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Abstract— We consider stochastic quadratic two-player
games where each player represents a team of agents subject to
information constraints. We present conditions that guarantee
the existence and uniqueness of a Nash equilibrium in the space
of linear decentralized policies and we provide an iterative
algorithm to compute such an equilibrium. The results are
illustrated on a numerical example inspired from power systems
security.

I. INTRODUCTION

Team theory is concerned with optimal decision making
with a decentralized information structure. Such problems
have been widely studied in the past decades both in the
static and in the dynamical setting. The field was pioneered
by Radner who showed in his 1962 paper [1] that for a class
of stochastic quadratic decision problems the optimal decen-
tralized decision is linear and easy to compute. This result
has been embraced by the control community initially by Ho
and Chu [2] who showed that under specific assumptions
on the plant and the controller known as “partially nested
information structure”, the result by Radner can be applied
and the optimal structured controller is linear. The field of
decentralized control has matured since then and in [3] the
authors present “quadratic invariance” as a characterization
of all convex structured control problems. Partially nested
structures are a significant portion of quadratically invariant
structures and recently there has been significant progress
in the computation of the optimal controllers [4], [5] for
such structures. In [6] and [7] it is shown that the result
from Radner can be obtained in a game theoretical setting
by considering the Nash equilibrium of players with the same
payoff.

In this paper we consider a different game theoretical
setting: we study “two-team quadratic games”, such games
can be viewed as two-player games where each player is
composed of a team of agents. Every agent has partial
information on the state of the game and can only partially
influence the decision of the team. We consider minimax
zero sum games where, in contrast to [8], both players are
subject to decentralized information structures. The tradi-
tional context for the early theory developed by Radner et
al. was economic interactions of firms, but a timely modern
application context is in cyber-physical network security, in
which both the attackers and network operators act subject
to a distributed information structure. In this work we only
consider the static case for two-team quadratic games but
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we believe that, as for the single player counterpart, our
results could be generalized to control in dynamical games
where both players are subject to partially nested information
structures. Early work considering two team quadratic games
can be found in [9] for the zero-sum case.

Notation

We denote the real numbers by R and the integers by Z.
With Z[a,b] we denote [a, b] ∩ Z. Given a matrix Q ∈ Rn×n
we denote by σmax(Q) and σmin(Q) its maximum and
minimum singular value respectively. With Q � 0 (Q ≺ 0)
we denote that Q = Q> is positive (negative) definite. Let B
denote the Borel sigma algebra on Rn, given a measure space
(Rn,B, µ) we denote by L2

µ the Hilbert space of square
integrable measurable functions (i.e. the functions f(·) for
which

∫
Rn ‖f(x)‖2 µ(dx) < ∞). For simplicity, if µ is

Gaussian, we denote the respective space by L2. We denote
by L(·) the Lebesgue measure. Given F ∈ Rm×n, we denote
by F · a linear function f(·) ∈ L2

µ such that f(x) = Fx.
Given a matrix Q � 0 of appropriate dimensions we denote
the norm ‖F‖Q :=

√
tr(F>QF ). Given Σ � 0 and m ∈ Rn

we define by φ(x;m,Σ) the density function of the Gaussian
distribution with mean m and variance Σ. The symbol ⊗
denotes the Kronecker product for matrices.

II. A SHORT REVIEW ON TEAM DECISION THEORY

In this section we give a brief review on quadratic team de-
cision theory. We first consider the stochastic case introduced
in [1], and we present a proof that will give some useful
insight on the structure of the optimal solution that will be
exploited for the main result of the paper in Section III.
We then show that this approach can be generalized to
the non-Gaussian case provided the probability measure is
sufficiently regular.

A. Stochastic Gaussian-quadratic team decision theory

We consider the simplest case covered in [1]. Given mw ∈
Rn and Σw � 0, let w ∼ N (mw,Σw), the decision vector
u = [u>1 , . . . , u

>
N ]> ∈ Rm, ui ∈ Rmi , output matrices Ci ∈

Rqi×n, for i ∈ Z[1,N ] and Quu � 0. We seek measurable
functions that map Rn → Rmi of the form νi(Ci ·) where
νi(·) ∈ L2 to solve the following problem

{ν?i (Ci ·)}Ni=1 =

arg min
νi(·)

Ew

([
w
u

]> [
Qww Qwu
Q>wu Quu

] [
w
u

])
subject to: ui = νi(Ciw)

(1)



In [1] it is proven that the optimal solution
ν?1 (C1 ·), . . . , ν?N (CN ·) to problem (1) is given by
linear decision functions, that is ui = ν?i (Ciw) = KiCiw.
We present a simple proof of this result. As already noted
in [8], problem (1) can be reformulated as

{ν?i (Ci ·)}Ni=1 = arg min
νi(·)

Ew
(
‖u−Kcx‖2Quu

)
subject to: ui = νi(Ciw), ∀i ∈ Z[1,N ],

(2)

where Kc = −Q−1
uuQ

>
wu is the optimal “centralized” deci-

sion, which can be easily obtained by setting the derivative
of the cost function with respect to u to zero. Problem (2)
can be equivalently reformulated as

[ν?>1 (C1 ·), . . . , ν?>N (Cn ·)]> =

= arg min
ν(·)∈S

Ew
(
‖ν(w)−Kcx‖Quu

)
, (3)

where S is a linear subspace of L2 defined as

S :=

ν(·) ∈ L2

∣∣∣∣∣∣ ν(·) =

 ν1(C1 ·)

νN (CN ·)


If we define with the following norm for the space L2

parametrized by m ∈ Rn,Σ � 0 and Q � 0

‖M(·)‖Q,Σ,m :=(∫
Rn
‖M(w)‖2Qφ(w;m,Σ) dw

) 1
2

=
(
Ew
(
‖M(w)‖2Q

)) 1
2 ,

(4)

where w ∼ N (m,Σ), we notice that problem (3) is simply
the orthogonal projection in L2 endowed with the norm
‖ · ‖Quu,Σw,mw onto the subspace S. That is

[ν?>1 (C1 ·), . . . , ν?>N (Cn ·)]> = ProjS(Kc ·) (5)

Since (L2, ‖ · ‖Quu,Σw,mw) is a Hilbert space, the projection
onto a linear subspace is a linear operator [10, Corollary
3.22]. The composition of linear operators is linear therefore
the optimal decentralized decisions ν?i (Ci ·) must also be
linear.

B. Generalization to the non-Gaussian case

The approach of Section II-A can be generalized to differ-
ent quadratic team decision problems whose solution is given
by the subspace projection in L2

µ of the decision function
Kc ·, where µ is any nonnegative measure on (Rn,B) with
finite first and second moments that is absolutely continuous
with respect to the Lebesgue measure (i.e. L(A) = 0 =⇒
µ(A) = 0 for all A ∈ B). Since such a measure µ induces
a norm on L2

µ parametrized by Q � 0 defined as

‖M‖Q,µ =

(∫
Rn
‖M(w)‖2Q µ(dw)

) 1
2

.

We can define the equivalent of problem (1) in a much more
general setting:

{ν?i (Ci ·)}Ni=1 =

arg min
νi(·)

∫
Rn

[
w
u

]> [
Qww Qwu
Q>wu Quu

] [
w
u

]
µ(dw)

subject to: ui = νi(Ciw).
(6)

The optimal decisions ν?i (Ci, ·) in (6) will be linear and
unique as they are the projection of Kc · onto the subspace
Sµ of “structured” measurable functions in the Hilbert space
L2
µ endowed with the norm ‖·‖Quu,µ. Note that this means

that linear decentralized decisions are optimal for all abso-
lutely continuous probability measures.

III. QUADRATIC TWO-TEAM GAMES

In this section we consider a game theoretical version of
the problem in (1) where two players, both knowing the
distribution of w, need to decide policies to compute vectors
u ∈ Rm and v ∈ Rq as a function of the realization w ∈ Rn
in order to minimize the expectation of different quadratic
forms in w, u, v. Each player is composed of a “team” of
agents, each of which observes a different linear function of
w and decides a portion of the vectors u or v. For clarity of
exposition we will present the Gaussian case. More formally,
given a vector w ∼ N (mw,Σw), where Σw � 0, consider
the following game

P1 :


min
κi(·)

Ew (J1(w, u, v))

s. t. ui = κi(Ciw)

∀i ∈ Z[1,N ].

, P2 :


min
λi(·)

Ew (J2(w, u, v))

s. t. vi = λi(Γiw)

∀j ∈ Z[1,M ].
(7)

where Ji(w, u, v) := w
u
v

>  Qi ww Qi wu Qi wv
Q>i wu Qi uu Qi uv
Q>i wv Q>i uv Qi vv

 w
u
v

 , i ∈ {1, 2}
We make the following assumption.

Assumption 1:[
Q1uu Q1uv

Q>1uv Q2 vv

]
� 0,

[
Q1uu Q2uv

Q>2uv Q2 vv

]
� 0.

note that in the case of zero-sum game (J1 = −J2) ,
Assumption 1 is standard to guarantee the existence of a
saddle point equilibrium to the game without decentralized
information structure [11, condition 6.3.9]. If J1 = J2,
Assumption 1 reduces to the standard positive definite as-
sumption of team theory.

We now define the set of Nash optimal policies for the
game in (7).

Definition 1: A pair of policies (κ?(·), λ?(·))
of the form [κ?>1 (C1 ·), . . . , κ?>N (Cn ·)]> and
[λ?>1 (Γ1 ·), . . . , λ?>M (Γn ·)]> is Nash optimal for the
game in (7) if

κ?(·) ∈ arg min
κ(·)

EwJ1(w, λ?(w), κ(w))

λ?(·) ∈ arg min
λ(·)

EwJ2(w, λ(w), κ?(w)),
(8)



We are now ready to state the main result of the paper.
Theorem 1: Under Assumption 1, the game in (7) always

admits a unique set of linear Nash optimal policies. �
Before proving this result we review some important

results from operator theory in Hilbert spaces.
Definition 2 (Contraction mapping): Given a Hilbert

space H, a mapping M : H → H is called a contraction
mapping if there exists an ε > 0 such that

‖M(x)−M(y)‖ ≤ (1− ε) ‖(x− y)‖ , ∀x, y ∈ H. (9)

or equivalently there exists η > 0 such that

‖M(x)−M(y)‖2 ≤ (1−η) ‖(x− y)‖2 , ∀x, y ∈ H. (10)
Definition 3 (Non expansive mapping): Given a Hilbert

space H, a mapping M : H → H is called a non expansive
mapping if (9) or (10) holds for ε = 0 or η = 0 respectively.

Proposition 1 ([10] Proposition 4.8): Given a Hilbert
space H, the projection map ProjC onto a closed convex
set C ⊂ H is non expansive.

Proposition 2: Given a Hilbert space H, mappings
M1,M2 : H → H such that M1 is non expansive and M2

is a contraction then the composition mapping M1 ◦M2 is
a contraction. �

Proposition 3 (Banach’s Fixed Point Theorem [12]):
Given a Hilbert space H and a contraction mapping
M : H → H and ε as in (9), M admits a unique fixed
point, that is ∃!x̄ ∈ H such that x̄ = M(x̄) and the
Picard–Banach iteration xk+1 = M(xk) converges to x̄ as
k → ∞ for any initial guess x0 ∈ H. Furthermore, for any
k, ‖xk − x̄‖ ≤ (1− ε)k ‖x0 − x̄‖. �

Proof of Theorem 1: We start by noticing that, if one
team plays a linear strategy the optimal response of the
other team is also linear. For example, assume that the
second team plays vi = L̃iΓiw, ∀i ∈ Z[1,M ], if we define
L̃ := blkdiag(L̃1, ..., L̃M ) and Γ = [Γ>1 , ...,Γ

>
M ]>, the

optimal strategy for the first team is given by

{κ?i (Ci ·)}Ni=1 ∈

arg min
κi(·)

Ew

([
w
u

]> [
Q̃1ww Q̃1wu

Q̃>1wu Q1uu

] [
w
u

])
subject to: ui = κi(Ciw)

(11)

where Q̃1ww is irrelevant and

Q̃1wu = Q1wu + Γ>L̃>Q>1uv.

Following the same procedure as in Section II-A, we know
that the optimal policy for the first team (in response of the
linear policy of the second team) is linear, unique and is
given by:

[κ?>1 (C1 ·), . . . , κ?>N (Cn ·)]> = K?C · =
ProjSκ(−Q−1

1uu(Q>1wu +Q1uvL̃Γ) ·), (12)

where K? = blkdiag(K?
1 , ...,K

?
2 ) and

Sκ :=

κ(·) ∈ L2

∣∣∣∣∣∣κ(·) =

 κ1(C1 ·)

κN (CN ·)

 .

and the projection is performed in L2 with respect to the
norm ‖·‖Q1uu,mw,Σw

defined in (4).
With identical reasoning we can conclude that if the first

team plays a linear policy of the form ui = K̃iCiw, ∀i ∈
Z[1,N ] and we define K̃ := blkdiag(K̃1, ..., K̃N ) and C =
[C>1 , ..., C

>
N ]>, the optimal response for the second team is

again linear and is given by

[λ?>1 (Γ1 ·), . . . , λ?>M (Γn ·)]> = L?Γ · =
ProjSλ(−Q−1

2 vv(Q
>
2wv +Q>2uvK̃C) ·), (13)

where L? = blkdiag(L?1, ..., L
?
2) and

Sλ :=

λ(·) ∈ L2

∣∣∣∣∣∣λ(·) =

 λ1(Γ1 ·)

λM (ΓM ·)

 .

and the projection is performed in L2 with respect to the
norm ‖·‖Q2 vv,mw,Σw

.
Now consider (12) and (13), since we know that the

optimal response functions are linear, we can search for
the matrices K? = blkdiag(K?

1 , ...,K
?
N ) and L? =

blkdiag(L?1, ..., L
?
M ). We make the following substitutions

F ?K = K?C, F ?L = L?Γ, F̃K = K̃C, F̃L = L̃Γ

and we get:

F ?K ∈arg min
FK ,K

Ew‖FKw −Q−1
1uu(Q>1wu +Q1uvF̃L)w‖2Q1uu

s.t. FK = KC
K = blkdiag(K1, ...,KN )

F ?L ∈ arg min
FL,L

Ew‖FLw −Q−1
2vv(Q

>
2wv +Q>2uvF̃K)w‖2Q2vv

s.t. FL = LΓ
L = blkdiag(L1, ..., LM ).

(14)
We exploit the following: if w ∼ N (m,Σ) ∈ Rn, Q � 0
and F ∈ Rm×n then

‖F ·‖2Q,Σ,m =Ew ‖Fx‖2Q
= tr(Σ

1
2F>QFΣ

1
2 ) +m>F>QFm

=‖FΣ
1
2 ‖2Q + ‖Fm‖2Q .

(15)

We define the following norm for Rm×n

‖F‖Q,Σ,m :=
√
‖FΣ

1
2 ‖2Q + ‖Fm‖2Q, (16)

and from (15) we get that ‖F ·‖Q,Σ,m = ‖F‖Q,Σ,m In other
words, the norm in L2 defined in (4), parametrized by Q,Σ
and m of a linear function F · is equal to the norm in Rm×n
of F , also parametrized by Q,Σ and m and defined in (16).
In view of (15) and (16) we can then see (14) as projection
operators on the space of matrices endowed with such norm.
That is{

F ?K = ProjSK (−Q−1
1uu(Q>1wu +Q1uvF̃L))

F ?L = ProjSL(−Q−1
2 vv(Q

>
2wv +Q>2uvF̃K)),

(17)

where

SK =
{
F ∈ Rm×n |F = KC,K = blkdiag(K1, ...,KN )

}



and

SL =
{
F ∈ Rq×n |F = LΓ, L = blkdiag(L1, ..., LM )

}
.

The projections above are performed with respect to the
norms ‖ · ‖Q1uu,Σw,mw and ‖·‖Q2 vv,Σw,mw respectively. The
formulation in (17) can be written compactly as[

F ?K
F ?L

]
= ProjS

(
Q̂

[
F̃K
F̃L

]
−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

])
(18)

where

Q̂ :=

[
0 −Q−1

1uuQ1uv

−Q−1
2 vvQ

>
2uv 0

]
, (19)

and S = SK×SL. The last projection is in the space Rm×n×
Rq×n equipped with the norm ‖ · ‖Q,Σw,mw where

Q =

[
Q1uu 0

0 Q2 vv

]
. (20)

Note that Q � 0 by Assumption 1. Equation (18) allows us
to compute the optimal response of each player to any linear
strategy adopted by the other player. Now suppose we could
find matrices F ?K , F

?
L such that[

F ?K
F ?L

]
= ProjS

(
Q̂

[
F ?K
F ?L

]
−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

])
, (21)

then, according to (18), we would have that F ?K · is the
optimal policy of the first team if the second team plays F ?L ·,
but also that F ?L · is the optimal policy for the second team
if the first plays F ?K ·. Then, according to Definition 1, the
pair (κ?(·), λ?(·)) = (F ?K ·, F ?L ·) would be Nash optimal.
Conversely, if a set of linear policies is Nash Optimal
according to Definition 1, then the corresponding matrices
must satisfy the fixed point equation (21). The set of linear
Nash policies can therefore be characterized as the set of
fixed points of the mapM : Rm×n×Rq×n → Rm×n×Rq×n

M
([
·
·

])
:= ProjS

(
Q̂

[
·
·

]
−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

])
.

According to Proposition 3 if we can show that the map
M is a contraction mapping (Definition 2), then it always
admits a unique fixed point and we have proven the theorem.
From Proposition 1 we know that the projection operator is
non expansive. SinceM is the composition of the projection
operator and a linear mapping, by Proposition 2, in order to
show contractiveness ofM, it is enough show that the affine
map

Q̂

[
·
·

]
−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

]
(22)

is a contraction in the norm parametrized by Q,Σw and mw.
By definition, the affine map in (22) is contractive if for all[
FK1

FL1

]
and

[
FK2

FL2

]
if there exist η > 0 such that∥∥∥∥Q̂ [ FK1 − FK2

FL1 − FL2

]∥∥∥∥2

Q,Σw,mw

≤

(1− η)

∥∥∥∥[ FK1 − FK2

FL1 − FL2

]∥∥∥∥2

Q,Σw,mw

.

(23)

We can expand (23) and we get that it is equivalent to the
existence of η > 0 such that for all FK1, FK2, FL1 and FL2

of appropriate dimensions

tr

([
(FK1 − FK2)Σ

1
2

(FL1 − FL2)Σ
1
2

]>
Q̄

[
(FK1 − FK2)Σ

1
2

(FL1 − FL2)Σ
1
2

])
+([

(FK1 − FK2)mw

(FL1 − FL2)mw

]>
Q̄

[
(FK1 − FK2)mw

(FL1 − FL2)mw

])
≤

−η
∥∥∥∥[ FK1 − FK2

FL1 − FL2

]∥∥∥∥2

Q,Σw,mw

,

(24)

where Q̄ = blkdiag(Q̄11, Q̄22) and

Q̄11 := Q2uvQ
−1
2 vvQ

>
2uv −Q1uu

Q̄22 := Q>1uvQ
−1
1uuQ1uv −Q2 vv

From Assumption 1 and the Schur complement, Q̄ ≺ 0
therefore (24) always holds (take η ≤ σmin(Q̄)/σmax(Q))
and the map M is a contraction. This implies there always
exist a unique fixed point and therefore a unique set of linear
Nash optimal policies for the game in (7) and the proof is
complete. �

IV. COMPUTATION OF THE LINEAR NASH OPTIMAL
STRATEGIES

In this section we show how to compute the unique
Nash optimal linear strategy, whose existence was proven in
Theorem 1. We first show a simple iterative algorithm that
converges to the Nash optimal strategies and can be easily
implemented using semidefinite programming. We then show
that the Nash strategies can be computed directly by solving
a system of linear equations.

A. Iterative algorithm for the computation of the linear Nash
optimal strategies

Directly from the proof of Theorem 1, we obtain an
iterative algorithm to compute the optimal Nash strategies
as a corollary.

Corollary 1: The sequence[
FK
FL

]
k+1

= ProjS

(
Q̂

[
FK
FL

]
k

−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

])
(25)

k = 0, 1, ... converges as k →∞ to the unique set of Nash

optimal linear policies
[
F ?K
F ?L

]
for any initial condition.

Proof: This is just an application of Banach fixed point
theorem (Proposition 3).

We will now show how the iteration in (25) can be
implemented with semidefinite programming. If we expand
the projection we get[

FK
FL

]
k+1

∈ arg min
F̂K ,F̂L

∥∥∥∥[ F̂K
F̂L

]
−H

∥∥∥∥2

Q,Σw,mw

subject to: F̂K ∈ SK , F̂L ∈ SL,

H = Q̂

[
FK
FL

]
k

−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

]
.



which can be rewritten as

arg min
F̂K ,F̂L,K,
L,Z,γ,δ

γ + δ

subject to:

 Q−1

([
F̂K
F̂L

]
−H

)
Σw

? Z

 < 0,

 Q−1

([
F̂K
F̂L

]
−H

)
mw

? δ

 < 0,

H = Q̂

[
FK
FL

]
k

−
[
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

]
,

Z < 0, tr(Z) ≤ γ,
F̂K = KC,K = blkdiag(K1, ...,KN ),

F̂L = LΓ, L = blkdiag(L1, ..., LM ),

where Q̂ and Q are defined in (19) and (20) respectively.

B. Direct computation of the Nash optimal strategies from
the solution of a system of linear equations

In order to derive the linear system we exploit the follow-
ing matrix identity [13]. Given A ∈ Rm×n, B ∈ Rn×q

vec(AB) = (Iq ⊗A)vec(B).

Since we know that ProjS(·) is a linear operator, we can
rewrite (21) as

vec
([

F̄K
F̄L

])
=

Π
(
I ⊗ Q̂

)(
vec
([

F̄K
F̄L

])
− vec

([
Q−1

1uuQ
>
1wu

Q−1
2 vvQ

>
2wv

]))
,

(26)

where Π is the appropriate projector matrix that performs
ProjS(·) in the vectorized space. The solution of the system
of linear equations (26) gives the optimal Nash policies
directly but some effort is required in constructing the matrix
Π. Note that computing the optimal Nash policies requires
global information on the cost function of both players.

V. NUMERICAL EXAMPLE

In this section we present a numerical example to illustrate
the theoretical results. The example shows a game between
the system operator and an attacker in the context of power
system security. We first introduce the system model and
then we provide a numerical example using the IEEE 9 bus
benchmark power system [14].

A. Application to power systems security

We adopt a linearized version of the classic differential-
algebraic structure-preserving power network model pre-
sented in [15]. Consider a connected power network consist-
ing of n generators and m load buses. The interconnection
structure of the power network is encoded by a connected
weighted graph with n + m vertices representing the gen-
erators {gi}ni=1 and buses {bi}mi=1. The edges of the graph
represent either a transmission line (bi, bj) weighted by the

susceptance between buses bi and bj , or a connection (gi, bi)
weighted by the transient susceptance between generator gi
and its adjacent bus bi. The Laplacian associated with the
weighted graph is the symmetric admittance matrix L =[
Lgg Lgl
Llg Lll

]
∈ R(n+m)×(n+m), where the first n rows are

associated with the generators and the last m rows to the
loads. Since the network is connected, we can reduce the
model via Kron reduction [16] and consider the dynamics
of the generator nodes only. In particular, the submatrix Lll
of the admittance matrix is invertible and the Kron-reduced
power system model is of the form[
δ̇
ω̇

]
=

[
0 I

−M−1Lr −M−1D

]
︸ ︷︷ ︸

A

[
δ
ω

]
+

[
0 0

−LglL−1
ll I

]
︸ ︷︷ ︸

B

w ,

(27)
where δ ∈ Rn and ω ∈ Rn represent the generator angles
and frequencies respectively, M and D are diagonal matrices
with inertia and damping coefficients for each generator on
the diagonal. The Kron-reduced admittance matrix is given
by the Schur complement Lr = Lgg − LglL−1

ll Llg and the
disturbance term w ∈ Rn+m represents the deviation from
the forecast of the power produced by the generators or
consumed by the loads.

Since the Laplacian Lr is singular with kernel span(1),
the system matrix in (27) is marginally stable. However,
if we change coordinates by considering the deviation of
the angles from their mean, we obtain a reduced stable
model. To do so we consider the unitary matrix [ 1

n1, V ]
where each column is an eigenvectors of the projector Πn :=
I− 1

n11
>. We then construct the state transformation matrix

T = blkdiag(V >, I) and change the state as: [δ>r , ω
>]> =

T [δ>, ω>]>. The dynamics in the new variables become[
δ̇r
ω̇

]
= Ar

[
δr
ω

]
+Brw,

where Ar := TAT> and Br := TB.
We assume that w is a constant disturbance (over time)

whose value is drawn from the normal distribution N (0, I).
The value of w can be measured both by the system operator
and an attacker. The goal of the network operator is to reduce
the effect of the disturbance w on the steady-state, while
operating the local controllers efficiently. The goal of the
attacker is to exacerbate the effect of the disturbance w on
the steady-state, while also operating the local controllers to
maintain stealth. Both the attacker and the system operators
are subject to information constraints and can manipulate the
generator powers and the loads, i.e.[

δ̇r
ω̇

]
= Ar

[
δr
ω

]
+Brw +Bru+Brv.

In particular, the game between the system operator and the
attacker becomes

min
u

max
w

Ew

([
δ̄r
ω̄

]> [
δ̄r
ω̄

]
+ u>Ru− v>Sv

)
, (28)

subject to the information structure.
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Fig. 1: The value of the game as a function of the information
structure of the two players. The information structures
corresponding to the axes are shown in Figure 2

The vector [δ̄>r , ω̄
>]> in (28) is the steady-state angle

and frequency deviation resulting from the constant inputs
and disturbances w, u and v. R � 0 encodes the efficiency
objective of the network operator and S � 0 encodes the
stealth objective of the attacker. The steady-state is given by[

δ̄r
ω̄

]
= −A−1

r (Brw +Bru+Brv).

Then the team game becomes

min
u

max
v

Ew


 w
u
v

>  Qww Qwu Qwv
Q>wu Quu Quv
Q>wv Q>uv Qvv

 w
u
v


 ,

where Qww = Qwu = Qwv = Quv = B>r A
−>
r A−1

r Br and
Quu = R+B>r A

−>
r A−1

r Br, Qvv = B>r A
−>
r A−1

r Br − S.
For the numerical example we used data from the IEEE

9 bus benchmark power system and we computed R and
S such that Assumption 1 is satisfied. We then computed
the Nash optimal strategies for the system operator and the
attacker using the iterative algorithm presented in Section IV-
A for different information structures varying from fully
decentralized to centralized. In Figure 1 we plot the value
of the game as a function of the information structures of
the players. Figure 2 illustrates the different information
structures used in the experiment. As expected we notice that
having more information is advantageous for both players.

VI. CONCLUSION AND OUTLOOK

In this paper we showed that for a class of zero sum
quadratic games, under suitable conditions we can guarantee
the existence and uniqueness of a Nash equilibrium in the
space of linear distributed policies. We present an iterative
algorithm based on a fixed point iteration in order to com-
pute this equilibrium. An interesting research direction, in




1

,




2

, . . .

Fig. 2: Varying information structures for each player in the
experiment shown in Figure 1. The structures are banded: 1
corresponds to the fully decentralized information structure
while 9 to the centralized one.

view of the results of [17], is the use of more complex
fixed point iterations in order to guarantee convergence to
a Nash equilibrium under milder conditions and possibly
under compact constraints for each player. Finally the most
interesting research direction is the extension of our result
to finite horizon distributed dynamic games possibly under
partially nested information structures.
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