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Abstract—In cyber-physical systems (CPS), the problem of
controlling resources can be depicted as an actuator selection
problem. Given a large library of actuators and a control
objective, what is the least number of actuators to be selected,
and what is the corresponding optimal control law? These
dynamic design questions are inherently coupled. In this paper,
we show that a breadth of actuator selection and optimal control
problems (stabilizability, robust and LQR control routines,
control of uncertain, nonlinear systems) that do not satisfy the
submodularity property lead to the formulation of two classes of
combinatorial optimization routines for unstable CPSs: mixed-
integer semidefinite programs and mixed-integer bilinear matrix
inequalities. Branch-and-bound and greedy algorithms are pro-
posed to address the computational complexity, and numerical
results are given to illustrate the proposed formulations.

Index Terms—Actuator selection, cyber-physical systems, lin-
ear matrix inequalities, controller design, greedy algorithms.

I. INTRODUCTION & BRIEF LITERATURE REVIEW

The focus of this paper is on the actuator selection prob-
lem in CPSs: Given a library of actuators and a qualita-
tive/quantitative control objective, what is the least number
of actuators to be selected, and what is the corresponding
optimal control law? Enabling more actuators often results in
a higher operational cost. Hence, minimizing the number of
actuators while maintaining stability and generating optimal
control laws can prove to be superior. The two design
questions (selection of a set of actuators and the design of
a control law given this selection) are inherently coupled, as
we demonstrate through this paper.

To quantify controllability of CPSs and dynamic systems,
different qualitative and quantitative methods have been
developed, especially when the selection of actuators and
sensors is considered; see survey paper [1] and the following
references [2]–[4]. The reader is referred to [5], [6] for a
brief, yet thoroughly informative summary of the most recent
research results on actuator selection for dynamic systems.

The actuator selection problem is a combinatorial problem,
as the choice is to either activate/deactivate a subset of
actuators at a given time to achieve a certain controllability
or stabilizability metric. Unfortunately, little is understood
about these classes of combinatorial routines [5]. A simple
approach to solve these problems is via brute force: test all
the combinations of actuators to be used and choose the
selection which either satisfies a control energy minimization
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functional (such as the controllability Gramian) or a stabi-
lizability/controllability metric. Obviously, this brute force
approach is infeasible when the number of control nodes is
large. Sub-optimal greedy algorithms have been developed to
solve this combinatorial challenge [7].

Moreover, the authors in [5] prove that if the metric
for the actuator selection is based on the controllability
Gramian, which is shown to satisfy the submodular property,
then efficient optimization can be implemented to solve the
aforementioned combinatorial optimization. Specifically, the
authors show that the mapping from possible placements
to the trace of the associated Gramian is a modular set
function [5]. This implies that a simple optimization can be
implemented which computes the metric individually for all
possible actuator placement combination, sorts the outcome,
and selects the best combination that minimizes the Gramian
energy metric [5], [6]. This important result proves to be
superior to solve the actuator selection problem when com-
pared with other algorithms. Other controllability Gramian
metrics are proved to be submodular [8]. In addition, many
other problems featuring supermodularity or submodularity
are discussed in [2], [9], [10].

The approaches presented in [5] assume that the system
is initially stable with strict applications to linear, time-
invariant systems with the controllability Gramian and its
derivatives as the control metric. Other formulations also
assume a rather limited control objective and dynamical
system representation [2], [8], [10]. If the system dynamics
are assumed to be unstable, nonlinear or perturbed, the
control metric is different from the Gramian (i.e., classical
optimal control metrics such as the LQR), and the derivation
of a stabilizing control law is simultaneously required with
actuator selection, the set function will no longer satisfy
the submodular property—as illustrated in [6]. For example,
the authors in [6], [11] prove that classical optimal control
and estimation routines do not satisfy the submodularity or
supermodularity properties—which are essential in reducing
the computational burden in the actuator selection problem,
as discussed above. Since these properties are not satisfied
for generic dynamical systems, the aim of this paper is to
address this research challenge via a framework that can be
inclusive to a wide range of optimal control formulations
while optimizing controllability metrics by optimally select-
ing actuators and designing control laws for unstable CPSs.
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II. PROBLEM DESCRIPTION & PAPER STRUCTURE

CPS Model and Problem Formulation In this paper, we
consider a general class of nonlinear, interconnected nodes
corresponding to a dynamic CPS which can be modeled as
follows:

ẋ(t) = Ax(t) +Buu(t) +Bww(t) + φ(x). (1)

Nodes are connected via a network; suppose that there are N
nodes in the network the set V = {1, . . . , N} defines the set
of nodes. The global state x(t) ∈ Rnx consists of each nodal
agent’s states xi ∈ Rnxi , i = 1, . . . , N ; x = [x>1 , . . . ,x

>
N ]>.

The dynamics of the nodes in a CPS are assumed to be
coupled through the state-vector evolution (1). Likewise, each
nodal agent has a set of available inputs ui ∈ Rnui . The map-
ping from the input to state vector can thus be written in the
form Buu = blkdiag(Bu1 , . . . ,BuN

)[u>1 , . . . ,u
>
N ]>.The

system nonlinearity can be expressed in terms of the nodal
agent nonlinearities as φ(x) ∈ Rnx . In summary, the system
has nx =

∑N
i=1 nxi

states, nu =
∑N
i=1 nui

control inputs,
and a maximum of nw unknown inputs (UI).

The objective of the methods presented in this paper is
two-fold, namely, to model the actuator selection problem
and to propose scalable optimization methods to solve this
problem in large-scale CPSs. A typical CPS comprises a very
large number of networked dynamical systems. In order to
formally state the actuator selection problem, define binary
variables πi, i = 1, . . . , N , where πi = 1 if the actuator of
the i-th nodal agent is selected, and 0 otherwise. Variables
πi are organized in a vector π. It is supposed for now that
the selection of actuators remains constant over the period
starting with the system initialization until the steady state
is reached. This assumption is not restrictive as a multi-
period actuator selection and optimal control problem can
be formulated. This formulation can incorporate the changes
in the state-space parameters of the system, and the varying
selection of actuators.

Another aim of the paper is to simultaneously obtain an
optimal control law u∗(t) and an actuator selection π∗ from a
given, fixed library of actuators to optimize a control metric.
Leveraging SDP Formulations The common instrument that
we use to mathematically formulate the array of problems
within the previously outlined methods is matrix inequalities
and semidefinite programs (SDPs). The formulations in this
paper are building upon semidefinite programming formula-
tions for robust control and stabilizability routines. This idea
is natural: SDP solvers have become efficient and robust over
the past 10–20 years.

The second major reason that makes SDP formulations of
optimal control for CPSs lucrative is that SDPs facilitate the
inclusion of operational and logistic constraints on the control
law or the generated gain matrices. To set the stage, we
first succinctly list control and stabilizability formulations in
terms of LMIs in Table I. For each entry, the system dynam-
ics, the controller form, the optimization variables, and the
optimization problem are stated. The listed formulations are
instrumental in formalizing the actuator selection problem.

Paper Structure Section III introduces a formulation for
the actuator selection of an LTI system. Section IV inves-
tigates the selection problem for other classes of dynamic
systems resulting in complex combinatorial problem mixed
integer bilinear matrix inequality constraints. To address this
computational complexity, we propose a branch-and-bound
algorithm in Section IV and a greedy, sub-optimal algorithms
in Section V. Section VI presents numerical results.

III. ACTUATOR SELECTION FOR STABILIZABILITY

Here, we focus on the simplest stabilizability problem
listed in the first row of Table I. With the introduction of
the actuator selection variables, the system dynamics evolve
as follows:

ẋ(t) = Ax(t) +BuΠu(t), (2)

where Π = blkdiag(π1Inu1
, . . . , πNInuN

) is placing vector
π in a block diagonal matrix of appropriate dimensions
(variables Π and π are thus used interchangeably). Following
the first entry in Table I, stabilizability is ensured if the matrix
inequality1

AS + SA> � BuΠΠB>u

is solved in the variables S and π. Note that the stabilizing
state feedback controller can be obtained as follows: u(t) =
Kx(t) = − 1

2B
>
u S
−1x(t). In practice it may be desirable

to minimize the number of active actuators. Noticing that
Π2 = Π, we obtain:

minimize
S,Π

N∑
i=1

πi (3a)

subject to AS + SA> � BuΠB
>
u (3b)

S = S> � O; π ∈ {0, 1}N . (3c)

The previous problem is a mixed-integer SDP (MISDP).
Specifically, the problem is an SDP jointly in the variables S
and Π, if the integrality constraints (πi ∈ {0, 1}) are ignored.
The widely used convex optimization modeling toolboxes
CVX and YALMIP have been expanded to incorporate mod-
eling of mixed-integer convex programs [16], [17] and inter-
face corresponding general-purpose SDP solvers combined
with implementations of branch-and-bound (BB) methods.
The BB method is essentially a smart and efficient way to
run an exhaustive search over all possible 2N combinations
of the binary variables πi’s. Notice that if the πi’s are fixed,
the resulting problem is an SDP. At most 2N SDPs are then
solved in the worst case run of a BB method. Nevertheless,
the empirical complexity of BB algorithms is much smaller
than the worst-case one, and thus, they are among the state-
of-the-art in solving mixed-integer convex programs.

A BB algorithm can find the global solution of (3), but
may require an impractically long time. This motivates the
development of approximations or suboptimal methods to
solve (3). One such immediate possibility is to relax the
binary constraint πi ∈ {0, 1} to 0 ≤ πi ≤ 1, which yields an

1Originally, the stabilizability LMI is written as AS+SA> � σBuB>u
where σ > 0 is a constant variable to be solved for simultaneously with S.
However, it is customary to assume that σ = 1 as discussed in [14, Ch.7.2].
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TABLE I
THE TABLE SHOWS HOW DESIGN OF CONTROLLERS FOR VARIOUS SYSTEMS CAN BE PERFORMED VIA SDP

FORMULATIONS [12]–[15]. MANY OTHER FORMULATIONS FOLLOW SIMILAR STRUCTURE, AND ARE OMITTED FOR BREVITY.

CPS Dynamics & Design Objective Control Design via SDPs

Stabilizability
ẋ = Ax + Buu

u = − 1
2
σB>u S−1x

Variables: S, σ (can assume σ = 1 [14])

AS + SA> � σBuB>u

Robust control of perturbed systems
ẋ = Ax + Buu + Bww

z = Cx + Dww

u = −Kx = −ZS−1x

Variables: Z,S, ζ

min ζ

s.t.

[
AS + SA> −BuZ −Z>B>u + 2αS Bw

B>w −2αI

]
� O−S O SC>

O −I D>w
CS Dw −ζI

 � O

LQR Control—minimal cost
min

∫∞
t0

x(τ)Qx(τ) + u(τ)Ru(τ)dτ

s.t. ẋ = Ax + Buu

u = −R−1B>u S−1x

Variables: Y ,S

min trace(S−1)

s.t.

AS + SA> + BuY + Y >B>u S Y

S −Q−1 0

Y > 0 −R−1

 � O

Stabilizability of nonlinear systems
ẋ = Ax + Buu + f(x)

y = Cx

u = Kx = ZS−1x

Variables: Z,S, ζ, κS , κZ
f(x) bounded by:
f>(x)f(x) ≤ α2x>F>Fx

min ζ + κS + κZ

s.t.

AS + SA> + BuZ + Z>B>u I SF>

I −I O

FS O −ζI

 ≺ O

[
−κZI Z>

Z −I

]
≺ O,

[
Z I

I κSI

]
� O, ζ −

1

ᾱ2
< 0

SDP. The number of actuated systems would then be given
by rounding the optimal value

∑N
i=1 π

∗
i up to the nearest

integer, say Ñ , and picking the actuators corresponding to the
Ñ highest values of π∗i ’s. If this procedure does not guarantee
the feasibility of (3b), then additional actuators must be added
according to their ranking in π.

An alternative approach is to use greedy algorithms, which
are the theme of Section V. The next section deals with
control objectives beyond stabilizability and demonstrates
that one needs to work in a more general optimization class
than MISDPs.

IV. ACTUATOR SELECTION BEYOND STABILIZABILITY

The optimization complexity increases significantly for
all the remaining controllers of Table I, and necessitates
the development of advanced optimization algorithms with
capabilities beyond available general-purpose solvers. We
consider the controller design for the second system in Table I
which includes UIs that are inevitably present in modern
large-scale CPSs. The actuator selection variables are defined
as before. The system dynamics are given by

ẋ(t) = Ax(t) +BuΠu(t) +Bww(t), (4a)
z(t) = Cx(t) +Dww(t), (4b)

where Π = blkdiag(π1Inu1
, . . . , πNInuN

). Stabilizability
under UIs can be obtained from the solution of the following
optimization problem with variables S, Z, ζ ∈ R, and π:

minimize
S,Z,ζ,π

ζ + β

N∑
i=1

πi (5a)

subject to

 AS + SA> + 2αS
−BuΠZ −Z>ΠB>u Bw

B>w −2αI

 � O (5b)

−S O SC>

O −I D>w
CS Dw −ζI

 � O (5c)

S = S> � O; π ∈ P. (5d)

The constant β is the relative weight between the objectives
of minimizing ζ and the number of selected actuators. A
particular advantage of this formulation is that it can accom-
modate constraints on the actuator selection through the set
constraint {πi}Ni=1 ∈ P ⊆ {0, 1}N . For instance, regulatory
constraints may require certain actuators to be always on.
Likewise, system operators may wish to impose empirically
determined constraints, e.g., “always activate actuator x if
you don’t activate actuator y.”

The previous optimization problem includes a mixed-
integer bilinear matrix inequality (MIBMI) due to the term
ΠZ. The bilinearity stems from the fact that the matrix
inequality is linear in Z (with Π fixed) and vice-versa, but
not linear in both optimization variables [18]. The bilinearity
together with the integrality constraints bring about the need
for specialized optimization methods. It should be empha-
sized that (5) is not a mixed-integer convex program. For
this to be the case, the problem must be convex in all opti-
mization variables if the integrality constraints are ignored;
this condition is not satisfied due to the bilinearity. Therefore,
general-purpose mixed-integer convex programming solvers
are not applicable.

Interestingly, the design of the remaining controllers in



4

Table I largely shares the optimization complexity of prob-
lem (5). It can be easily observed that all design problems
from Row 2 onwards feature a MIBMI with the form
BuΠZ + Z>ΠB>u or a very similar one. Using (5) as a
model, custom optimization algorithms are proposed next.

A. Branch-and-Bound Algorithm

Here, we describe a custom basic branch-and-bound (BB)
algorithm to solve (5). It is worth noting that general-purpose
BB algorithms as the one in e.g. [18] are not applicable here,
because they need compact regions where the variables S and
Z lie in—this is not doable here. An essential subroutine of
the BB algorithm is a method that computes a lower bound
for the optimal value of (5). We present such a method next.

1) Lower Bound: Recall that the dimensions of u(t) and
x(t) are nu and nx, respectively; notice that Z ∈ Rnu×nx .
First, change the variables πi, i = 1, . . . , N to a vector
ρ ∈ Rnu such that diag(ρ) = Π. Clearly, equalities must be
enforced among entries of ρ (e.g., the first nu1

entries must
be equal to each other); these equality constraints are sum-
marized in Hρ = 0. Introduce further a basis on the space of
nu × nx matrices defined by matrices Ejk with a single entry
1 at position (j, k), (j ∈ {1, . . . , nu}, k ∈ {1, . . . , nx}), and
0 otherwise. Given this construction, we can write

BuΠZ −Z>ΠB>u =

nu∑
j=1

nx∑
k=1

ρjZjk[BuEjk +E>jkB
>
u ].

Now, making a change of variables

q = [ρ>, vec(Z)>]> ∈ Rnu+nunw ,

and denoting the first nu entries of q as q1:nu
. The previous

summation can thus be written as
∑

(l,m)∈I qlqmFlm, where
I is an appropriate set of indices and Flm are all known
matrices given by BuEjk +E>jkB

>
u . Problem (5) becomes

equivalent to an optimization problem with S, q, and ζ as
variables—as shown in (6).

minimize
S,q,ζ

ζ + β
∑

i∈{1,1+nu1
,...,1+nuN−1

}

qi (6a)

subject toAS + SA> + 2αS
−∑(l,m)∈I qlqmFlm Bw

B>w −2αI

 � O (6b)

−S O SC>

O −I D>w
CS Dw −ζI

 � O (6c)

S = S> � O; Hq1:nu = 0; q1:nu ∈ {0, 1}nu .(6d)

Notice that (6b) is still a BMI due to the presence of the
products qlqm. The previous manipulations enable us to
develop an SDP relaxation of the BMI [19]. Specifically,
introduce additional optimization variables vlm = qlqm
(l,m = 1, . . . , nu + nunw), which are organized in matrix
V . The equalities vlm = qlqm are equivalent to[

V q
q> 1

]
� O, rank

[
V q
q> 1

]
= 1.

By dropping the rank constraint and relaxing the binary
variables (q1:m) to the interval [0, 1], a lower bound on the
optimal value of (5) is obtained.

2) Branching: Returning to the BB algorithm, and after
a lower bound on the optimal value of (5) is obtained
as described, an upper bound can be obtained by fixing
arbitrarily the binary variables πi, and solving the resulting
SDP. Define as L and U the previous bounds. The BB
algorithm forms a tree corresponding to the choices for πi.

First, a random index i ∈ {1, . . . , N} is selected. Then,
the lower and upper bounds on (5) with πi = 0 and πi = 1
are computed, using the methods previously described; this
yields two children nodes on the tree. A node on the tree
whose lower bound is greater than U is pruned, and the
corresponding value of πi is not further considered. The
procedure continues by further branching. If the problem is
convex, this procedure is guaranteed to result in a node where
L = U , and then, global optimality is guaranteed. But for
the problem at hand there is no guarantee that L = U at
any point, because the problem involves a MIBMI which is
not convex. In particular, there is no guarantee that the lower
bounding process described previously results will yield zero
duality gap. The overall solution in this case is suboptimal.

3) Improvements: The previous BB algorithm can be
improved in several fronts. First, it is not hard to see that
the number of binary variables was increased here with the
introduction of variable ρ and the constraints Hρ = 0 in
order to clarify the exposition. A more economical represen-
tation of (6) is thus possible. Second, the branching process
was based on random selection of the index i = 1, . . . , N ;
more elaborate methods that are guided by the value of
the optimized relaxed πi are possible. Finally, a tighter
lower bounding procedure benefits the practical convergence
properties of the algorithm, based on the discussion about
sub-optimality in Section IV-A2. Note that the proposed BB
algorithm can seamlessly be applied to other SDP formula-
tions as in Table I.
V. ACTUATION SELECTION VIA SUBOPTIMAL ROUTINES

An alternative to the mixed-integer optimization approach
described above is combinatorial greedy algorithms. Greedy
algorithms for actuator selection are studied in [20] for
Gramian-based metrics and in [6] for optimal feedback
control performance metrics in discrete time. We briefly
summarize and extend this approach. By focusing on an LQR
optimal control metric for concreteness, though many other
metrics are possible.

The actuator selection problem can be described as a set
function optimization problem. For any given π, let Γ =
{i ∈ {1, ..., N} | πi = 1}; note that Γ ⊆ {1, ..., N}. Let
Bu,Γ = BuΠ, the input matrix associated with the selection
Γ, and RΓ the input cost submatrix of rows and columns
associated with Γ. Let XΓ be the solution to the algebraic
Riccati equation

ATXΓ +XΓA−XΓBu,ΓRΓB
T
u,ΓXΓ +Q = 0. (7)

Let f : 2{1,...,N} → R be the set function that maps a given
actuator selection to the optimal LQR cost that it achieves,
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i.e., f(Γ) = trace(XΓ). Then the actuator selection problem
of selecting k actuators to optimize LQR performance is the
cardinality constrained set function optimization problem

minimize
Γ⊂{1,...,N}

trace(XΓ); subject to |Γ| = k. (8)

A common heuristic for solving this problem is a greedy
algorithm; see Algorithm 1, which simply adds at each step
the actuator that provides the best marginal LQR performance
given the actuators which have already been added.

Algorithm 1 A greedy heuristic for set function optimization.
Γ← ∅
while |Γ| ≤ k do

e? = argmin
e∈V\Γ

f(Γ ∪ {e})

Γ← Γ ∪ {e?}
end while
Γ? ← Γ

However, when A is unstable, it is possible that small
actuator subsets may fail to provide closed-loop stability,
in which case the optimal value of (8) may be infinite for
each actuator in an iteration. In this case, one can instead
work with an alternative Riccati equation involving X−1

Γ .
Multiplying (7) on the left and right by X−1

Γ and then by
−1, while setting X−1

Γ = PΓ yields the Riccati equation

−PΓA
> −APΓ − PΓQPΓ +Bu,ΓRΓB

>
u,Γ = 0 (9)

associated with the linear dynamical system
ż(t) = −A>z(t) + v(t) with cost function∫∞

0
[z(τ)>Bu,ΓRΓB

>
u,Γz(τ) + v(τ)Q−1v(τ)]dτ . When an

actuator subset fails to stabilize the system, (7) will not have
a stabilizing solution, whereas (9) always has a stabilizing
solution since the input matrix of the associated system is
identity. The null space of inverse cost matrix PΓ coincides
with the unstabilizable subspace, causing XΓ to be infinite
in these directions. In the stabilizable subspace, PΓ gives
valuable quantitative information about the effectiveness of
a particular actuator subset for controlling the system, even
when it fails to stabilize. For unstable systems, the greedy
algorithm can thus be modified to minimize the set function
trace((PΓ)†), where (PΓ)† denotes the Moore-Penrose
pseudo-inverse of the solution to (9); see Algorithm 2. In

Algorithm 2 A greedy heuristic for (8) with unstable A.
Γ← ∅
while |Γ| ≤ k do

e? = argmin
e∈V\Γ

trace((PΓ)†)

Γ← Γ ∪ {e?}
end while
Γ? ← Γ

other problems, it may be desired to add actuators until
some constraint is met, rather than adding a fixed number
of actuators. For example, one may want to add a set of
actuators to optimize LQR performance and stabilize the
system:

minimize
Γ⊂{1,...,N}

trace(P−1
Γ ) (10a)

subject to (A,Bu,Γ) is stabilizable. (10b)

The greedy algorithm can be modified to add actuators until
stabilizability is achieved by replacing the condition in the
while loop in Algorithm 2 with rank(PΓ) < nx.

VI. NUMERICAL TESTS

The stabilizability formulation for actuator selection and
design are tested on a network with a N = 15 unstable
nodes [21]. The 15 nodes are randomly placed on a square
of dimensions 3×3 units. Fig. 1-(a) shows the location of the
nodes used here. The number of states per node is nxi

= 2,
and the number of inputs per node is nui

= 1, that is, each
column of Bu corresponds to a node. The actuator selection
problem is to select the columns of so that the pair (A,BuΠ)
stabilizable. The formulation (3) is tested first. In order to
ensure that the resulting matrix S is positive definite, the
constraint S � 10−5I30 is enforced. The problem is solved
with YALMIP’s BB algorithm combined with SeDuMi as an
SDP solver [22]. Table II lists the selected actuators.

The optimal selection is compared with the simple greedy
algorithm where the columns of Bu are considered one after
the other until the LMI (3b) with S � 10−5I30 is satis-
fied (greedy algorithm with linear selection). An alternative
greedy algorithm is to randomly choose columns of Bu until
the previous inequalities are satisfied. This algorithm was
run three times and the run with the smallest number of
selected actuators is reported in Table II. For this algorithm,
the selected columns of Bu are entered sorted in the LMI
(that is, not with the random order).

The optimal selection method reveals that the smallest
number of actuators that makes the pair (A,BuΠ) stabiliz-
able is only 9 out of the available 15. The greedy algorithm
with linear selection must consider the first 10 columns ofBu

in order to satisfy the stabilizability condition. The greedy
algorithm with randomization yields also 10 actuators; see
Table II.

TABLE II
SELECTED ACTUATORS USING OPTIMAL AND GREEDY ALGORITHMS

Method Actuator Selection
∑

i πi

Optimal 2, 4, 6–12 9*
Greedy with linear selection 1–10 10

Greedy with 3 randomizations 1, 3–7, 9, 13–15 10

Fig. 1-(b) and Fig. 1-(c) depict a comparison between the
norms of of control actions and state trajectories for the 15
control inputs and 30 states. Specifically, at each time-instant,
the state norm ‖x(t)‖2 and input ‖u(t)‖2 are computed for
the optimal solution of the MISDP and the greedy algorithms
(with linear selection of the columns of Bu). The figures
illustrate the state-transients and the control actions are both
smaller for the optimal case which is expected. The state and
control plots for the greedy algorithm with randomization is
omitted as it returns results nearly identical to the greedy
case.

Table III shows numerical results as σ (the positive scalar
optimization variable) changes; see Section III and Table I.



6

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

1
2

3
4

5

6

78

9
10

11

12

13

14

15

(a)

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

Time (second)

||x
(t
)||
,||

u
(t
)||

 

 

||x(t)||
||u(t)||

(b)

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

Time (second)

||x
(t
)||
,||

u
(t
)||

 

 

||x(t)||
||u(t)||

(c)

Fig. 1. (a) Placement of 15 nodes. (b) Norm of the optimal state and control input trajectory using the optimal solution to the MISDP (3) with
∑

i πi = 9. The state-feedback
control input drives the system to stability. (c) Norm of the optimal state and control input trajectory using the greedy algorithm for solving the MISDP (3)with

∑
i πi = 10.

The state-feedback control input drives the system to stability, although the control input magnitude is higher than the optimal solution.

TABLE III
COMPARISON BETWEEN THE OPTIMAL SOLUTION (COLUMNS 2–4) AND

GREEDY SOLUTION (COLUMNS 5–7) TO THE STABILIZABILITY PROBLEM
WITH ACTUATOR SELECTION FOR LTI SYSTEMS FOR DIFFERENT σ.

σ Σπi CL-St. ∆t(s)
0.6 8 7 602.1
0.55 8 7 668.9
0.5 8 7 828.3
0.45 9 3 1527.5
0.4 9 3 669.5
0.35 9 3 627.7
0.3 9 3 462.2
0.25 9 3 363.2
0.2 9 7 542.1
0.15 10 3 812.6
0.1 10 3 3925.8

Σπi CL-St. ∆t(s)
10 3 12.5
10 3 9.7
10 3 9.3
10 3 9.3
10 3 9.7
10 3 9.7
10 3 9.8
10 3 9.4
11 3 11.0
12 3 11.6
12 3 11.3

Columns 2–4 reflect the solution from the optimal MISDP,
whereas Columns 5–7 show the solution via the greedy
algorithm with linear selection—as σ changes. The table also
includes the simulation time ∆t(s) and whether the closed-
loop system is stable (Cl-St.) or not. Due to numerical errors,
and even though the LMIs are satisfied, the closed-loop
system may not be stable unfortunately. Hence, it is necessary
to check whether the closed-loop system is stable or not,
even if a feasible solution is obtained. Most importantly,
the optimal algorithm returned 9 actuators as the minimum
number of actuators needed, assuming that the closed loop
stability is required. Note that the computational time for
greedy algorithms (as expected) is much smaller than the
MISDP solution. For large-scale systems, the computational
time will increase if sparsity is not considered, but that will
generate a smaller number of actuators (and a better transient
state performance). In other words, one can trade optimality
for tractability via sub-optimal, greedy routines.
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