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Abstract— As cyber-physical networks become increasingly
equipped with embedded sensing, communication, computa-
tion, and actuation capabilities, they are made vulnerable to
malicious attacks by increasing the number of access points
which are available for attackers. A particularly pernicious
attack is spoofing, in which a malicious agent spawns multiple
identities or impersonates legitimate agents to gain a dispro-
portionate advantage. Spoofing attacks can easily compromise
otherwise attack-resilient algorithms and network structures
that assume an upper bound on the number of malicious agents
in the network. We generalize a class of resilient consensus
strategies, known as Weighted Mean-Subsequence-Reduced (W-
MSR) consensus, to further provide spoof resilience by incor-
porating a physical fingerprint analysis of signals received from
neighboring agents. By comparing the physical fingerprints
of received signals, legitimate agents can identify and isolate
malicious agents that attempt spoofing attacks. We quantify the
effects of delays in detecting spoofing and inexact detection due
to noise in the received signals. Numerical simulations illustrate
the effectiveness of the proposed methods. Our framework
is applicable to a variety of problems involving multi-robot
systems coordinating via wireless communication, including
coverage, distributed estimation, and formation control.

I. INTRODUCTION

As cyber-physical networks become increasingly equipped
with embedded sensing, communication, computation, and
actuation capabilities, they are made vulnerable to malicious
attacks by increasing the number of access points available
for attackers. A large and growing literature has emerged on
security, resilience, and robustness of cyber-physical systems
in the presence of non-cooperative and adversarial agents [1],
[2], [3], [4]. A particularly pernicious attack is spoofing1,
in which a malicious agent spawns multiple non-existent
identities or impersonates existing legitimate agents to gain
a disproportionate advantage in distributed algorithms that
operate on the network. Spoofing is not just an abstract
concern; successful attacks have been realized in several
critical networks, such as civilian GPS [5], global navigation
satellite systems [6], anti-lock braking systems [7], and
others.

Autonomous multi-robot systems are a rapidly emerging
type of cyber-physical network in which many tasks, in-
cluding coverage, distributed estimation, cooperative manip-
ulation, and formation control, utilize distributed consensus
protocols to coordinate agreement on certain quantities of
interest [15], [28]. Recent work has developed resilient
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1Also known as a “Sybil” attack [8].

consensus algorithms that prevent malicious agents from ex-
erting undue influence on the network, effectively by design-
ing sufficient redundancy in the algorithms and underlying
network structures [12], [21], [13], [14], [16], [17], [18], [20].
These approaches have recently been applied to multi-robot
systems [19], [10], [22]. However, spoofing attacks can easily
compromise these otherwise attack-resilient algorithms and
network structures, which assume an upper bound on the
number of malicious agents in the network. Malicious infor-
mation propagates through the network and can lead to severe
performance deterioration or safety constraint violations.

It was argued in [8] that any defense against a spoofing
attack requires either a trusted central authority to certify
(perhaps cryptographically) the identities of all legitimate
agents in the network, or a reliable method to distinguish
physical fingerprints of signals received from neighboring
agents. Reliance on a centralized authority is generally an
undesirable feature in distributed multi-robot networks, so
we focus here on the latter. Physical fingerprint analysis and
discrimination has been used to detect spoofing in specific
application contexts [5], [9], but not in the context of general
distributed algorithms in cyber-physical networks or dynamic
multi-robot systems.

Contributions: We propose an approach for spoof resilient
coordination in cyber-physical and multi-robot networks. We
generalize a class of resilient consensus strategies, known as
Weighted Mean-Subsequence-Reduced (W-MSR) consensus,
to provide spoof resilience by incorporating a physical finger-
print analysis of signals received from neighboring agents.
By comparing the physical fingerprints of received signals,
legitimate agents can detect and isolate malicious agents that
attempt spoofing attacks. Our algorithm achieves resilient
consensus despite an arbitrary number of spoofed agents in
the network. We quantify the effects of delays in detecting
spoofing and inexact detection due to noise in the received
signals. We also demonstrate that it is possible to repair
the effects of spoofing attacks after delayed detection by
maintaining memory of received signals. Numerical simu-
lations illustrate the effectiveness of the proposed methods.
Our framework is applicable to a variety of problems in-
volving multi-robot systems coordinating via wireless com-
munication, including coverage, distributed estimation, and
formation control.

The rest of the paper is organized as follows. Section
II formulates a model for spoofing attacks in multi-robot
networks and presents the attack detection technique using
a physical fingerprint analysis. Section III proposes a new
spoof resilient W-MSR algorithm by suitably modifying an
existing standard W-MSR algorithm. Numerical simulations



results are then presented in Section IV. Finally, Section V
summarizes the results and discusses future work directions.

Fig. 1. Spoofing Attack: Malicious nodes in the network attempt to spoof
multiple identities to gain disproportionate advantage over the network and
disrupt the convergence of distributed consensus algorithms.

II. SPOOFING ATTACKS IN MULTI-ROBOT NETWORKS

A. Spoofing Attack - Network Model

Figure 1 illustrates an example of a spoofing attack we
aim to address. We model the network with an undirected
graph G comprising a node set V representing m agents and
edge set E [t] ⇢ V ⇥ V representing a set of (possibly time-
varying) communication links amongst the agents. The node
set is partitioned into two disjoint subsets V = Sl [ Sa. The
set Sl represents the set of legitimate agents. A malicious
agent attempts to disrupt the network by communicating
subversive information to neighboring agents and may in
addition attempt to perform a spoofing attack by creating
multiple non-existent identities. Thus, the set of adversaries
Sa is composed of both malicious and spoofed agents, so
that Sa = Sm [Ss, where Sm denotes malicious agents and
Ss denotes the agents spoofed by Sm. An upper bound of F
number of malicious agents is assumed, whereas an arbitrary
number of agents could be spoofed.

B. Consensus Dynamics - Update Model

We associate with each node i 2 V , a state xi[t] 2 R
at time t 2 Z�0. The state may represent a position or
some quantity to be estimated or optimized, depending on
the application context. In order to achieve some objective,
the nodes interact synchronously by exchanging their state
value with neighbors in the network [24]. Each legitimate
node updates its own state over time based on its current state
and the state of neighboring agents according to a prescribed
rule of the form

xi[t+ 1] = fi(xj [t]), j 2 Ji[t] = Ni[t] [ {i}, i 2 Sl, (1)

where Ni[t] = {j 2 V : (j, i) 2 E [t]} is the neighbor set
of agent i at time t, whose states are available to agent
i via communication links. The degree of i is denoted as
di[t] = |Ni[t]|, and every node is assumed to have access to
its own state at time t. Resilient consensus algorithms specify
a nonlinear function fi(.) that updates the states by suitably
modifying which agents in the neighbor set (including i)
Ji[t] are included in the update to provide resilience to
malicious agents.

C. Attack Detection Using Physical Fingerprint Analysis

We imagine a scenario in which the agents in the network
communicate amongst themselves using a wireless commu-
nication protocol. Physical properties of the received wireless
signal profiles are leveraged to detect the spoofing attack. The
physical fingerprint of an agent j received by agent i is mod-
eled by a p-dimensional feature vector Fij 2 Rp containing
physical signal properties, such as angle-of-arrival, time-of-
arrival and other features that can be used for discriminating
between the signals received from two distinct agents [5],
[9]. Since multiple spoofed agents may be generated by
a single distinct malicious agent, the physical fingerprints
associated with each of them will be similar. Of course, due
to the random nature of wireless communication, there may
be noise associated with the fingerprints of received signals.
This situation can be modeled by associating a probability
distribution with received signal fingerprints.

The neighbor set Ni of agent i includes the set of agents
which can transmit signals to agent i. Based on the received
signal fingerprints of pairs of neighboring agents, we define
a similarity metric

�ijk =
1

1 + kFij � Fikk
, j, k 2 Ni, (2)

which quantifies how similar the fingerprint of neighboring
agent j is to that of neighboring agent k, as received by agent
i. The authors in [9] deal with a similar setting for a coverage
control problem and our development is inspired from their
approach. Agent i computes these similarity metrics for each
neighbor pair. From these similarity metrics, a confidence
weight ↵ij 2 [0, 1] can be associated with neighboring agent,
which should be close 1 for legitimate neighbors and close
to 0 for spoofed and spoofing neighbors. For example, in a
deterministic setting,

�ijk = 1 ) ↵ij = 0, ↵ik = 0,

�ijk < 1 ) ↵ij = 1, ↵ik = 1,
(3)

i.e., the confidence weights for neighbors j and k are 0 if
the neighbor j has the same fingerprint as neighbor k, and
1 otherwise. In general, we can write

↵ij =
Y

j2Ni, j 6=k

(1� �ijk). (4)

In a stochastic setting, we define a spoof detection threshold
! 2 [0, 1]. If the likelihood that the physical fingerprints
of two neighbors are different is below the threshold, the



neighbors are classified as spoofed or spoofing agents, and
otherwise they are classified as legitimate; for example,

E[g(↵ij)]  ! ) j is spoofed or spoofing,
E[g(↵ij)] > ! ) j is legitimate.

(5)

where g(·) is some prescribed likelihood function. To recover
the deterministic case, we can set ! = 0, g(x) = x, and drop
the expectation.

D. Example of a Physical Fingerprint Model
A specific example of a particular physical fingerprint

model is discussed in [9]. The fingerprint is modeled by a
directional signal strength profile that depends on wireless
signal wavelengths, distances and relative angles between
directional antennae, multiple possible signal paths, and ran-
dom channel properties with additive Gaussian noise. Based
on this stochastic channel model, similarity and confidence
metrics can be explicitly defined, and quantitative bounds
can be obtained on the expectation that received signals are
coming from spoofed agents. Such models could be used
to define spoof resilient algorithms tailored to the specific
communication model and perform analyses of probabilistic
algorithm properties. Here we focus mainly on deterministic
detection settings and stochastic settings with simple generic
thresholding. Incorporating bounds associated with such spe-
cific communication models is left for future work.

III. DESIGN OF A SPOOF RESILIENT COORDINATION
ALGORITHM

In this section, we describe a coordination algorithm that is
resilient to malicious agents who share adversarial state val-
ues and may also attempt to spoof non-existent agent that also
share adversarial state value. Since malicious agents do not
all necessarily attempt to spoof, we build upon recent work
on resilient consensus algorithms that do not handle spoofing.
These algorithms achieve resiliency by effectively designing
and exploiting redundancy in the underlying communication
graph. We now review these resilient graph properties and
an existing resilient consensus algorithm called Weighted
Mean-Subsequence-Reduced (W-MSR) as described in [14].
We subsequently present our spoof resilient adaptation of
W-MSR. We assume throughout that there are at most F

malicious agents but that there may be an arbitrary number
of spoofed agents.

Definition: A set S is r-reachable, if it contains a node
that has at least r neighbors outside of S . The parameter r

quantifies the redundancy of information flow from nodes
outside of S to some node inside S . Intuitively, the r-
reachability property captures the notion that some node
inside the set is influenced by a sufficiently large number
of nodes from outside the set.

Definition: A graph D = {V, E} on n nodes is said to be
r-robust, with r 2 Z�0, if for every pair of disjoint nonempty
subsets of V , at least one of the subsets is r-reachable.

Definition: Given a graph D and a nonempty subset of
nodes S , we say that S is an (r,s) - reachable set, if there are
at least s nodes in S , each of which has at least r neighbors

outside of S , where r, s 2 Z�0. i.e., given XS = {i 2 S :
|Vi\S| � r}, then |XS | � s.

Definition: A graph D = {V, E} on n nodes (n � 2) is
(r,s)-robust, for nonnegative integers r 2 Z�0, 1  s  n,
if for every pair of nonempty, disjoint subsets S1 and S2

of V such that S1 is (r, sr,1)-reachable and S2 is (r, sr,2)-
reachable with sr,1 and sr,2 maximal (i.e., sr,k = |XSk|
where XSk = {i 2 Sk : |Vi\Sk| � r} for k = {1, 2}), then
at least one of the following hold:

• sr,1 = |S1|
• sr,2 = |S2|
• sr,1 + sr,2 � s.
The (r, s)-robustness property introduces information re-

dundancy by specifying a minimum number of nodes that
are sufficiently influenced from outside of their set. Note that
(r, s)-robustness is a strict generalization of r-robustness.

A. Resilient Asymptotic Consensus
Let xM [t] and xm[t] denote the maximum and minimum

values of the legitimate nodes at time t, respectively. The
legitimate agents in the network are said to achieve resilient
asymptotic consensus [18] in the presence of a particular
threat model if for any initial conditions it holds

• 9 L 2 R such that limt!1 xi[t] = L, 8i 2 Sl

• the interval [xm[0], xM [0]] is an invariant set (i.e., the
legitimate values remain in the interval 8t)

Resilient asymptotic consensus has three important proper-
ties [16]. First, the legitimate nodes must reach asymptotic
consensus despite the presence of misbehaving nodes given
a particular threat model and scope of threat (e.g., at most
F malicious agents). This is a condition on agreement.
Additionally, it is required that the interval containing the
initial values of the legitimate nodes is an invariant set for the
legitimate nodes; this is a safety condition, where the interval
[xm[0], xM [0]] is known to be safe. The agreement and
safety conditions, when combined, imply a third condition
on validity: the converged consensus value lies within the
range of initial values of the legitimate nodes.

B. The Weighted Mean-Subsequence-Reduced (W-MSR) Al-
gorithm

We now review a class of resilient consensus algorithms
described in [14] that utilize a Weighted Mean-Subsequence-
Reduced (W-MSR) update rule. At every time t, each le-
gitimate node i obtains the values of other nodes in its
neighborhood. Since there are at most F total malicious
nodes in the network, some of node i’s neighbors may
misbehave; however, node i is unsure of which neighbors
may be compromised. To ensure that node i updates its state
in a safe manner, we consider a protocol where each node
removes the extreme values with respect to its own value.
Specifically, the W-MSR algorithm comprises the following
steps:

1) At each time t, each legitimate node i 2 Sl obtains the
state values of its neighbors, and forms a sorted list.

2) If there are less than F values strictly larger than its
own value, xi[t], then legitimate node i removes all



values that are strictly larger than its own. Otherwise,
it removes precisely the largest F values in the sorted
list (breaking ties arbitrarily). Likewise, if there are less
than F values strictly smaller than its own value, then
node i removes all values that are strictly smaller than
its own. Otherwise, it removes precisely the smallest
F values.

3) Let Ri[t] denote the set of nodes whose values were
removed by legitimate node i in step 2 at time t. Each
legitimate node i applies the update

xi[t+ 1] =
X

j2Ji[t]\R[t]

wij [t]xj [t] (6)

where wij [t] is the weight2 associated with node j’s value
by node i at time step t. The weights are chosen to satisfy
the following conditions:

1) wij [t] = 0 whenever j /2 Ji[t], i 2 Sl, t 2 Z�0

2) there exists a constant � 2 R, 0 < � < 1 such that
wij [t] � �, 8j 2 Ji[t], i 2 Sl, t 2 Z�0

3)
Pn

j=1 wij [t] = 1, 8i 2 Sl, t 2 Z�0

Then if the underlying graph is (F + 1, F + 1)-robust,
under the update protocol specified in equation (6), the
legitimate agents in the network are guaranteed achieve
resilient asymptotic consensus [14] despite the presence of
at most F malicious agents, but assuming that there are no
spoofed agents.

C. Spoof Resilient W-MSR Algorithm

A spoofing attack is capable of compromising the (F +
1, F + 1)-robust graph robustness property and W-MSR
algorithm above, and hence the network resiliency. Our
spoof resilient adaptation of the W-MSR algorithm here is
summarized in Algorithm 1. Based on a pairwise comparison
of physical fingerprints of signals received from neighboring
agents and associated confidence weights, spoofed agents in
the network are identified. Achieving resiliency then involves
removing the identified spoofed and spoofing agents from the
state update if the expectation of some likelihood of their
confidence weight is at most equal to the spoofing threshold
!. In a deterministic setting, we have the following result.

Theorem 1: Given an undirected network G = (V, E),
where V represents the set of agents and E represents the set
of communication links between them. Suppose the network
is (F+1, F+1)-robust, assuming an upper bound of F total
malicious agents in the network, some of which may spoof.
Then the network achieves resilient asymptotic consensus
under Algorithm 1 in the presence of any spoofing attack.

Proof: In a deterministic setting, the physical finger-
prints of signals of spoofed agents are identical to that of
the spoofing agent. So any spoofed and spoofing agents are
exactly detected and removed from the network state updates
in lines 17-20 of the proposed Algorithm 1. Moreover, since
the initial underlying graph is (F + 1, F + 1)-robust, the
use of the W-MSR protocol for the state updates guarantees

2In this case, a simple choice for the weights [13] is to let wij [t] =
1/(1 + di[t]� |Ri[t]|), for j 2 Ji[t]\R[t]

resilient asymptotic consensus in the presence of up to F

malicious nodes who do not spoof but may behave in other
adversarial ways. Thus, the overall protocol is resilient to
both an arbitrary number of spoofed agents and up to F

non-spoofing malicious agents in the network.

Algorithm 1 Spoof Resilient W-MSR (SR-W-MSR)
1: procedure SR-W-MSR(!)
2: // Input: spoofing threshold !, convergence threshold

✏, initial states x[0], received signal fingerprints Fij for
each agent at each time

3: t 0
4: while kx[t+ 1]� x[t]k � ✏ do
5: i 1
6: // Iterate through all legitimate nodes
7: while i  |Sl| do
8: for each j 2 Ni do
9: ↵ij  1

10: for each k 2 Ni do
11: // Pairwise comparison of neighbors
12: if j 6= k then
13: �ijk = 1

1+kFij�Fikk
14: end if
15: ↵ij  ↵ij(1� �ijk)

16: end for
17: if E[g(↵ij)]  ! then
18: // Spoof attack is detected
19: Z[t] R[t] [ {j}
20: xi[t+ 1] 

P
j2Ji[t]\Z[t] wij [t]xj [t]

21: else
22: // No spoof attack is detected
23: xi[t+ 1] 

P
j2Ji[t]\R[t] wij [t]xj [t]

24: end if
25: end for
26: i i+ 1
27: end while
28: t t+ 1
29: end while
30: end procedure

IV. NUMERICAL SIMULATION RESULTS

We now illustrate our spoof resilient W-MSR algorithm
using the 7-node (2,2)-robust network with 6 legitimate
agents, 1 malicious agent who spoofs 1 agent as shown in
Figure 2. The six legitimate agents were given random initial
states, and with states of the malicious and spoofed agents
set to 300. Malicious node 4 performs spoofing attack by
emulating another non-existent spoofed identity called 4a and
sends the message to all his neighbors. The similarity metric
(�ijk) between neighbors j and k recorded by the agent
i was drawn from an uniform distribution on the interval
[0,1]. A spoofing attack is evaluated both in deterministic
and stochastic settings. In the deterministic setting, all the
physical fingerprints are obtained without any noise. As a



result, the spoofed nodes are exactly identified and removed
from the network using the spoof resilient W-MSR algorithm.
In the stochastic setting, a spoofing threshold is employed
and spoofed agents are only identified and removed proba-
bilistically in the spoof resilient W-MSR algorithm.

Fig. 2. A (2,2)-robust graph with node 4 being malicious and it spoofs 1
more agent (4a) to gain disproportionate advantage over the network.

A. The W-MSR Algorithm Fails Under a Spoofing Attack
Consider a spoofing attack on the network shown in Figure

2, where agent 4 is malicious. When a standard linear
consensus protocol is used, the malicious agent is able to
pull the consensus values of other agents in the network to
his desired value even without spoofing, just by maintaining
its state to a constant value. When the W-MSR resilient
consensus algorithm [14] is used, the legitimate agents
achieve resilient asymptotic consensus, as shown in Figure
3, despite the presence of the malicious agent and despite
them being unaware about the identity of the malicious agent.
However, when malicious agent spoofs a single additional
agent identity, the legitimate agents fail to achieve resilient
asymptotic consensus, as shown in Figure 4 where all states
converge to the malicious agent’s state value. This shows
that spoofing attacks are capable of compromising graph
robustness properties and thereby the network resiliency.
Under the proposed Spoof Resilient W-MSR algorithm, the
legitimate agents achieve resilient asymptotic consensus, as
shown in Figure 5.

B. Variations: Delayed and Probabilistic Spoof Detection
In practical settings, it may take a non-trivial amount

of time to detect a spoofing attack, and spoofing may not
be detected perfectly due to noise and uncertainty in the
received signal properties. Here we provide some preliminary
quantifications of these effects. First, Figure 6 shows the
effect of detection delays on the final consensus value. As
expected, with longer delays in detection of spoofing, the

Fig. 3. Under the W-MSR algorithm without spoofing, the legitimate agents
achieve resilient asymptotic consensus despite the malicious agent 4 and
converge to a value within the range of their initial values shown as the
shaded region

Fig. 4. When the malicious agent 4 spoofs a single additional identity,
the legitimate agents fail to achieve resilient asymptotic consensus, and the
state values are pulled to the value of agent #4, showing failure of W-MSR
algorithm under spoofing. Also, node 4 malicious and node 8 (spoofed) take
the same value 300 in the figure.

malicious agents can have a larger effect on the final value.
Further, it is shown that a malicious agent’s location in the
networks affects how influential it can be in perturbing the
state of the network; a spoof attack by agent 7 with lower
degree than agent 4 has a lower impact. However, it is
also possible to repair the impact of a spoofing attack on
the network after delayed detection by maintaining memory
of neighboring state transmission histories and subtracting
out modifications made by spoofed and spoofing agents,
as shown in Figure 7. Of course, such a bookkeeping
effort would be limited by memory constraints, and may be
cumbersome to implement in complicated networks. We are
pursuing how this might be achieved in general for future
work.

Finally, Figure 8 illustrates the effects of inexact detection
of a spoofing attack, where a Monte Carlo estimate of the
expected value of the final consensus value is plotted against
the probability of spoof detection. As expected, it can be
seen that when spoofing is detected with lower probability,
the malicious agents have a larger effect on the state of
the network. Sharper probabilistic analyses and algorithmic
modifications in the stochastic detection setting are also
being pursued in future work.



Fig. 5. The proposed Spoof Resilient W-MSR Algorithm achieves resilient
asymptotic consensus.
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Fig. 6. Difference between asymptotic consensus value and ideal consensus
value when a spoofing attack is launched by agent 4 with high degree or
agent 7 with lower degree in the network shown in figure 2.

V. CONCLUSIONS

We proposed a spoof resilient consensus algorithm that
extends a class of resilient consensus strategies, known as
Weighted Mean-Subsequence-Reduced (W-MSR) consensus,
to provide resilience to malicious agents that may both ad-
versely update state values and spoof non-existent agent iden-
tities. Physical fingerprint comparisons of received signals
are used by legitimate agents to identify and isolate malicious
agents that attempt spoofing attacks. The proposed algorithm
using physical fingerprint approach guarantees resiliency
despite the presence of a certain number of malicious agents
and an arbitrary number of spoofed agents in the network.
The proposed framework is applicable to a variety of prob-
lems involving multi-robot systems coordinating via wireless
communication, including coverage, distributed estimation,
and formation control. Future research involves investigating
the resiliency against spoofing attack with different fault
models and using specific probabilistic physical fingerprint
models.
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