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Abstract— State estimators are crucial components of
anomaly detectors that are used to monitor cyber-physical
systems. Many frequently used state estimators are suscepti-
ble to model risk as they rely critically on the availability
of an accurate state-space model. Modeling errors make it
more difficult to distinguish whether deviations from expected
behavior are due to anomalies or simply a lack of knowledge
about the system dynamics. In this research, we account for
model uncertainty through a multiplicative noise framework.
Specifically, we propose two different state estimators in this
setting to hedge against the model uncertainty risk namely, 1)
multiplicative noise LQG, and 2) Wasserstein distributionally
robust Kalman filter. The size of the residual from either
estimator can then be compared against a threshold to detect
anomalies. Finally, the proposed detectors are validated using
numerical simulations. Extension of state-of-the-art anomaly
detection in cyber-physical systems to handle model uncertainty
represents the main novel contribution of the present work.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are physical processes that
are tightly integrated with computation and communication
systems for monitoring and control. Though advances in
CPS design has equipped them with adaptability, resiliency,
safety, and security features that exceed the simple embedded
systems of the past, it often leaves open several points for
attackers to strike. CPS security problems have attracted the
attention of researchers worldwide recently; some state-of-
the-art anomaly detection algorithms can be found in [1]–[3].

A common practice is to model a CPS as either a deter-
ministic system or a stochastic system with additive Gaussian
uncertainties. Motivated by the recent developments in dis-
tributionally robust optimization (DRO) techniques [4]–[6],
authors in [7]–[9] have developed DRO anomaly detectors
that remove assumptions on specific functional forms of the
uncertainties in the stochastic CPS model. On the other hand,
it is a common practice to assume that the true CPS dynamics
are known exactly. Unfortunately, modeling and sampling
errors are inherent and significant in working with real
systems due to nonlinearities, learned (system identification,
machine learning) models, adaptive models, or simply due
to changing environmental conditions or aging. A multiplica-
tive noise framework for capturing model uncertainty offers
several compelling advantages over additive noise models.
It provides a statistical description of the uncertainty that
depends on the control input and state [10]–[12]. Using a

*Equal contribution of these authors. V. Renganathan is with the De-
partment of Automatic Control, Lund University, Sweden. B.J. Gravell,
J. Ruths, and T.H. Summers are with the Department of Mechanical
Engineering at The University of Texas at Dallas, Richardson, TX, USA. E-
mail: venkat@control.lth.se, (benjamin.gravell,
jruths, tyler.summers)@utdallas.edu.

multiplicative noise model, however, requires new tools to
build and tune anomaly detectors that accommodate the more
general functional form of the model.

State estimation is a crucial component in any model-
based anomaly detector design, which depends on a state-
space model for the system dynamics. This dependency
causes limitations on the usage of the classical Kalman filter
as it critically relies on the availability of an accurate state-
space model, making it susceptible to model risk. Robust
Kalman filtering with additive uncertainties was explored
in [13], where the uncertain joint distribution of the states
and outputs was accounted for. Another robust Kalman filter
design was developed using a τ -divergence based family of
distributions in [14]. In [15], a Wasserstein distributionally
robust Kalman filter (W-DR-KF) was developed to account
for distributional uncertainty. We propose to use a variant of
W-DR-KF with control inputs in this paper.

Although stochastic modeling of CPS with additive uncer-
tainty is well studied, there are no works to the best of our
knowledge which have considered both multiplicative and
additive noises together in the CPS security literature. The
evolution of non-Gaussian state distributions under the effect
of multiplicative noise invalidates use of the standard Kalman
filter, as the separation principle advocated in linear quadratic
Gaussian (LQG) setting in [16] no longer holds. Though
[10] considered both multiplicative and additive noises in
an optimal control setting, a restrictive Gaussian assumption
was imposed on the uncertainties. The approach in this
paper builds on the foundation established by [17], where
the multiplicative noise-driven LQG (MLQG) problem was
solved by posing a set of coupled algebraic Riccati equations,
from which the optimal linear output feedback controller and
estimator gains were jointly computed.

Contributions: This paper is part of our ongoing work
[7], [8] to leverage results from distributionally robust op-
timization to design robust anomaly detectors. Specifically,
the detector threshold corresponding to a desired false alarm
rate in the setting considered in this paper was computed
through the moment-based approaches explained [7]. In prior
work we addressed detectors robust to non-Gaussian additive
noise. In this work,

1) We design an anomaly detector for stochastic linear
cyber-physical systems that is robust to modeling
errors. To our knowledge, this is the first paper to
consider tuning an anomaly detector for a system
model that incorporates model uncertainty. We propose
a multiplicative noise framework and integrate two
alternative estimators to compute the residual: the
MLQG or the W-DR-KF.



2) We demonstrate our tuning methodology using a nu-
merical simulation and show that multiplicative noises
result in greater anomaly detector thresholds as long as
mean square compensatability conditions are satisfied.

The rest of the paper is organized as follows. In §II, the
problem of monitoring an uncertain CPS with model uncer-
tainty is formulated. Then, the multiplicative noise driven
LQG and the Wasserstein distributionally robust Kalman
filter based state estimators are proposed in §III and §IV
respectively. Subsequently, the anomaly detector design is
presented in §V. The proposed idea is then demonstrated
using a numerical simulation in §VI. Finally, the paper is
closed in §VII along with directions for future research.

NOTATIONS & PRELIMINARIES

The set of real numbers, integers are denoted by R,Z. The
subset of real numbers greater than a ∈ R is denoted by R>a.
The set of integers between two values a, b ∈ Z with a < b
is denoted by [a : b]. We denote by Sn the set of symmetric
matrices in Rn×n and the cone of positive definite (semi-
definite) matrices on Sn as Sn++(Sn+). An identity matrix in
dimension n is denoted by In. The Kronecker product of two
matrices A ∈ Rm×n, B ∈ Rp×q is denoted by A⊗B and the
vectorization of a matrix A ∈ Rm×n is denoted by vec(A) ∈
Rmn and the matricization of vector x ∈ Rp is denoted
by mat(x, n,m) ∈ Rn×m where n × m = p. We denote
by B(Rd) and P(Rd) the Borel σ−algebra on Rd and the
space of probability measures on (Rd,B(Rd)) respectively.
A probability distribution with mean µ and covariance Σ
is denoted by P (µ,Σ), and N (µ,Σ) if the distribution is
normal. Given a constant q ∈ R≥1, the set of probability
measures in P(Rd) with finite q−th moment is denoted by
Pq(Rd) :=

{
µ ∈ P(Rd) |

∫
Rd ‖x‖q dµ <∞

}
. The type-q

Wasserstein distance ∀q ≥ 1 between Q1,Q2 ∈ Pq(Rd) with
Π(Q1,Q2) being the set of all joint probability distributions
on Rd × Rd with marginals Q1 and Q2 is defined as

Wq(Q1,Q2)
∆
=

(
inf

π∈Π(Q1,Q2)

∫
Rd×Rd

‖z1 − z2‖q π(dz1, dz2)

) 1
q

.

(1)

II. PROBLEM FORMULATION

A. Uncertain CPS Model

We model an uncertain CPS for time k ∈ N using a
stochastic discrete-time linear time varying (LTV) system:

xk+1 = Akxk +Bkuk + wk, (2)
yk = Ckxk + vk. (3)

Here, xk ∈ Rn, uk ∈ Rm, and yk ∈ Rp are the system state,
control input, and output at time k. The next-state xk+1 ∈
Rn is a random linear combination of the current state and
process noise wk, which is a zero-mean white noise process.
Similarly, the output yk ∈ Rp is a random linear combination
of the states and the sensor noise vk, which is a zero-mean
white noise process. The initial state is a random variable

x0 ∼ Px0
(0,Σx0

). The system matrices are decomposed as

Ak =
(
Ā+ Âk

)
, Bk =

(
B̄ + B̂k

)
, Ck =

(
C̄ + Ĉk

)
,

Âk =

na∑
i=1

γkiAi, B̂k =

nb∑
j=1

δkjBj , Ĉk =

nc∑
l=1

κklCl. (4)

where Ā, B̄, C̄ denote the nominal dynamics, control, and
output matrices respectively. The multiplicative noise terms
are modeled by the i.i.d. across time (white), zero-mean,
mutually independent scalar random variables γki, δkj , κkl,
which have variances σ2

a,i, σ
2
b,j , σ

2
c,l for i ∈ [1 : na],

j ∈ [1 : nb], l ∈ [1 : nc] respectively with na, nb, nc ∈
Z>0. The pattern matrices Ai ∈ Rn×n, Bj ∈ Rn×m, and
Cl ∈ Rp×n specify how each scalar noise term affects the
system matrices. It is then evident from (2) and (3) that
Âk, B̂k, Ĉk quantify uncertainty about the nominal system
matrices Ā, B̄, C̄ respectively. The distributions of all the
scalar multiplicative noise random variables are assumed to
be known. On the other hand, the distributions of the process
noise Pw and measurement noise Pv are not known exactly,
but reside in the moment-restricted ambiguity sets

Pw :=
{
Pw | E[wk] = 0,Σw � E[wkw

>
k ] � Σw

}
, (5)

Pv :=
{
Pv | E[vk] = 0,Σv � E[vkv

>
k ] � Σv

}
, (6)

where the covariance bounds (Σw,Σw) and (Σv,Σv) are
assumed known; they may be estimated from collected
data via e.g. bootstrap sample averaging. Further, the
ambiguity sets are assumed to contain the true covari-
ances Σw and Σv respectively. For simplicity, we as-
sume that x0 and all the additive, multiplicative noises
wk, vk, {γki}na

i=1, {βkj}
nb
j=1, {κkl}

nc

l=1 are mutually indepen-
dent of each other. We denote the first moment, second mo-
ment, and covariance of the state at time k as µxk

= E [xk],
Vk = E

[
xkx

>
k

]
, and Σxk

= E
[
(xk − µxk

)(xk − µxk
)>
]
,

respectively. Likewise, we denote the first moment, sec-
ond moment, and covariance of the output at time k
as µyk = E [yk], Yk = E

[
yky
>
k

]
, and Σyk =

E
[
(yk − µyk)(yk − µyk)>

]
, respectively.

B. Review of Concepts

Here, we re-state some definitions from [17] on the
mean squared versions of stabilizability, detectability and the
resulting compensatability of systems given by (2) and (3).

Definition 1: The system in (2) is mean-square stable if
∀x0 ∈ Rn,∃V∞ ∈ Sn+ such that

lim
k→∞

Vk = lim
k→∞

E
[
xkx

>
k

]
→ V∞.

Definition 2: The system in (2) is mean-square stabiliz-
able if there exists a control gain matrix K ∈ Rm×n such
that using controls uk = Kxk makes (2) mean-square stable.

Definition 3: The system in (2) and (3) is mean-square
compensatable if there exists a control and filter gain matri-
ces K ∈ Rm×n and L ∈ Rn×p such that the system[

xk+1

x̂k+1

]
=

[
Ak BkK
LCk Ā+ B̄K − LC̄

] [
xk
x̂k

]



is mean-square stable.
Assumptions
1) The system given by (2) and (3) is mean-square

compensatable.
2) The optimal state estimator at any time k given (2) and

(3) is an affine function of the output yk.
Problem 1: Under the above assumptions for a given

stochastic CPS model specified by (2), (3), obtain residual
data from an appropriate state estimator module that accounts
for both multiplicative and additive noises, and subsequently
design an anomaly detector threshold such that the worst
case false alarm rate does not exceed a desired value.

III. RESIDUALS VIA MULTIPLICATIVE NOISE LQG

Due to the multiplicative noises in (2) and (3), the state
distribution will be non-Gaussian even when all primitive
noise distributions are Gaussian. Further, the classical sepa-
ration principle from the additive noise setting does not hold
in presence of multiplicative noises [17]. This necessitates
a framework where the optimal controller and the estimator
gains are computed jointly. Here, we elaborate on obtaining
the residual from CPS using the multiplicative noise-driven
LQG and show that the residual covariance is a function of
both additive and multiplicative noise covariance matrices.

A. Designing Multiplicative Noise-Driven LQG

Under both multiplicative and additive noises in the sys-
tem, the optimal linear output feedback controller can be
exactly computed through the combination of a multiplicative
noise KF with a multiplicative noise LQR as described in
[10], [17], [18]. We consider the multiplicative noise-driven
linear-quadratic Gaussian (MLQG) optimal control problem,
which requires finding an output feedback controller uk =
πk(y0:k) for a system given by (2) and (3):

minimize
πk∈Πk

lim
T→∞

1

T
EEk

[
T−1∑
k=0

x>k Qxk + u>k Ruk

]
,

subject to (2), (3),

(7)

where Ek =
{
x0, {Âk}, {B̂k}, {Ĉk}, {wk}, {vk}

}
, Q � 0,

R � 0. In this section, we assume that the covariance of
both wk and vk take the maximum bound that is used in
their respective ambiguity sets. That is, Σw = Σw,Σv = Σv .
Then, the optimal linear compensator and filter gain matrices
can be computed by solving coupled nonlinear matrix Riccati
equations in symmetric matrix variables P1, P2, P3, P4 ∈ Sn+.
We have stated the lengthy coupled Riccati equations in the
appendix of [19]. The optimal linear compensator is

uk = Kx̂k, and (8)
x̂k+1 = (Ā+ B̄K)x̂k + L(yk − C̄x̂k),

= (Ā+ B̄K + LĈk)x̂k + LCkek + Lvk (9)

It is necessary to account for the multiplicative noise to
achieve the minimum quadratic cost; furthermore, it is
straightforward to find systems in (2) and (3) which are

mean-square unstable when controlled by (multiplicative-
noise-ignorant) LQG, meaning that it is necessary to account
for multiplicative noise to achieve mean-square stability.

B. Residual from Multiplicative Noise LQG

We define the estimation error as ek = xk − x̂k. Then the
estimation error evolves as follows

ek+1 = (Ā− B̂kK − LCk)ek + (Âk + B̂kK)xk + wk − Lvk. (10)

We now elaborate how to obtain the residual signal required
for anomaly detection. Denote the residual rk ∈ Rp as

rk = yk − C̄x̂k. (11)

Denote Ek = vec
(
E[eke

>
k ]
)
, Xk = vec

(
E[xkx

>
k ]
)

and
Rk = vec

(
E[rkr

>
k ]
)
. Then, rk is not necessarily Gaussian

due to the multiplicative noise and has zero mean with
covariance matrix whose vectorized form is given by

Rk = E
[
Ĉk ⊗ Ĉk

]
Xk +

(
C̄ ⊗ C̄

)
Ek + vec (Σv) . (12)

Since, the optimal gain matrices K,L achieve mean-square
compensation of the system (2) and (3), the covariance of
the estimation error will have a steady state value and hence
E∞, X∞ ∈ Rn2

exists and thereby R∞ ∈ Rp2 exists. Then,
the covariance can be retrieved as

Σr = mat (R∞, p, p) . (13)

IV. RESIDUALS VIA THE WASSERSTEIN
DISTRIBUTIONALLY ROBUST KALMAN FILTER

To leverage a fault-detection approach, we require an
estimator of some type to produce a prediction of the system
behavior and hence a residual. Given the system described
by (2) and (3), we aim to estimate the current state xk at any
time k ∈ Z>0 based on the output history Yk = (y1, . . . , yk).
In practice, the joint distribution of xk and yk is never
directly observable and thus being uncertain, its distributional
uncertainty should be taken into account in the estimation
procedure, subject to both the multiplicative noise and the
additive noises. The joint state-output process zk ∈ Rd,
d = n+ p defined by zk =

[
x>k y>k

]>
,∀k ∈ N evolves as

zk =

[
Ak−1

CkAk−1

]
xk−1 +

[
Bk−1

CkBk−1

]
uk−1 +

[
In 0
Ck Ip

] [
wk−1

vk

]
,

(14)
and follows an unknown distribution Qzk in the neigh-
borhood of a known nominal distribution Pzk determined
through the linear state-space model given in (2). We assume
that the concatenated additive noise denoted by w̃k−1 =[
w>k−1 v>k

]> ∈ Rd is a zero mean white noise. Further,
w̃k ∼ Pw̃ ∈ Pw̃, where ambiguity set Pw̃ is given by

Pw̃ :=

{
Pw̃ | E[w̃k] = 0,E[w̃kw̃

>
k ] = Σw̃ =

[
Σw 0
0 Σv

]}
. (15)

Covariance values Σw and Σv that are within their respective
bounds given in their ambiguity sets (5), (6) respectively
can be used in this setting. We model this distributional
and covariance uncertainty of zk at time k through an
ambiguity set Pzk , that is, a family of distributions on Rd,
that govern the concatenated dynamics zk in view of the



available data or that are sufficiently close to a prescribed
nominal distribution, Pzk . The ambiguity set

Pzk =
{
Qzk ∈ P2(Rd) |W2(Qzk ,Pzk) ≤ ρk

}
, (16)

can be interpreted as a ball of radius ρk ≥ 0, in the space
of distributions. The Wasserstein radius, ρk quantifies the
amount of distrust we have over the nominal distribution Pzk
at time k. Further, Pzk is centered at the nominal distribution
Pzk which is assumed to be a normal distribution Pzk =
Nd(µzk ,Σzk) with covariance matrix Σzk � 0. However,
due to the multiplicative noise in (2), the true variance of
the distribution that governs zk might be bigger than Σzk
due to the nominal model alone. The true unknown possibly
non-Gaussian distribution of zk referred to as Q†zk may lie
in Pzk . We seek an estimator that minimizes the worst-case
mean square error across all distributions in the ambiguity
set given by (16).

A. Computing the parameters of nominal distribution Pzk
We assume that a controller is used which is linear in the

estimated state. This could come from optimal and/or robust
control design procedures. Ideally, the controller would be
designed concurrently with the state estimator, as in MLQG.
However, incorporating such coupling is non-trivial in the
Wasserstein distributionally robust framework. As an approx-
imation, we assume that the controller is characterized by
the same gain matrix K which results from the coupled
Riccati equations of MLQG, i.e. uk−1 = Kx̂k−1. Then the
stochastic dynamics given in (14) can be re-written as

zk =

[
Ācl
C̄Ācl

]
︸ ︷︷ ︸

Ã

xk−1 −
[
B̄K
C̄B̄K

]
︸ ︷︷ ︸

Ẽ

ek−1 +

[
In 0
C̄ Ip

]
︸ ︷︷ ︸

W̃

w̃k−1

+

[
Âcl,k−1

(C̄ + Ĉk)Âcl,k−1 + ĈkĀcl

]
︸ ︷︷ ︸

˜̃A

xk−1 +

[
0 0

Ĉk 0

]
︸ ︷︷ ︸

˜̃W

w̃k−1

−
[

B̂k−1K

(C̄ + Ĉk)B̂k−1K + ĈkB̄K

]
︸ ︷︷ ︸

˜̃E

ek−1,

(17)

where Ācl = Ā + B̄K and Âcl,k−1 = Âk−1 + B̂k−1K.
The deterministic mean dynamics and covariance of zk
obtained after taking expectation of (17) with respect to all
the multiplicative and the additive noises is then given by

µzk = Ãx̂k−1, (18)

Σzk =
(
Ã+ ˜̃A

)
Σxk−1

(
Ã+ ˜̃A

)>
+
(
W̃ + ˜̃W

)
Σw̃

(
W̃ + ˜̃W

)>
+
(
Ẽ + ˜̃E

)
E[ek−1e

>
k−1]

(
Ẽ + ˜̃E

)>
+ Υk−1,

(19)
where Υk−1 accumulates all the cross terms involving
E[xk−1e

>
k−1],E[ek−1x

>
k−1] and it is evident that Σzk has

contributions from both additive and all the multiplicative
noise covariances {σ2

a,i}
na
i=1, {σ2

b,j}
nb
j=1, and {σ2

c,l}
nc

l=1.

B. Wasserstein Robust Estimator

The nominal distribution Pzk is uniquely determined by
the marginal distribution Px0 = Nn(x̂0,Σx0) of the ini-
tial state x0 and the conditional distributions Pzk|xk−1

=
Nd (µzk ,Σzk) of zk given xk−1 for all k ∈ N. Here,
the construction of Pzk|Yk−1

resembles the prediction step
of the classical Kalman filter but uses the least favorable
distribution Q?xk−1|Yk−1

instead of the nominal distribution
Pxk−1|Yk−1

. By assumption 2, the desired state estimator at
all time steps k ∈ N will be

ψk(yk) = Gyk + g, (20)

where G, g are of appropriate dimensions and L defines the
family of all measurable functions representing the class of
such affine estimators from Rp to Rn. In the update step, the
pseudo-nominal a priori estimate Pzk|Yk−1

is updated by the
measurement yk and robustified against model uncertainty to
yield a refined a posteriori estimate Qxk|Yk

which is found
by solving the minimax problem

inf
ψk∈L

sup
Qzk
∈Pzk|Yk−1

EQzk [eψ] (21)

equipped with the Wasserstein ambiguity set

Pzk|Yk−1 =
{
Qzk ∈ P2(Rd) |W2(Qzk ,Pzk|Yk−1

) ≤ ρk
}
, (22)

where eψ = ‖xk − ψk(yk)‖2. Here, the Wasserstein radius
ρk quantifies our distrust in the pseudo-nominal apriori
estimate and can therefore be interpreted as a measure of
model uncertainty at time k. Invoking the minimax theorem
in [15], with Pzk|Yk−1 given by (22), we see that

inf
ψk∈L

sup
Qzk
∈Pzk|Yk−1

EQzk [eψ] = sup
Qzk
∈Pzk|Yk−1

inf
ψk∈L

EQzk [eψ] ,

(23)
where the optimal solutions ψ?k and Q?zk of the two dual
problems in (23) represent the respective minimax strategies
implying that (ψ?k,Q?zk) forms a saddle point of the under-
lying zero-sum game. Subsequently, by invoking Theorem
2.5 from [15], (23) can be efficiently solved using the
Frank-Wolfe algorithm to obtain the optimal solution S?k,zk
and the least favorable conditional distribution Q?zk|Yk−1

=

Nd(µzk , S?k,zk) of zk given Yk−1. Then we obtain the param-
eters that define the least favorable conditional distribution
of xk given Yk, Q?xk|Yk

= Nn(x̂k, Vk) as

ψ?k(yk) = x̂k = µzk,x + Θk(yk − µzk,y), (24)
Σxk

= S?k,xx −ΘkS
?
k,yx, (25)

where Θk = S?k,xy

(
S?k,yy

)−1

is the Wasserstein Kalman
gain. Note that the Kalman gain Θk is a function of the
Wasserstein radius ρk at time k.

C. Residual from W-DR-KF

The residual rk ∈ Rp can be calculated as

rk = CkAk−1ek−1 + Ckwk + vk. (26)



Again rk has zero mean as it is a linear combination of zero-
mean random vectors. Further, its covariance matrix Σrk at
time k given by

Σrk = CkAk−1E[ek−1e
>
k−1]A>k−1C

>
k + CkΣwC

>
k + Σv.

(27)

Since the given CPS model is assumed to be mean-square
compensatable, the pair of matrices (K,Θk) will result in
mean-square compensatability. Then it is guaranteed for a
steady state estimation error covariance, Ê∞ ∈ Sn+ to exist
and in which case the residual covariance would be

Σr = CkAk−1Ê∞A
>
k−1C

>
k + CkΣwC

>
k + Σv. (28)

Remark: Obtaining the pair (K,Θk) that will result in
mean-square compensatability is still unexplored in this
setting. Such a design procedure is left for future work.

V. ANOMALY DETECTOR DESIGN WITH RESIDUALS
FROM MULTIPLICATIVE NOISE AND ROBUST FILTERING

We now present how to analyze the residual obtained from
either of the two above presented state estimators and elab-
orate the procedure to construct the corresponding anomaly
detector threshold in this section. Note that the covariance
of the residual computed from either of the approach (12),
(27) is a function of covariance matrices of both the additive
and multiplicative noises. This is in sharp contrast to the
case in [1], [7], [8] where the residual covariance was just a
function of the additive noise covariance. Further, to account
for the changes in the covariance of the residual, we form a
quadratic distance measure as

qk =

{
r>k Σ−1

r rk, if rk is from (11),
r>k Σ−1

rk
rk, if rk is from (26).

(29)

Then, for a given qk from (29) and a threshold α ∈ R>0

corresponding to a desired false alarm rate F , the anomaly
detector can be designed such that alarm time(s) k? ∈ N are
produced according to the following rules{

qk ≤ α, no alarm,
qk > α, alarm: k? = k.

(30)

If Q†zk was Gaussian, then we can define Pzk|Yk−1 in the
space of normal distributions. Subsequently, rk would be
Gaussian and thereby qk would follow the chi-squared distri-
bution, meaning that for a given F , the chi-squared detector
described as in [2] can be used to obtain the required detector
threshold. However, in reality due to the multiplicative noise,
Q†zk is non-Gaussian and thereby the chi-squared detector is
not appropriate. We instead utilize a moment-based approach
for constructing the threshold. We propose to use the higher
order moment based anomaly detector design proposed in
[7] to design the detector threshold in this setting. The
residual qk from either of the two approaches is collected
for a sufficiently long period of time to form the s-moments

based ambiguity set Psq :=
{
Pq | E[qsk] = Ms

q

}
. The optimal

threshold α?q,s
1 satisfying

sup
Pq∈Ps

q

Pq
[
qk > α?q,s

]
≤ F , (31)

can then be obtained by directly invoking Theorem 4 in [7]
corresponding to a given desired false alarm rate F .

VI. NUMERICAL RESULTS

We consider an inverted pendulum with a torque-
producing actuator whose dynamics have been linearized
about the vertical equilibrium. That is, the pendulum of mass
m is suspended by a massless rod of length l and the angle
θ is measured from the downward vertical with positive
counter clockwise direction. The corresponding nonlinear
differential equation of the pendulum mass is

θ̈ = mc sin(θ) + τ, (32)

where mc = − gl denotes the uncertain mass constant. Let us
denote the state vector by x =

[
x1 x2

]
=
[
θ θ̇

]
and the

torque input by u = τ . Then, the corresponding discrete time
dynamics obtained through the forward Euler discretization
of the linearized dynamics of (32) around the equilibrium
point x̃ = (π, 0) with step size ∆t is

xk+1 =

[
1 ∆t

mc∆t 1

]
xk +

[
0

∆t

]
uk + wk. (33)

Uncertainty on the mass constant mc corresponds to un-
certainty on the matrix A. We consider an example where
the true mass constant is mc = 10, but the nominal model
underestimates it as mc = 5. We take a step size ∆t =
0.1. At discrete time instances, the sensor returns a noisy
measurement of the angular position of pendulum. Hence
the corresponding linearized noisy output model is,

y = θ + vk =
[
1 0

]
xk + vk. (34)

Both wk and vk are sampled from the multivariate Laplacian
(which has heavier tails than Gaussian with same mean
and covariance) with zero-mean and covariance Σw = 2In,
Σv = 2Ip respectively. The state and control penalty matrices
are Q = In, R = Ip respectively. The residual data was com-
puted using the multiplicative noise-driven LQG approach
explained in III and the anomaly detector was tuned for
a desired false alarm rate of F = 5%. The multiplicative
noise was considered to exist only in the system dynamics

matrix A, with the direction matrix being A1 =

[
0 0
1 0

]
and

γk,1 ∼ N (0, 0.01). We used Theorem 4 in [7] to compute the
anomaly detector thresholds while using a bisection tolerance
of ε = 10−4. Through simulation, we collected the residual
data for T = 104 time steps under two different settings
namely, 1) without any multiplicative noise (σ2

a,1 = 0)
using the standard LQG, and 2) with multiplicative noise
(σ2
a,1 = 0.01) using multiplicative noise-driven LQG.

1The two subscripts q, s in α?q,s denote the random variable and the
number of moments considered respectively.



Fig. 1. Detector Threshold With and Without Multiplicative Noise:
The moment based polynomials g(q) in orange, green and blue bounding
their respective indicator functions in shaded orange, green and blue colors
are shown. It is evident that the threshold α?q,4 with the multiplicative noise
is greater than the one without it.

A. Discussion of Results

The results of simulating the system given by (33) and
(34) are shown in Figure 1. When the standard LQG was
employed on the nominal system without any multiplicative
noise, it resulted in detector thresholds α?q,1 = 20.0, α?q,4 =
7.92 with false alarm rates being 0% and 0.9% respectively.
Under the multiplicative noise setting, the controller and the
estimation gain matrices computed using the multiplicative
noise-driven LQG resulted in a mean-square compensata-
bility (verified via the convergence of the coupled Riccati
equations) and subsequently resulted in detector thresholds
α?q,1 = 20.0, α?q,4 = 8.74 with false alarm rates being
0% and 0.8% respectively. However, standard LQG was
not able to mean square stabilize the system under non-
zero multiplicative noise. Further, when the residual data
from the system with multiplicative noise was evaluated
against the thresholds α?q,4 obtained using standard LQG
and multiplicative LQG, it resulted in 1.2% and 0.9% false
alarms respectively. This trend of increasing false alarm rate
with uncertainty in just A matrix would only worsen when all
other multiplicative noises on all matrices are present with a
stronger covariance. This clearly motivates that multiplicative
noise LQG is needed to guarantee reduced false alarm rates.
While it is true that multiplicative noise LQG is capable of
handling CPSs with modeling uncertainty, it is sensitive to
the covariance of the multiplicative noise. For instance in the
considered example, mean square compensation was possible
for values of σ2

a,1 ≤ 0.07. In general, achieving mean square
compensation becomes increasingly difficult when other
multiplicative noise covariance σ2

b,j , σ
2
c,l for j = 1, . . . , nb

and l = 1, . . . , nc are also present. Hence, multiplicative
noise-driven LQG framework is valid as long as the gain
matrices pair (K,L) achieve mean square compensation.

VII. CONCLUSION

An extension of the state-of-the-art anomaly detection
algorithms for CPS with modeling errors via the multi-
plicative noise framework was discussed in this paper. Two
robust state estimators namely multiplicative noise-driven
LQG and a Wasserstein distributionally robust Kalman filter

were used to hedge against the model risk to construct the
state estimate. The proposed method was demonstrated using
a numerical simulation. Future work seeks to investigate the
setting where the multiplicative noise distributions are un-
known and to obtain online estimates of the system dynam-
ics through system identification technique combined with
the above filtering procedure for implementing data-driven
distributionally robust anomaly detection for vulnerable CPS.
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APPENDIX I
MOMENT DYNAMICS

Recall the closed-loop system equations:

xk+1 = Akxk +Bkuk + wk,

x̂k+1 = Āx̂k + B̄uk + L(yk − ŷk),

uk = Kx̂k,

yk = Ckxk + vk,

ŷk = C̄x̂k,

and the state- and output-residuals

ek = xk − x̂k,
rk = yk − ŷk.

Denote

Σ′A = E
[
Âk ⊗ Âk

]
=

na∑
i=1

σ2
a,i(Ai ⊗Ai),

Σ′B = E
[
B̂k ⊗ B̂k

]
=

nb∑
j=1

σ2
b,j(Bj ⊗ Bj),

Σ′C = E
[
Ĉk ⊗ Ĉk

]
=

nc∑
l=1

σ2
c,l(Cl ⊗ Cl).

Hence, we have the identities

E [Ak ⊗Ak] = Ā⊗ Ā+ Σ′A,

E [Bk ⊗Bk] = B̄ ⊗ B̄ + Σ′B ,

E [Ck ⊗ Ck] = C̄ ⊗ C̄ + Σ′C .

While studying the moment dynamics, we shall readily employ the zero-mean and zero-correlation assumptions of Âk, B̂k,
Ĉk, wk, and vk in the following derivations.

A. First moment dynamics

The expected output-residual is

E[rk] = E[yk − ŷk]

= E[Ckxk + vk − C̄x̂k]

= E[Ckxk]− C̄E[x̂k]

= C̄E[xk − x̂k]

= C̄ek. (35)

The expected state-residual evolves as

E[ek+1] = E[xk+1 − x̂k+1]

= E[xk+1]− E[x̂k+1]

= E [Akxk +BkKx̂k + wk]− E
[
Āx̂k + B̄Kx̂k + L(yk − ŷk)

]
(36)

= ĀE[xk] + B̄KE[x̂k]− (Ā+ B̄K)E[x̂k]− LE[yk − ŷk]

= ĀE[xk] + B̄KE[x̂k]− (Ā+ B̄K)E[x̂k]− LC̄ek
= ĀE[xk]− ĀE[x̂k] + B̄KE[x̂k]− B̄KE[x̂k]− LC̄ek
= (Ā− LC̄)ek. (37)



B. Second moment dynamics

For the state and state-estimate second moment dynamics, denote

Xk = vecE
[
xkx

>
k

]
, X̃k = vecE

[
xkx̂

>
k

]
,

X̆k = vecE
[
x̂kx

>
k

]
, X̂k = vecE

[
x̂kx̂

>
k

]
.

We have

Xk+1 = vecE
[
xk+1x

>
k+1

]
= vecE

[
(Akxk +BkKx̂k + wk)(Akxk +BkKx̂k + wk)>

]
=
(
Ā⊗ Ā+ Σ′A

)
Xk + ((B̄K)⊗ Ā)X̃k + (Ā⊗ (B̄K))X̆k +

(
B̄ ⊗ B̄ + Σ′B

)
(K ⊗K)X̂k + vec(Σw), (38)

and

X̃k+1 = vecE
[
xk+1x̂

>
k+1

]
= vecE

[
(Akxk +BkKx̂k + wk)

(
LCkxk + (Ā+ B̄K − LC̄)x̂k + Lvk

)>]
= ((LC̄)⊗ Ā)Xk +

(
(Ā+ B̄K − LC̄)⊗ Ā

)
X̃k + ((LC̄)⊗ (B̄K))X̆k +

(
(Ā+ B̄K − LC̄)⊗ (B̄K)

)
X̂k, (39)

and

X̆k+1 = vecE
[
x̂k+1x

>
k+1

]
= vecE

[(
LCkxk + (Ā+ B̄K − LC̄)x̂k + Lvk

)
(Akxk +BkKx̂k + wk)>

]
= (Ā⊗ (LC̄))Xk + ((B̄K)⊗ (LC̄))X̃k +

(
Ā⊗ (Ā+ B̄K − LC̄)

)
X̆k +

(
(B̄K)⊗ (Ā+ B̄K − LC̄)

)
X̂k, (40)

and

X̂k+1 = vecE
[
x̂k+1x̂

>
k+1

]
= vecE

[(
LCkxk + (Ā+ B̄K − LC̄)x̂k + Lvk

) (
LCkxk + (Ā+ B̄K − LC̄)x̂k + Lvk

)>]
= (L⊗ L)(C̄ ⊗ C̄ + Σ′C)Xk +

(
(Ā+ B̄K − LC̄)⊗ (LC̄)

)
X̃k

+
(
(LC̄)⊗ (Ā+ B̄K − LC̄)

)
X̆k +

(
(Ā+ B̄K − LC̄)⊗ (Ā+ B̄K − LC̄)

)
X̂k + (L⊗ L) vec(Σv). (41)

Define

Xk :=


Xk

X̃k

X̆k

X̂k

 , and V :=

[
vec(Σw)
vec(Σv)

]
.

By gathering the matrix coefficients in equations (38), (39), (40), (41) as

H :=


Ā⊗ Ā+ Σ′A (B̄K)⊗ Ā Ā⊗ (B̄K)

(
B̄ ⊗ B̄ + Σ′B

)
(K ⊗K)

(LC̄)⊗ Ā (Ā+ B̄K − LC̄)⊗ Ā (LC̄)⊗ (B̄K) (Ā+ B̄K − LC̄)⊗ (B̄K)
Ā⊗ (LC̄) (B̄K)⊗ (LC̄) Ā⊗ (Ā+ B̄K − LC̄) (B̄K)⊗ (Ā+ B̄K − LC̄)

(L⊗ L)(C̄ ⊗ C̄ + Σ′C) (Ā+ B̄K − LC̄)⊗ (LC̄) (LC̄)⊗ (Ā+ B̄K − LC̄) (Ā+ B̄K − LC̄)⊗ (Ā+ B̄K − LC̄)


and

Φ :=


In ⊗ In 0n2×1

0n2×n2 0n2×1

0n2×n2 0n2×1

0n2×n2 L⊗ L


we have the compact representation of (38), (39), (40), (41) as

Xk+1 = HXk + ΦV (42)

For the state- and output-residual second moments, denote

Ek = vecE
[
eke
>
k

]
Rk = vecE

[
rkr
>
k

]



We have

Ek = vecE
[
eke
>
k

]
= vecE

[
(xk − x̂k)(xk − x̂k)>

]
= Xk − X̃k − X̆k + X̂k (43)

and

Rk = vecE
[
rkr
>
k

]
= vecE

[
(yk − ŷk)(yk − ŷk)>

]
= vecE

[
(Ckxk + vk − C̄x̂k)(Ckxk + vk − C̄x̂k)>

]
= vecE

[
(C̄(xk − x̂k) + (Ck − C̄)xk + vk)(C̄(xk − x̂k) + (Ck − C̄)xk + vk)>

]
= (C̄ ⊗ C̄)Ek + Σ′CXk + vec(Σv) (44)

C. Steady-state moments

By assumption, Ā− LC̄ is Schur stable. Therefore, by (37), E[ek]→ 0 as k →∞ regardless of the initial state-residual
e0. Consequently, by (35), E[rk]→ 0 as k →∞. That is,

E[e∞] = 0, E[r∞] = 0

In steady-state, the left- and right-hand sides of (42) converge identically to eachother, i.e.

X∞ = HX∞ + ΦV.

Rearranging, we obtain

X∞ = (I4n2 −H)−1ΦV

where (I4n2 − H)−1 exists by the mean-square stability assumption of the compensator gains (K,L). This amounts to
solving a (generalized) Lyapunov equation. Such an equation can be solved more efficiently by specialized solvers which do
not require the inverse to be computed explicitly; for simplicity we present the equation and its solution in this form. After
solving for X∞, the steady-state second moments of the state- and output-residuals can be computed from (43) and (44) as

E∞ = X∞ − X̃∞ − X̆∞ + X̂∞

R∞ = (C̄ ⊗ C̄)E∞ + Σ′CX∞ + vec(Σv)

and reshaped into matrices using the mat(·) operator, i.e. Σx∞ = mat(E∞, n, n) and Σr = mat(R∞, p, p).

APPENDIX II
COUPLED RICCATI EQUATIONS

The coupled Riccati equations used for solving the MLQG problem are

P1 = Q+ Ā>P1Ā+

n2∑
i=1

σ2
a,iA

>
i P1Ai −K>

R+ B̄>P1B̄ +

nm∑
j=1

σ2
b,jB̄

>
j P1B̄j +

nm∑
j=1

σ2
b,jB̄

>
j P2B̄j

K

+

n2∑
i=1

σ2
a,iA

>
i P2Ai +

pn∑
i=1

λiC
>
i L
>P2LCi, (45)

P2 = (Ā− LC̄)>P2(Ā− LC̄) +K>

R+ B̄>P1B̄ +

nm∑
j=1

σ2
b,jB̄

>
j P1B̄j +

nm∑
j=1

σ2
b,jB̄

>
j P2B̄j

K, (46)

P3 = Σw + ĀP3Ā
> +

n2∑
i=1

σ2
a,iAiP3A

>
i − L

Σv + C̄P3C̄
> +

pn∑
j=1

σ2
c,jC̄jP3C̄

>
j +

pn∑
j=1

σ2
c,jC̄jP4C̄

>
j

L>

+

n2∑
i=1

σ2
a,iAiP4A

>
i +

nm∑
i=1

βiBiKP4K
>B>i , (47)

P4 = (Ā+ B̄K)P4(Ā+ B̄K)> + L

Σv + C̄P3C̄
> +

pn∑
j=1

σ2
c,jC̄jP3C̄

>
j +

pn∑
j=1

σ2
c,jC̄jP4C̄

>
j

L>. (48)



where the associated optimal controller and estimator gains (K,L) are

K = −

R+ B̄>P1B̄ +

nm∑
j=1

σ2
b,jB̄

>
j P1B̄j +

nm∑
j=1

σ2
b,jB̄

>
j P2B̄j

−1

B̄>P1Ā, (49)

L = ĀP3C̄
>

Σv + C̄P3C̄
> +

pn∑
j=1

σ2
c,jC̄jP3C̄

>
j +

pn∑
j=1

σ2
c,jC̄jP4C̄

>
j

−1

. (50)
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