). Each produces a sequence of decreasing
objective values {f(pk)}∞k=1, yielding upper bounds on the
optimal value of (6).

It is also worth noting that the first method requires a
constraint qualification and additional assumptions on the
KKT point to hold for each convex approximation problem k.
Slater’s constraint qualification is also an assumption in one of
the earliest SCA methods for nonlinear programming [34]. On
the other hand, the second method requires only the MFCQ
to hold for the original nonconvex problem (6). Both methods
have a boundedness assumption; the first method requires
the feasible set of (6) to be bounded, the second method
only the resulting sequence to be bounded. The boundedness
assumption respectively guarantees the existence of at least
one limit point of {pk}∞k=1. Both methods enjoy the property
that every limit point of {pk}∞k=1 is a stationary point of (6).

Remark 1 (Existence of Local Minima). The stationarity is
a necessary condition for local optimality (cf. Lemma 1). It
is thus not guaranteed that the stationary point is locally
optimal. In view of the fact that the methods attempt to solve a
nonconvex problem, such convergence result is to be expected.

The solutions obtained from (15), (24), and (31) produce
a non-integer solution for the actuator selection problem.
Since the objective is to determine a binary selection for
the actuators, we present in this section a simple slicing
routine that returns a binary selection given the solutions to the
optimization problems in Sections V and VI. The algorithm is
included and discussed in Appendix D.
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Inputs:
a) System state-space matrices A,Bu,Bw,Cz,Dwz

b) Actuator logistic constraint Hπ ≤ h and weight απ

Formulate the optimization problem (4)

Relax π ∈ {0, 1}N to 0 ≤ π ≤ 1
Use one of the below methods

SDP-R:
Solve (15)

Apply Slicing Algorithm 2

Outputs:
Binary selection π∗ and feedback law K∗

SDP-RN:
Solve (15) with

constraint ‖Vi,(l,m)‖∗ ≤ 1

SCA-1:
Algorithm 1

Option 1

SCA-2:
Algorithm 1

Option 2

Fig. 1. Flow chart showing the actuator selection and feedback control
approach for the developed methods.

VII. NUMERICAL TESTS

In this work, we develop different computational methods
to solve the actuator selection problem with a focus on the
L∞ control metric (4). Note that the extended manuscript [1]
includes more thorough discussions and examples. The tested
here methods are summarized as follows.
• SDP-R: An SDP relaxation providing a lower bound to the

optimal solution of the problem with BMIs; see (15).
• SDP-RN: Same as SDP-R with the addition of the nuclear

norm constraint to (15); see Corollary 1.
• SCA-1 and SCA-2: Successive convex approximations pro-

ducing upper bounds; see (23) and (31).
• These four methods (SDP-R, SDP-RN, SCA-1, SCA-2) are

based on relaxing the integer constraints, and then followed
by a slicing algorithm that returns an integer actuator
selection and an upper bound on the optimization problem
with MIBMIs (Algorithm 2). Fig. 1 shows a flowchart
summarizing these four methods, where the feedback law
K∗ is obtained according to Algorithm 2.

• Big-M: The fifth method pertains to a formulation that
transforms a problem with MIBMIs (4) into an MISDP via
the Big-M method. This method is presented in the extended
manuscript [1].

All the simulations are performed using MATLAB R2016b
running on 64-bit Windows 10 with Intel Core i7-6700
CPU with base frequency of 3.4GHz and 16 GB of RAM.
YALMIP [35] and its internal branch-and-bound solver are
used as a modeling language and MOSEK [36] is used as the
SDP solver for all methods.
A. Simulated Dynamic Systems, Parameters, and Setup

We use a randomly generated dynamic network from [37],
[38] as a benchmark to test the presented methods. Additional
numerical tests for another dynamic network are included in
the extended manuscript [1]. The random dynamic network
has the following structure

ẋi = −
[
1 1
1 2

]
︸ ︷︷ ︸

Ai

xi +
∑
i 6=j

e−α(i,j)xj +

[
0
1

]
(ui +wi),

where the coupling between nodes i and j is determined by
the Euclidean distance α(i, j). These distances are unique for
every N and randomly generated inside a box of size N/5.∗

The constraint Hπ ≤ h is represented as
∑N
i=1 πi ≥ bN/4c,

where b·c denotes the floor function. We also set α>π =[
1, . . . , 1

]
, that is all actuators have equal weight; α = 1 and

η = 1 (these constants appear in the LMIs). For SCA-1 and
SCA-2, to obtain S0, ζ0, and Z0, we initialize by assuming
that Π0 = 0.1Inu , and subsequently solving the L∞ SDP
with S0 � ε1Inx

and ζ0 ≥ ε1, where ε1 = 10−8.

B. Results and Comparisons

Table I depicts the results after applying Algorithm 2 for
SDP-R (15), SDP-RN, SCA-1 (23), and SCA-2 (31). Algo-
rithm 2 is not applied to the Big-M solutions, as these solutions
are binary. Table I presents the performance index

√
(η + 1)ζ,

the total activated actuators
∑N
i πi, and the objective function

value ffinal = (η + 1)ζ +
∑N
i=1 πi. The presented results for

the Big-M method are for 300 iterations for the branch-and-
bound solver of YALMIP. The maximum number of iterations
is reached while the gap percentage is still between 1% for
N = 5 all the way to 56% for N = 50 (the gap, provided in the
caption of Table I, increases as N increases). Unfortunately,
solving MISDPs would require weeks before the optimal
solution (for larger values of N ) is obtained and hence the
choice of the default maximum iterations number of 300.

The boldfaced numbers in ffinal column in Table I depict
the method with the smallest objective function value. The
Big-M/MISDP formulation has been proposed before for SaA
selection in linear systems [12], [20]. While Big-M yields
the smallest ffinal in some cases, the other methods (SDP-R,
SDP-RN, SCA-1, SCA-2) yield better objective values, while
requiring significantly less computational time—often orders
of magnitude smaller than Big-M. In particular, Table II shows
the computational time (in seconds) for the five methods.
Since SDP-R solves only a single SDP, it is expected to be
computationally more efficient than the other methods—this
can be observed from Table II. In addition, and since SCA-1
includes a smaller number of constraints and variables than
SCA-2 (see Section VI-C), the former requires less computa-
tional time in several simulations. However, there are instances
where the SCAs require less computational time the than the
semidefinite relaxations (SDP-RN and SDP-R). The unifying
theme here is that relaxing the integer constraints and using the
convex approximations and relaxations is a good alternative
to computationally costly MISDPs. In addition, we emphasize
that although some methods can yield the same number of
activated actuators, the specific activated actuators from each
method can be significantly different. More discussions and
numerical simulations are included in [1].
∗Note that in these tests, we made the individual Ai matrix for each

subsystem to be stable (in comparison with [37], [38] where Ai is unstable),
so that the total number of unstable eigenvalues is smaller for the dynamic
network (A still has few unstable eigenvalues). Keeping the same structure
for the A matrix as in [37], [38] yields the trivial solution of activating all
actuators which is needed to guarantee an L∞-stable performance—and hence
the modification in the state-space matrix A.
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TABLE I
FINAL RESULTS AFTER RUNNING ALGORITHM 2 TO RECOVER THE BINARY ACTUATOR SELECTION AND THE ACTUAL SYSTEM PERFORMANCE FOR THE

SYSTEM WITH RANDOM NETWORK. THE BOLDFACED NUMBERS DESCRIBE THE METHOD THAT OUTPERFORMED OTHER METHODS (THE MISDP SOLVER
ON YALMIP THAT IMPLEMENTS THE BIG-M APPROACH IS TERMINATED AFTER 300 BRANCH-AND-BOUND ITERATIONS). FOR THE BIG-M METHOD,

THE GAP PERCENTAGES ARE 1.2, 10.19, 25.31, 44.90, 47.33, 51.48, 52.63, 52.21, 53.54, 55.91 FOR N = 5, 10, . . . , 50.

N
Performance Index

√
(η + 1)ζ Total Activated Actuators

∑N
i=1 πi ffinal = (η + 1)ζ +

∑N
i=1 πi

Big-M SDP-RN SDP-R SCA-1 SCA-2 Big-M SDP-RN SDP-R SCA-1 SCA-2 Big-M SDP-RN SDP-R SCA-1 SCA-2

5 1.200 1.133 1.165 1.003 0.986 2 3 3 3 3 3.441 4.284 4.357 4.005 3.971
10 1.496 1.291 1.280 1.117 1.360 3 5 5 7 5 5.239 6.668 6.639 8.248 6.849
15 1.459 1.274 1.397 1.245 1.378 6 12 8 13 10 8.129 13.622 9.952 14.549 11.898
20 1.079 1.198 1.379 1.243 1.320 15 19 14 17 18 16.165 20.435 15.903 18.545 19.742
25 1.232 0.001 1.082 0.911 5.015 19 25 23 24 17 20.517 25.000 24.170 24.831 42.148
30 1.173 1.647 0.995 1.554 2.152 24 24 28 28 16 25.376 26.711 28.991 30.415 20.631
35 1.343 1.578 2.028 1.277 1.255 30 34 23 31 32 31.804 36.489 27.112 32.632 33.575
40 1.201 1.280 1.605 1.284 1.287 35 38 28 38 33 36.442 39.639 30.576 39.649 34.656
45 1.258 1.640 1.086 1.362 1.548 40 36 44 40 36 41.583 38.689 45.180 41.854 38.396
50 0.980 2.236 1.283 1.389 2.426 45 32 43 47 39 45.961 37.001 44.646 48.930 44.885

TABLE II
CPU TIME FOR THE DIFFERENT METHODS WITH VARIOUS VALUES FOR

THE NUMBER OF NODES N FOR THE RANDOM DYNAMIC NETWORK.

N Big-M SDP-RN SDP-R SCA-1 SCA-2

5 3.92 1.84 1.45 2.10 1.84
10 87.47 3.73 1.36 2.97 2.58
15 369.49 14.18 3.36 10.49 8.86
20 1337.97 50.26 19.35 33.82 45.17
25 3774.93 142.73 90.88 120.51 80.12
30 9222.35 317.55 281.83 314.63 127.21
35 19760.87 853.73 303.23 615.68 674.92
40 41038.02 1901.40 822.92 1673.95 1258.57
45 76166.24 3103.24 3201.57 2695.33 2192.87
50 131035.62 4107.22 4441.03 5785.46 4096.90

C. Extensions to Sensor Selection for Nonlinear Systems

In this paper, we only use the L∞ control problem with
actuator selection to exemplify how the proposed methods can
provide insights into the solution of MIBMIs. We emphasize
that all other CPS dynamics and control/estimation formula-
tions (see [1, Appendix E]) with SaA selection can be solved
using the methods we develop here. For example, consider the
sensor selection alongside the state estimator design problem
for nonlinear systems ẋ = Ax +Buu + φ(x), y = ΓCx
where φ(x) is the vector of nonlinearities with Lipschitz
constant β > 0 and Γ is the binary sensor selection variable
[cf. (1)]. By considering the last SDP in [1, Table IV], the
sensor selection with observer design problem becomes:

minimize
Γ,P ,Y ,κ

α>γ γ

subject to

 A>P + PA− Y ΓC
−C>ΓY > + αP + κβ2I P

P −κI

 � O
Hγ ≤ h, γ ∈ {0, 1}N ,

which can be solved using the developed methods in the
paper. This formulation yields observer gain L∗ = (P ∗)−1Y ∗

that guarantees the asymptotic stability of the estimation error
e(t) = x(t) − x̂(t) from ˙̂x = Ax̂ + Buu + L∗(y − ŷ) +
φ(x̂), ŷ = Γ∗Cx̂ with minimal number of sensors Γ∗.

VIII. SUMMARY AND FUTURE WORK

This paper puts forth a framework to solve SaA selection
problems for uncertain CPSs with various control and esti-
mation metrics. Given the widely popular SDP formulations

of various control and estimation problems (without SaA
selection), we present various techniques that aim to recover,
approximate, or bound the optimal solution to the combinato-
rial SaA selection problem via convex programming. While the
majority of prior art focuses on specific metrics or dynamics,
the objective of this paper is to present a unifying framework
that streamlines the problem of time-varying SaA selection in
uncertain and potentially nonlinear CPSs.

The developed methods in the paper have their limitation.
First, the transition in the state-space matrices needs to be
given before the time-varying actuator selection problem is
solved. This narrows the scope of the actuator selection
problem. In future work, we plan to study the actuator se-
lection problem when the topological evolution is unknown,
yet bounded. In particular, we plan to explore solutions to the
SaA selection problem if the state-space matrix A includes
bounded perturbations that mimic the evolution in the CPS
topology.

In future work, we also plan to study the following re-
lated research problems: (1) applications to selection of dis-
tributed generation in electric power networks with frequency-
performance guarantees; (2) customized branch-and-bound
and cutting plane methods that can improve the performance of
the Big-M method; and (3) theoretical analysis of the tightness
of the lower and upper bounds resulting from the convex
formulations in this paper.
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APPENDIX A
ACTUATOR SELECTION: THE LOGISTIC CONSTRAINTS

The constraint Hπ ≤ h couples the selected actuators
across time periods, and is a linear logistic constraint that
includes the following scenarios.
• Activation and deactivation of SaAs in a specific time-period
j. For example, if actuator i cannot be selected at period j,
we set πji ≤ 0.

• If actuator k is allowed to be selected only after actuator i is
selected at period j, we set πj+1

k ≤ πji , for j = 1, . . . , Tf .
• If actuator k must be deselected after actuator i is selected

at period j, we set πj+1
k ≤ 1− πji , for j = 1, ...Tf .

• Upper and lower bounds on the total number of active SaAs
per period can be accounted for.

• Other constraints such as minimal number of required
active actuators in a certain region of the CPS, and unit
commitment constraints that are obtained from solutions
day-ahead planning problems, can be included.

APPENDIX B
PROOFS OF VARIOUS RESULTS

Proof of Proposition 4: To construct the upper
bound (20), the bilinear term is written as

−BuΠZ −Z>ΠB>u =
1

2

[(
BuΠ−Z>

) (
BuΠ−Z>

)>
−
(
BuΠ +Z>

) (
BuΠ +Z>

)>]
(32)

The term
(
BuΠ−Z>

) (
BuΠ−Z>

)>
is convex in Z and

Π since it comes from an affine transformation of the domain
of a convex function [39, Example 3.48]. The term

H(Π,Z) := −
(
BuΠ +Z>

) (
BuΠ +Z>

)>
is concave in Z and Π. We can therefore invoke the fact
that the first-order Taylor approximation of a concave function
(at any point) is a global over-estimator of the function. Let
Π0,Z0 be the linearization point, and let Hlin(Π,Z; Π0,Z0)
denote the linearization of H(Π,Z) at the point (Π0,Z0). It
holds that

H(Π,Z) � Hlin(Π,Z; Π0,Z0) (33)

for all Π0,Z0 and Π,Z.
The linearization can be derived by substituting Π = Π0 +

(Π−Π0) and Z = Z0+(Z−Z0) into H(Π,Z) and ignoring
all second-order terms that involve (Π−Π0) and (Z −Z0).
The result is (19). Combining (19) with (33) and (32), we
conclude that the left-hand side of (4b) is upper bounded as AS + SA> + αS
−BuΠZ −Z>ΠB>u Bw

B>w −αηI



�


AS + SA> + αS

+ 1
2

(
BuΠ−Z>

) (
BuΠ−Z>

)>
+ 1

2Hlin(Π,Z; Π0,Z0) Bw

B>w −αηI

 . (34)

This can be obtained using the fact that[
A1 B
B> C

]
� O,A2 � A1 =⇒

[
A2 B
B> C

]
� O

which can be proved using the definition of positive semidef-
initeness. Inequality (34) holds for all Π0,Z0 and Π,Z, and
its left-hand side is C(Π,Z; Π0,Z0).

Proof of Proposition 5: Notice that problem (24) has
the same feasible set as (23) (with Π0,Z0 replaced by
Πk−1,Zk−1). Corollary 2 establishes that its feasible set is
a restriction of the one in (6). It follows that f(pk) ≥ L, and
L

(1)
k ≥ L holds because of the added regularizer in (24a). The

monotonicity of {f(pk)}∞k=1 follows from a corresponding
result in [27, Lemma 4.2(c)]. The sequence is thus monotone
decreasing and bounded [the latter follows from the assump-
tion on the boundedness of the feasible set of (6)]. It is
a standard result in analysis that a bounded and monotone
decreasing sequence has a limit. Therefore, f̂ (1) ≥ L holds for
the limit due to f(pk) ≥ L. The convergence result of part c)
follows [27, Theorem 4.3]. It is emphasized that the existence
of at least one limit point is guaranteed by the boundedness
of the feasible set.

Proof of Proposition 6: Function F1(p) is written as

F1(p) = C0 +A(p) + B(p)

=

[
O Bw

B>w −αηI

]
+

[
AS + SA> + αS O

O O

]
+

[
−BuΠZ −Z>ΠB>u O

O O

]
.

Substituting Π = Πk + ∆Π = Πk + Π −Πk and Z =
Zk + ∆Z = Zk +Z −Zk into B(z) yields

B(p) =

 −Bu(Πk + ∆Π)(Zk + ∆Z)
−(Zk + ∆Z)>(Πk + ∆Π)B>u O

O O

 ,
where −Bu(Πk + ∆Π)(Zk + ∆Z) = −BuΠkZk −
BuΠk∆Z − Bu∆ΠZk − Bu∆Π∆Z and −(Zk +
∆Z)>(Πk + ∆Π)B>u = −Z>k ΠkB

>
u − Z>k ∆ΠB>u −

∆Z>ΠkB
>
u −∆Z>∆ΠB>u .

Given this, B(p) can be rearranged as

B(p) =

 −BuΠkZk −Z>k ΠkB
>
u −BuΠk∆Z

−∆Z>ΠkB
>
u −Bu∆ΠZk −Z>k ∆ΠB>u O

O O


+

[
−Bu∆Π∆Z −∆Z>∆ΠB>u O

O O

]
.

By combining and grouping these results, we obtain

F1(p) =

[
−BuΠkZk −Z>k ΠkB

>
u Bw

B>w −αηI

]

+

 AS + SA> + αS −BuΠk∆Z
−∆Z>ΠkB

>
u −Bu∆ΠZk −Z>k ∆ΠB>u O

O O


+

[
−Bu∆Π∆Z −∆Z>∆ΠB>u O

O O

]
.

An upper bound for the last bilinear term for any Q ∈ Snu
++

is given as [28, Lemma 1]

−Bu∆Π∆Z −∆Z>∆ΠB>u �
Bu∆ΠQ∆ΠB>u + ∆Z>Q−1∆Z.
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Combining the previous two results yields (26).
Proof of Lemma 4: LetR(x;xk) be the first-order Taylor

approximation of −Q(x)−1 computed around xk. That is,

R(x;xk) = −Q(xk)−1 − [D(Q(xk)−1)](x− xk). (35)

By setting ∆x = x−xk, the differential −[D(Q(xk)−1)]∆x
is given by [40]

[D(Q(xk)−1)]∆x = −Q(xk)−1[DQ(xk)]∆xQ(xk)−1

= −Q(xk)−1
n∑
i=1

∂Q(xk)

∂xi
∆xiQ(xk)−1

= −Q(xk)−1Q(x)Q(xk)−1 +Q(xk)−1.

Substituting the latter into (35) yields

R(x;xk) = −2Q(xk)−1 +Q(xk)−1Q(x)Q(xk)−1.

Since Q(x) is positive definite, then it follows that −Q(x)−1

is concave [39, Example 3.48]. Because the first-order approx-
imation of a concave function is a global over-estimator, we
obtain (28).

Proof of Lemma 5: By linearizing −Q−1 around a given
Qk ∈ Snu

++, an upper bound on K(p;pk,Q) can be derived
as follows. Since −Q−1 is concave in Q, then according to
Lemma 4, the over approximation of −Q−1 around Qk is
−2Q−1

k + Q−1
k QQ

−1
k . Substituting this over approximation

of −Q−1 into K(p;pk,Q) and applying congruence transfor-
mation with diag(I, I,Qk, I) as the post and pre-multiplier
yields (30). The relation in (29) is obtained due to the fact
that −Q−1 � −2Q−1

k +Q−1
k QQ

−1
k .

Proof of Proposition 7: The feasible set of problem (31)
is a restriction of the one in (6) due to Proposition 6, Lemma 3,
Lemma 5. It therefore holds that f(pk) ≥ L, and L

(2)
k ≥ L

follows from the addition of the regularizer in the objective.
The monotonicity of {f(pk)}∞k=1 follows from a related result
in [28, Lemma 6]. The monotonicity and the boundedness
imply the existence of the limit, similarly to Proposition 5.
The convergence in part c) is analogous to [28, Proposition 5].
The existence of at least one limit point is ensured by the
boundedness of the sequence {pk}∞k=1.

APPENDIX C
SUCCESSIVE CONVEX APPROXIMATION IMPLEMENTATION

Algorithm 1 illustrates how the SCAs (24) and (31) can
be solved sequentially until a maximum number of iterations
(MaxIter) or a stopping criterion defined by a tolerance (tol)
are met.

APPENDIX D
RECOVERING THE BINARY SELECTION

The solutions obtained from (15), (24), and (31) produce a
noninteger solution for the actuator selection problem. Since
the objective is to determine a binary selection for the ac-
tuators, we present in this section a simple slicing routine
that returns a binary selection given the solutions to the
optimization problems in Sections V and VI.

The slicing routine is presented in Algorithm 2. Since the
objective of the L∞ problem is to find a feedback gain K =
ZS−1 that renders the closed-loop system stable, the slicing

Algorithm 1 Solving the successive convex approximations.
input: MaxIterNum, tol, k = 0,Π0 = Inu

while k < MaxIterNum do
Option 1: Solve (24)
Option 2: Solve (31)
if |L̂(1) or (2)

k − L̂(1) or (2)
k−1 | < tol then

break
else
k ← k + 1

end if
end while
output: {S?, ζ?,Z?,Π?} ← {Sk, ζk,Zk,Πk}

algorithm ensures that the spectrum Λ(Acl) of the closed-loop
system matrix Acl = A−BuΠK lies on the left-half plane.

The slicing routine takes as an input the real-valued solution
to the actuator selection Π∗ with π∗i ∈ [0, 1]. First, the entries
of π∗ are sorted in decreasing order, and the minimum s-
actuator selection is obtained such that the logistic constraints
Hπ ≤ h are satisfied, given that π ∈ {0, 1}N . This
ensures that we start the slicing algorithm from the minimum
number of actuators, while still satisfying all of the actuator-
related constraints in (4). The algorithm proceeds by activating
the s-highest ranked actuators, followed by solving the L∞
SDP (4a)–(4c) for Z and S. Then, the maximum real part of
the eigenvalues of Acl, namely λm, is obtained. If λm < 0,
the algorithm exits returning the actuator selection Πs and the
associated feedback gain.

The algorithm allows the addition of other user-defined
requirements, such as a minimum performance index ζ or
a maximum λm, which can guarantee a minimal distance
to instability. It can also be generalized to other control or
estimation problems. Notice that Algorithm 2 terminates when
λm < 0 and the SDP (4a)–(4c) is solved. These conditions
ensure by definition that the system is controllable for the
resulting binary actuator combination. In short, the slicing
algorithm guarantees the controllability of the system.

Algorithm 2 A Slicing Algorithm to Recover the Integer
Selection from (15), (24), and (31)

input: Π∗ from Algorithm 1, set λm =∞
Sort π∗ in a decreasing order
s = minimum

π∈{0,1}N ,Hπ≤h
1>Nπ

while λm ≥ 0 do
Activate the s-highest ranked actuators in π
Obtain Πs = blkdiag(π1Inu1

, . . . , πNInuN
)

Given Π = Πs, solve the SDP (4a)–(4c) for Z and S
λm = max(real(λ)) where λ ∈ Λ(A−BuΠsZS

−1)
s← s+ 1

end while
output: Π∗s,K

∗ = Z∗(S∗)−1

The actuator selection and associated control law returned
by Algorithm 2 yield an upper bound U to the optimal value
of the actuator selection problem (3).


