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Abstract— We present a distributed control strategy for a

team of fixed-wing Unmanned Aerial Vehicles (UAVs), such

that they achieve a desired formation and travel along a

desired direction at a constant altitude. We describe the motion

of UAVs with the kinematic unicycle model, and impose the

constraints that the airspeed and turning rate of UAVs must

satisfy some practical bounds. Based on this model, a control

strategy is proposed, and local convergence of the team to the

desired formation and travel direction is proved. The control

direction returned by our strategy is well-suited as a high-level

motion planning input to a low-level UAV autopilot, which can

compensate for the aerodynamics, wind effects, disturbances,

etc., that are not accounted for in the unicycle model. The

proposed strategy is fully distributed and can be implemented

using relative position measurements acquired by UAVs in their

local coordinate frames. Furthermore, UAVs do not need to

communicate. Simulations are provided to typify the proposed

strategy.

Index Terms— Unmanned aerial vehicles, multi-agent system,

distributed formation control.

SUPPLEMENTARY MATERIAL

Video of the simulations is available at
https://youtu.be/fCpwfsnTVNY, and the simula-
tion code can be accessed at https://goo.gl/QH5qhw.

I. INTRODUCTION

In recent years, the Unmanned Aerial Vehicle (UAV)
technology has reached a level of maturity that it is now
possible to deploy hundreds of UAVs in a mission. The large
number of deployed vehicles allows a team of small, inex-
pensive UAVs to efficiently execute missions such as search
and rescue [1], [2], inspection [3], [4], and surveillance [5].
In these applications, the ability to fly the team of UAVs
from one waypoint to another is the fundamental building
block upon which more sophisticated navigation capabilities
can be built.

As the number of deployed UAVs increases, controlling
agents from a command center becomes less practical. This is
due to the limited communication bandwidth, which becomes
saturated as the number of agents increases. Furthermore, the
centralized control lacks resilience to communication loss,
hardware failure, and malicious attacks such as jamming
or spoofing of the communication signal. Hence, UAVs in
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Fig. 1. A team of UAVs moving in triangle formation along the positive
x-direction.

large teams should have a level of autonomy to individually
plan their motion in accordance with the team to perform
the desired task. To navigate the UAVs between waypoints,
distributed formation control techniques can be employed,
where the UAVs autonomously achieve a desired formation
and travel toward the desired destination (e.g., see Fig. 1).

In this work, we propose a distributed guidance strategy
to navigate a team of fixed-wing UAVs at a constant altitude
toward a desired waypoint. Our strategy is based on using
the unicycle kinematic model for UAVs’ motion, where the
airspeed and turning rate of UAVs must satisfy practical
bounds known as the Dubins constraints [6]. Given a set
of control gains and a desired destination, which can be
communicated to the agents before the mission, onboard
sensor measurements of each UAV can be used to compute
a control direction. This control is well-suited as a high-
level motion planning input to a low-level UAV autopilot,
which can compensate for the aerodynamics, wind effects,
disturbances, etc., that are not accounted for in the unicycle
model. Advantages of the proposed strategy over centrali-
zed methods include better scalability, naturally parallelized
computation, resilience to communication loss and hardware
failure, and robustness to uncertainty and lack of global
knowledge. In particular, the UAVs can achieve the formation
using only the local relative position measurements of their
neighbors, and without communicating with each other. This
increases the stealth and robustness of the team to jamming.
Simulations are presented to typify the performance of the
proposed strategy.

The distributed formation control used in this work is
inspired by [7], [8], where a linear control for agents with
single-integrator model is developed. Extension of the forma-
tion control strategy to the UAVs’ unicycle model is inspired
by [9], [10], where application of gradient-descent control
strategies to agents with nonholonomic motion constraints
have been studied. Unlike the aforementioned work, and
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our previous work on formation control [11], [12] where
the desired formation is stationary, here the agents should
achieve the formation while moving toward a destination.
This, together with the unicycle dynamics with Dubins
constraints are the main novelties of this paper.

The organization of the paper is as follows. The nota-
tion and assumptions used in the paper are introduced in
Section II. In Section III, the control law for single-integrator
agents is introduced, and an optimization problem to find
stabilizing control gains is presented. In Section IV, unicycle
kinematic model with Dubins constraint is introduced, and
the formation control is applied to this model. Simulations
are presented in Section V, followed by concluding remarks
in Section VI.

II. NOTATION AND ASSUMPTIONS

We consider a team of n 2 N vehicles and describe the
sensing topology among agents by an undirected graph G =
(V,E), where V :=Nn is the set of vertices, and E⇢V⇥V is
the set of edges. Each vertex of the graph represents an agent.
An edge from vertex i 2 V to j 2 V indicates that agents i
and j can measure the relative position of each other in their
local coordinate frames. In such a case, agents i and j are
called neighbors. The set of neighbors of agent i is denoted
by Ni := { j 2 V |(i, j) 2 E}.

Throughout this work, we assume that the altitude of
the UAVs are controlled separately, and the sensing topo-
logy among UAVs is fixed through all time. Furthermore,
we assume that the UAVs move through an unobstructed
airspace, where collision avoidance is not considered. In
section VI we provide additional remarks on how to relax
these assumptions and augment the control law to incorporate
collision avoidance.

III. FORMATION CONTROL FOR SINGLE-INTEGRATOR
AGENTS

In this section, we present a distributed formation control
strategy and a gain design approach based on optimization
for agents with single-integrator dynamics. The results of
this section are a cornerstone of the UAV control strategy
discussed in the next section.

A. Control for Agents with Single-integrator Model
Consider n agents with the single integrator dynamics

q̇i = ui, i 2 {1, 2, . . . , n}, (1)

where qi := [xi, yi]T 2 R2 is the coordinate of agent i in a
common global coordinate frame (unknown to agents), and
ui is the control law, that we define as

ui := Â
j2Ni

Ai j (q j �qi), (2)

where Ai j 2 R2⇥2 are constant control gain matrices to be
determined. By constraining the gain matrices to the form

Ai j :=


ai j bi j
�bi j ai j

�
, ai j, bi j 2 R, (3)
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Fig. 2. Example of three agents with agents 2 and 3 neighbors of agent 1.

it can be shown that the closed-loop dynamics with coor-
dinates qi and q j expressed in agents’ local coordinate
frames are identical to the case that coordinates are expressed
in a common global frame (for more details see [12]).
Therefore, while the implementation is distributed and uses
the local relative position measurements, the control strategy
can be designed and analyzed in a global coordinate frame.
The geometric intuition behind the control strategy (2) is
explained in the following example.

Example 1. Consider three agents in Fig. 2, where agents
2 and 3 are neighbors of agent 1. Let q2 = [2, 3]> and q3 =
[3, 1]> denote the position of neighbors in agent 1’s local
coordinate frame, and assume that control gains for agent 1
are given as

A12 =


2 �1
1 2

�
, A13 =


�1 3
�3 �1

�
. (4)

From (2), the control vector for agent 1 is computed as

u1 = A12 q2 +A13 q3 =


1
�2

�
, (5)

which is shown in the figure and can be interpreted geome-
trically as follows. At any instance of time, agent 1 moves
along the control vector with the speed equal to the vector’s
magnitude. Note that due to the special structure of gain
matrices A12, A13, they can be interpreted as scaled rotation
matrices that rotate and scale vectors connecting agent 1 to
its neighbors. One can see that this action is independent of
agent 1’s coordinate frame position and orientation, hence,
q1 and q2 can replaced by their coordinates in a global
coordinate frame.

Let q := [q>1 , q>2 , . . . ,q
>
n ]

> 2 R2n, and u :=
[u>1 , u>2 , . . . ,u

>
n ]

> 2 R2n denote the aggregate state and
control vectors of all agents, respectively. Using this
notation, the closed-loop dynamics can be expressed as

q̇ = Aq, (6)

where

A=

2

666664

�Ân
j=2 A1 j A12 · · · A1n
A21 �Ân

j=1
j 6=2

A2 j · · · A2n

...
. . .

...
An1 An2 · · · �Ân�1

j=1 An j

3

777775
2R2n⇥2n,

(7)



is the aggregate state matrix that consists of Ai j’s, and has
block Laplacian structure. Note that if j /2Ni, then Ai j in (7)
is zero. Also, the 2⇥2 diagonal blocks are the negative sum
of the rest of the blocks on the same row. From the block
Laplacian structure of A, it follows that vectors

1 := [1, 0, 1, 0, . . . , 1, 0]> 2 R2n

1̄ := [0, 1, 0, 1, . . . , 0, 1]> 2 R2n (8)

are in the kernel1 of A.
Let q⇤ 2 R2n denote the coordinates of agents in an

arbitrary embedding of the desired formation. That is, coor-
dinates of agents at their desired formation in a coordinate
frame that is chosen arbitrarily. Further, let q̄⇤ 2 R2n be the
coordinates of agents in this embedding when the formation
is rotated by 90 degrees about the origin.

Theorem 1. Consider a team of n single-integrator agents
with closed-loop dynamics (6). Assume that A is such that

• Vectors 1, 1̄, q⇤ and q̄⇤ are in the kernel of A,
• Other than the four zero eigenvalues associated with

these eigenvectors, the remaining eigenvalues of A have
negative real parts.

Then, starting from any initial condition, agents converge to
the desired formation up to a rotation, translation, and a
non-negative scale factor.

Proof of Theorem 1 follows from the following Lemma,
which is well-known from the linear systems theory (for
more details on the proof see Theorem 1 in [12]).

Lemma 1. Suppose that nonzero eigenvalues of A have nega-
tive real parts. Then, all trajectories of q̇ = Aq exponentially
converge to the kernel of A.

The conclusion of Theorem 1 follows from Lemma 1
and noting that the kernel of A corresponds to all rotations,
translations, and non-negative scale factors of the desired
formation. We should point out that the kernel vectors 1, 1̄

correspond to the case where all agents coincide, which can
be considered as the desired formation achieved with the zero
scale. Further, note that if agents are not initially coinciding,
they will never converge to this coinciding equilibrium. To
find a gain matrix that meets the conditions of the Theorem,
one can formulate an optimization problem.

B. Formation Control With Fixed Scale
To fix the scale of the final formation, control law (2) can

be augmented by a bounded smooth map f : R! R as

ui = Â
j2Ni

Ai j (q j �qi)+ f (di j �d⇤
i j)(q j �qi), (9)

where di j := kq j � qik denote the distance between agent i
and j, d⇤

i j 2R is its desired value, and f is chosen such that
x f (x)> 0 for x 6= 0, and f (0) = 0. Possible choices for f are
f : x 7! 1

k arctan(x) or f : x 7! 1
k tanh(x), where k > 0 is an

arbitrary constant. The role of f in (9) is to pull agents toward

1If A 2 Rn⇥n, the kernel or null space of A is defined as
ker(A) := {v 2 Rn |Av = 0}.

their neighbors when the distance between them is larger than
the desired value, and vice versa. By linearizing the closed-
loop dynamics, it is straightforward to show that the desired
formation is a locally asymptotically stable equilibrium.
Furthermore, global stability of the system follows from the
assumption that f is bounded. The study of global asymptotic
stability of the desired formation requires additional analysis,
and will be a topic of future work.

C. Control Gain Design via Optimization
Given a desired formation, we proceed by showing how

a stabilizing gain matrix can be designed to meet the con-
ditions of Theorem 1. Let q⇤ and q̄⇤ respectively denote
the coordinates of agents in an arbitrary embedding of the
desired formation and 90� rotated desired formation. Define
N := [q⇤, q̄⇤, 1, 1̄]2R2n⇥4, where 1, 1̄ are given in (8). Notice
that N is a set of bases for the kernal of A. Let U SV> =N be
the (full) singular value decomposition (SVD) of N, where

U = [Q̄, Q] 2 R2n⇥2n, (10)

with Q 2 R2n⇥(2n�4) defined as the last 2n� 4 columns of
U .

Lemma 2. Using Q in (10), define

Ā := Q>AQ 2 R(2n�4)⇥(2n�4). (11)

Matrices A and Ā have the same set of nonzero eigenvalues.

Proof of Lemma 2 follows by observing that U is an
orthogonal matrix, and range(Q̄) = range(N). Therefore Ā
is the projection of A onto the orthogonal complement of
range(N). Effectively, the projection (11) removes the zero
eigenvalues of A and allows us to formulate the stability of
A in terms of Ā.

Under the assumption that the sensing topology is undi-
rected, gain matrices A and Ā are symmetric, and therefore
their eigenvalues are real and can be ordered. In this case, a
stabilizing gain matrix A is found by solving the optimization
problem

A = argmax
ai j ,bi j

l1(�Ā) (12)

subject to AN = 0

where l1(·) denote the smallest eigenvalue of a matrix. Note
that problem (12) is convex [13], and can be formulated as
the semidefinite programming (SDP) problem

A = argmax
ai j ,bi j ,g

g (13)

subject to Ā+ g I � 0
AN = 0

where the first constraint is a linear matrix inequality. In
recent years, effective algorithms for numerically solving
SDPs have been developed and are now available [14]. For
our simulations, we used CVX [15], which is available free
online, to solve problem (12). The proposed approach for fin-
ding stabilizing gain matrix A is summarized in Algorithm 1.



Algorithm 1: Formation control gain design.
input : Desired formation coordinates q⇤.
output: Gain matrix A.

step 1: Let N := [q⇤, q̄⇤, 1, 1̄].
step 2: Compute SVD of N =U SV>.
step 3: Define Q as the last 2n�4 columns of U .
step 4: Solve (12) using a SDP solver.

We point out that the optimization approach used here
relies on a centralized paradigm and knowledge of the
sensing topology. Once gains are computed, they can be
transmitted to agents before the mission. Hence, agents can
use the prescribed gains during the mission to achieve the
desired formation without a need for communication. If
agents can communicate, distributed optimization techniques
can be used to solve (13) without relying on the complete
knowledge of the sensing topology. An example of such
distributed design can be found in [16].

IV. FORMATION CONTROL FOR UAVS

In this section, we introduce the unicycle kinematic model
with Dubins constraints, which provides a good description
of the UAV’s motion that is well suited for a high-level
path planning autopilot control input. Based on this model,
we develop a guidance strategy for UAVs such that they
autonomously achieve a desired formation and travel along
a straight line toward a desired destination.

We first propose a strategy without enforcing the Dubins
constraints on the speed and rate of turn of aircrafts. We
then extend the control to include the Dubins constraints.
Throughout this section, we assume that the sensing graph
is undirected, and a symmetric negative semi-definite control
gain matrix A is designed for the desired formation by
solving the optimization problem (12).

A. Unicycle Kinematic Model with Dubins Constraints
Under the assumption that the autopilot is tuned to set the

airspeed and heading angle of a UAV to desired commanded
values, the unicycle kinematic model

ẋi = vi cos(qi)

ẏi = vi sin(qi)

q̇i = wi

(14)

provides a good description of the UAV’s motion at a
constant altitude. In (14), xi, yi 2R are coordinates of agent
i, and qi 2 [0, 2p) is the heading (or yaw) angle with respect
to a global coordinate frame. Scalars vi 2 R and wi 2 R are
respectively the linear and angular velocities of the UAV. A
schematic of UAV at the mentioned coordinate is illustrated
in Fig. 3.

Physical capabilities of the UAV limits the achievable
airspeed and heading angles that can be commanded. These
physical limits can be represented by the constraints

vmin  vi  vmax,

|wi|  wmax,
(15)

	

	 	

Fig. 3. Agent i at position [xi, yi]> in the global coordinate frame. The
agent’s heading vector hi makes angles qi with the x-axis. Linear and angular
velocities vi and wi are defined as projections of the control vector ui +c pi
on hi and h?i axes, respectively.

where vmax > vmin > 0 and wmax > 0 are positive real
scalars. Note that under theses constraints, the minimum turn
radius of UAV is given by Rmin =

vmin
wmax

.
Input constraints (15), together with the kinematic model

(14), are referred to as the Dubins unicycle kinematic model
[17]. Note that this model does not include aerodynamics,
wind effects, disturbances, etc., and is not sufficiently accu-
rate for low-level autopilot design, however, it is well suited
for a high level path planning and path following control
design. A comprehensive discussion of aircraft dynamic
models can be found in [18]–[22].

To derive an alternative formulation for (14) that is more
suitable for the formation control design, we define the
heading vector hi 2R2 and its perpendicular vector h?i 2R2

as

hi :=


cos(qi)
sin(qi)

�
, h?i :=


�sin(qi)
cos(qi)

�
. (16)

Seeing that ḣi = h?i q̇i, we can describe the dynamics (14)
equivalently by

q̇i = hi vi

ḣi = h?i wi.
(17)

Let q := [q>1 , q>2 , . . . , q>n ]> 2 R2n be the aggregate position
vector of all UAVs, and similarly let h 2 R2n, v 2 Rn, w 2
Rn be the aggregate heading, linear velocity, and angular
velocity vectors, respectively. Using this notation, the motion
of UAVs can be collectively expressed as

q̇ = H v

ḣ = H?w,
(18)

where matrices H, H? 2 R2n⇥n are defined as

H =

2

6664

h1 0 · · · 0
0 h2 0
...

. . .
...

0 0 · · · hn

3

7775
, H? =

2

6664

h?1 0 · · · 0
0 h?2 0
...

. . .
...

0 0 · · · h?n

3

7775
.

(19)

B. Formation Control Without Input Constraints
Consider a team of UAVs with dynamics (18). We seek

to assign guidance strategies v and w to the UAVs such
that they autonomously achieve a desired formation and



travel toward a desired destination. To simplify the analysis,
which can help with understanding the underlying idea of the
formation control design, we ignore Dubins constraints (15).
These constraints will be taken into account in the following
subsection.

Let pi 2 R2 be a constant unit vector that the i’th
UAV should travel along to reach the desired destination.
Further, let A 2 R2n⇥2n be a symmetric gain matrix de-
signed in Section III-C for agents with single-integrator
model to achieve the desired formation. Denote by ui =
Â j2Ni Ai j (q j �qi) the desired holonomic control direction
for agent i. The proposed control strategy for UAVs is as
follows. Each UAV computes the control vector ui + c pi,
where c > 0 is a constant desired speed. The projections of
this vector along the heading direction hi and its perpendi-
cular vector h?i are then calculated and used as the linear
and angular velocity commands, respectively. Specifically,
the linear and angular velocity control are given by

vi := h>i (ui + c pi)

wi := h?>
i (ui + c pi),

(20)

as illustrated in Fig. 3.

Theorem 2. Let A be a symmetric gain matrix designed
for agents with single-integrator model, c > 0, and assume
that pi’s are constant and identical for all agents. Under the
control (20), UAVs converge to the desired formation and
travel along the direction p with speed c.

Proof of Theorem 2 is given in the Appendix. Note that
for pi’s to be identical, the agents’ local coordinate frames
do not need to be aligned. That is, pi can be provided to an
agent with respect to its local coordinate frame.

C. Formation Control With Input Constraints
We now present a modified guidance strategy for UAVs

that incorporates the Dubins constraints (15). Given the
unconstrained control (20), we define the saturated control
as

vi := s̄i

⇣
si(h>i ui)+ c h>i pi

⌘

wi := ri

⇣
ri(h?>

i ui)+ ch?>
i pi

⌘
,

(21)

with saturation functions s̄i,si,ri : R! R defined as

si(x) =

(
x if |x| umax
umax
|x| if |x|> umax

, (22)

s̄i(x) =

8
><

>:

vmin if x  vmin

x if vmin  x  vmax

vmax if vmax  x
, (23)

and

ri(x) =

(
x if |x| wmax
wmax
|x| if |x|> wmax.

(24)

Based on extensive numerical simulations, we conjecture
that under the control (21), if umax := vmax�vmin

2 and vmin 

c  vmax, UAVs converge to the desired formation while
moving at the desired speed toward the destination. Proof
of convergence for the proposed strategy is a topic of future
work.

V. SIMULATIONS

To validate the proposed strategy, simulations with desired
formations defined as a triangle and a square are performed.
For each formation, the saturated UAV control law (21) with
ui given by (2) and (9) are considered. The dynamics of the
UAVs used in the simulations is given by (14) and (15). The
minimum and maximum speed of all UAVs are set to vmin = 3
m/s and vmax = 5 m/s, and the heading angle rate of change
is limited by wmax =

p
4 . The desired direction of travel for

all agents is set along the positive x-axis of the (unknown to
agents) world coordinate frame, i.e., pi = [1, 0]>. Links to
simulation code and video are provided in the Supplementary
Material section.

A. Triangle Formation

In the first set of simulations, the desired formation is
defined as a triangle formation, as illustrated in Fig. 1, where
the sensing graph among six UAVs is shown by gray lines
connecting the agents. Notice that this sensing graph is undi-
rected, and we assume that it is fixed through the simulation.
Stabilizing control gains associated to this desired formation
are computed from the optimization routine explained in
Section III-C.

In the first simulation, ui given by (2) is considered, and
the initial position and heading of the UAVs are chosen
randomly as shown in Fig. 4(a) at time t = 0s. The location
of UAVs at other instances of time are shown in Figs. 4(b)-
(e). As can be seen, the proposed control strategy navigate
the UAVs to the desired formation and set their headings
toward the desired direction. Notice that since the formation
controller only uses the local relative position measurements,
the desired formation is achieved up to a rotation and
translation. That is, the orientation of the triangle formation
is not controlled. This can be seem by comparing Figs. 1 and
4(e). Moreover the scale of the formation achieved in Fig.
4(e) is not controlled, and depends on the starting position
of the agents. In this case, the distance between each agent
and its neighbors is equal to 14 m.

In the next simulation, augmented control law (9) is used
instead to fix the scale of the formation. In (9), the map
f is defined as f (x) = arctan(x), and the desired distance
between an agent and its neighbors is defined as d⇤

i j := 10
m. The initial condition of UAVs is chosen the same as
previous simulation to allow better comparison, and is shown
in Fig. 5(a) at t = 0s. The location of UAVs at identical
instances of time to Fig. 4 are shown in Figs. 5(b)-(e).
As can be seen, the proposed control strategy brings the
UAVs to the desired formation and set their headings toward
the desired direction. Furthermore, the distance between the
UAVs reaches the desired value of 10 m.
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Fig. 4. Simulation of 6 UAVs starting from a random initial pose and achieving a triangle formation while traveling along toward the positive x-axis. (a)
Initial pose at t = 0s. (b) t = 31s. (c) t = 63s. (d) t = 102s. (e) t = 142s.
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Fig. 5. Simulation of 6 UAVs starting from a random initial pose and achieving a triangle formation with fixed scale while traveling along toward the
positive x-axis. (a) Initial pose at t = 0s. (b) t = 31s. (c) t = 63s. (d) t = 102s. (e) t = 142s.

B. Square Formation

In the second set of simulations, the desired formation is
defined as a square grid with nine UAVs. This formation,
and the sensing graph among UAVs can be see in Fig. 7(e).
Stabilizing control gains associated to this desired formation
are computed from the optimization routine explained in
Section III-C.

In the first simulation, ui given by (2) is used, and initial
position and heading of UAVs are chosen randomly as shown
in Fig. 6(a) at t = 0s. The location of UAVs at other instances
of time are shown in Figs. 6(b)-(e). As can be seen, the
proposed control strategy navigate the UAVs to the desired
formation and set their headings toward the desired direction.
The distance between each agent and its neighbors in the
final formation is equal to 3.8 m.

To fix the scale of the formation, augmented control law
(9) is used in the next simulation, where f (x) = arctan(x),
and the desired distance between an agent and its neighbors
is defined as d⇤

i j := 10 m. The initial condition of UAVs is
chosen as before, and is shown in Fig. 7(a). The location
of UAVs at subsequent instances of time are shown in
Figs. 7(b)-(e), where as can be seen, the proposed control
strategy navigate the UAVs to the desired formation and
set their headings toward the desired direction. The distance
between the UAVs at the final formation reaches the desired
value of 10 m.

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented a distributed formation control strategy for
a team of UAVs to autonomously achieve and maintain a

desired formation while traveling toward a desired destina-
tion. Given a desired formation, we showed how stabilizing
control gains can be found from solving a convex optimiza-
tion problem. These gains, which can be communicated to
the agents before start of the mission, were used to calculate
linear and angular velocity control commands for the UAVs
under the Dubins constraint. Simulations were provided to
show that under the proposed control the UAVs achieve the
desired formation and travel along the assigned direction.
Proof of convergence for the saturated UAV control is a topic
of future work.

To preserve connectivity, avoid obstacles, or prevent col-
lision among UAVs, distributed techniques such as potential
field [23], [24], traffic circle [25], or control barrier function
[26] approach can be employed. Another strategy is a tempo-
rary change of altitude, i.e., UAVs passing over or under each
other to avoid collision. This strategy can preserve the stabi-
lity properties, however, the low-level altitude controller can
become more complicated. Incorporating collision/obstacle
avoidance strategies with the proposed formation control and
analyzing the stability properties of the resulting system will
be a topic of future work.

Lastly, we assumed that the inter-agent sensing topology
is fixed through all time. Strategies such as [12] can be
deployed when the sensing topology is time-varying or
switching.

APPENDIX

A. Proof of Theorem 2

Proof. Let us denote by p := [p>1 , p>2 , . . . , p>n ]> 2 R2n the
aggregate desired direction vector. From (20), the control
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Fig. 6. Simulation of 9 UAVs starting from a random initial pose and achieving a square formation while traveling along toward the positive x-axis. (a)
Initial pose at t = 0s. (b) t = 52s. (c) t = 100s. (d) t = 192s. (e) t = 245s.
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Fig. 7. Simulation of 9 UAVs starting from a random initial pose and achieving a square formation with fixed scale while traveling along toward the
positive x-axis. (a) Initial pose at t = 0s. (b) t = 52s. (c) t = 100s. (d) t = 192s. (e) t = 245s.

for all agents can be expressed in the vector form as

v = H>(Aq+ c p),

w = H?>(Aq+ c p)
(25)

where H and H? are defined in (19). Under the proposed
control, the closed-loop dynamics is given by replacing (25)
in (18) as

q̇ = H H>(Aq+ c p),

ḣ = H?H?>(Aq+ c p).
(26)

Let q⇤ 2 R2n be the coordinates of agents in an arbitrary
embedding of the desired formation. One can see that

q(t) = q⇤+ t c p
h(t) = p

(27)

satisfies the dynamics (26), and therefore is a relative equi-
librium. This can be verified by replacing (27) in (26),
and noting that q⇤ is in the kernel of A, i.e., Aq⇤ = 0.
Furthermore, A p = 0 since A has Laplacian structure and
by assumption unit vectors pi are all identical. Note that the
relative equilibrium (27) corresponds to UAVs traveling in
formation along the desired direction p. Consider the change
of variable q̄ = q� t c p. Replacing q by q̄+ t c p in (26), and
noting that A p = 0, and HH> � I = �H?H?>, yields the
dynamics

˙̄q = H H> Aq̄�H?H?> c p

ḣ = H?H?>(Aq̄+ c p).
(28)

Consider the Lyapunov function candidate

V :=�1
2

q̄>Aq̄+
c
2
(h� p)>(h� p) � 0. (29)

Since p is a constant vector and h> H? = 0, the derivative
of V along the trajectories of (28) is

V̇ =� q̄>A ˙̄q+ c(h� p)>ḣ

=� q̄>AHH>Aq̄+ c q̄>AH?H?>p

+ c(h� p)>H?H?>(Aq̄+ c p)

=� q̄>AHH>Aq̄+ c q̄>AH?H?>p

� c p>H?H?>Aq̄� c2 p>H?H?>p

=� q̄>AHH>Aq̄� c2 p>H?H?>p

=�
⇣

H>Aq̄
⌘>⇣

H>Aq̄
⌘
�
⇣

cH?>p
⌘>⇣

cH?>p
⌘

=�kH>Aq̄k2 �kcH?>pk2  0 (30)

which implies that the system is stable. To show convergence
to desired heading, from V̇ = 0 we have that H?> p = 0,
which implies h?>

i pi = 0 for all i. Since the case hi = �pi
is excluded by (27), we conclude that hi = pi, i.e., agents
fly along the desired direction. To show convergence to the
desired formation, from V̇ = 0 we show that q̄ is in the kernel
of A. Indeed, V̇ = 0 implies that H>Aq̄= 0, and by LaSalle’s
invariance principle, q̄ converges to the largest invariant set
in {q̄ 2 R2n |H>Aq̄ ⌘ 0}. Thus, one of the following cases
must hold:

(i) Aq̄ ⌘ 0
(ii) Aq̄ 6= 0, H>Aq̄ ⌘ 0

For case (i), from (28) we get ˙̄q ⌘ ḣ ⌘ 0, which implies that
the desired formation is achieved and is an invariant set. We
now show that case (ii) cannot happen. In this case, H>Aq̄⌘
0 implies that there exists constants c1, c2, . . . , cn 2 R, with



at least one ci 6= 0, such that

Aq̄ =

2

6664

c1h?1
c2h?2

...
cnh?n

3

7775
. (31)

Since H>Aq̄⌘ 0, from (28) we get q̇⌘ 0. Thus, q̄ and Aq̄ are
constant, and from (31) we conclude that h?i (and thus hi) is
constant for all nonzero ci. From the definition of H? in (19),
one can see that H? has full column rank. Therefore, it does
not have a right null vector, and since from (31) we have
H?>Aq̄ 6= 0, we get H?H?>Aq̄ 6= 0. Consequently, from
(28) we get ḣ 6= 0, which implies that the heading vectors
are not fixed and rotating. This is a contradiction and shows
that case (ii) cannot happen.
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