Good morning!

Recursive Algorithms

Dr. Jeyakesavan Veerasamy
jeyv@utdallas.edu

Example: Gift box!

Example: Gift box!

Example: Gift box!

Value of gift box : Equation?

What is recursion?

- Popular in math definitions
- Inductive proof

Example: factorial(n)

$$
\begin{aligned}
f(n) & =1 \quad \text { if } n=0 \\
& =n \times f(n-1) \text { itherwise }
\end{aligned}
$$

Example: factorial(n)

- Non-recursive solution

How does recursion work?

- Stack memory
- How much stack memory is needed?

How to understand recursion?

- Method invocations \& returns diagram
- Example: factorial(5)

How to understand recursion?

- Method invocations \& returns diagram
- Example: fibonacci(n) $=1$ if $n<2$

$$
\begin{aligned}
& =\text { fib... } n-1)+ \text { fib.... } n-2)
\end{aligned}
$$ otherwise.

How to understand recursion? $\begin{gathered}\text { nenc } \\ \text { rect } \\ \text { idac }\end{gathered}$

- Tree diagram
- Example: fibonacci(n)

fibonacci(n) : non-recursive solution?

How to analyze recursion?

- Recurrence relation \& Time complexity

Example: Hanoi tower

Example: Fractals

Petrol cost minimization problem

Similar solution: Quick-sort

Quick-sort: non-recursive solution?

Similar solution: Merge-sort

Example: Knapsack problem

- Item weights: 40, 10, 46, 23, 22, 16, 27, 6
- Instance \#1: Target : 50
- Instance \#2: Target: 60
- Instance \#3: Target: 70

$$
\begin{aligned}
& k(0,0) \\
& \dot{y}\rangle_{k(1, . .)}^{x} 2 \\
& 2 \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& K(n-1, \cdots) \\
& \frac{2^{n-r}}{2^{n}-1},
\end{aligned}
$$

How to make recursion efficient?

- Parameters
- Tail recursion

Example: N -Queens puzzle

Example: Knight's tour

Example: Sudoku's puzzle

Example: Maximizing total conviviality

Conclusions

- Recursion is one of the difficult concepts to understand, perhaps it is not that intuitive.
- As per a few mathematicians \& CS folks, it is one of the most beautiful concepts!
- While it is not used much in commercial applications, it certainly puts your logical thinking skills to work!
- It is easy to remove tail recursion, but all others are lot harder to remove.

Questions \& Answers?

