Good morning!

Recursive Algorithms

Dr. Jeyakesavan Veerasamy jeyv@utdallas.edu

Example: Gift box!

Example: Gift box!

Example: Gift box!

Value of gift box : Equation?

Example: Treasure hunt!

What is recursion?

- Popular in math definitions
- Inductive proof

Example: factorial(n)

$$f(n) = 1$$
 if $n=0$
= $n \times f(n-1)$ ifherwise

n	f(n)	
0	1	0 ()
1	1	1×f(0)
2	2	
3	6	11.0
4	24	4xf(3)
5	120	1

Example: factorial(n)

Non-recursive solution

How does recursion work?

- Stack memory
- How much stack memory is needed?

How to understand recursion?

- Method invocations & returns diagram
- Example: factorial(5)

How to understand recursion?

- Method invocations & returns diagram
- Example: fibonacci(n) = 1 if n < 2= fib...(n-1) + fib...(n-2) otherwise.

fibonacci(n): non-recursive solution?

How to analyze recursion?

Recurrence relation & Time complexity

Example: Hanoi tower

Example: Fractals

Petrol cost minimization problem

Similar solution: Quick-sort

Quick-sort: non-recursive solution?

Similar solution: Merge-sort

Example: Knapsack problem

- Item weights: 40, 10, 46, 23, 22, 16, 27, 6
- Instance #1: Target: 50

Instance #2: Target: 60

Instance #3: Target: 70

$$k(0,0)$$
 $k(1,-)$
 $k(1,-)$
 $k(1,-)$
 $k(2,-)$
 $k(2,-)$
 $k(2,-)$
 $k(2,-)$
 $k(3,-)$
 $k(3,-)$
 $k(3,-)$
 $k(3,-)$

K(n-1) ...)

$$\frac{2^{n-1}}{2^{n-1}},$$

How to make recursion efficient?

- Parameters
- Tail recursion

Example: N-Queens puzzle

Example: Knight's tour

Example: Sudoku's puzzle

Example: Maximizing total conviviality

Conclusions

- Recursion is one of the difficult concepts to understand, perhaps it is not that intuitive.
- As per a few mathematicians & CS folks, it is one of the most beautiful concepts!
- While it is not used much in commercial applications, it certainly puts your logical thinking skills to work!
- It is easy to remove tail recursion, but all others are lot harder to remove.

Questions & Answers?