
Introduction to Programming
using Java

Dr. Jey Veerasamy
jeyv@utdallas.edu

July 31st – August 23rd
9:30 am to 12 noon

1

Logistics

• Laptops – work with your neighbor if you did not
bring a laptop

• Restrooms – go right when you go out of TI
auditorium

• Break : 10:45am to 11am – I will use this time to
provide extra help too.

• Cell-phones – poor signal within the classrooms -
switch off to avoid distractions and battery drain.

• Signup sheet will be there for every class – please
sign-in. You are welcome to bring your friends
since we have plenty of additional seats!

2

Instructor: Dr. Jey Veerasamy

• Dad was a school teacher

• Completed M.S. and Ph.D. in UT Dallas in 1999

• 16 years of telecom software industry
experience in Nortel and Samsung

• Taught as adjunct and online faculty in several
colleges along with full-time work.

• Returned back to UT Dallas as full-time teaching
faculty in Fall 2010.

3

4
 __
 Department of Computer Science Jonsson School of Engineering and Computer Science

CS Department: Highlights

• The UTD CS dept started as a small program

within the Mathematical Sciences in the 70s

• One of the largest CS dept’s in the US today

• 55 faculty members

• 120+ Research and Teaching Assistants

• 15 Staff members including 4 Tech. Support

• 1500+ Students (130 Ph.D. +700 MS +720 BS)

• Full range of programs in CS, SE and TE:

-- BS, MS and Ph.D.

5
 __
 Department of Computer Science Jonsson School of Engineering and Computer Science

CS Department: Accomplishments

• Ranked 29th in UC Irvine’s publications ranking of
CS graduate programs

• Ranked 24th worldwide in UC Irvine’s
publications ranking of SE graduate programs

• 8 of our faculty hold Young Investigator awards

• Top 5 producer of CS degrees

• Placed 14th worldwide in ACM Programming
Competition (just behind MIT & CalTech in US)

6
 __
 Department of Computer Science Jonsson School of Engineering and Computer Science

CS Department: Distinguished Faculty

• Over 55 memberships on editorial boards of

computer science journals

• Research expenditure over $16 million in last two

years

• Published 250+ papers last year

• Involved in numerous leading technical

conferences as conference chairs or program

committee chairs/members

What is programming?

• Developing software applications & games

• Software is not limited to PC

– most complex systems run software

– smart phones, game devices, even DVD players

7

Programming …

• is NOT a boring or repetitive activity

• does NOT require you to sit in dark room and
type in computer all day!

• does NOT involve complex Math

• requires logical thinking – technical common
sense

• write minimal code & combine with existing
components to build new applications

• Solve customers’ problems & improves quality
of life for every one.

8

Why learn programming?

• Software Engineers get great pay!

• Less stressful compared to several other high
paying jobs – room for trial & error

• Automation continues…

• Computer touches our lives more & more
every day…

• More component based programming 
always room for simple programs to do large
tasks!

9

Analogy for learning to program:
Learning to ride bicycle

• Difficulties for beginners:

– Learning to balance & go forward together

• Difficulties for experienced folks:

– None.

10

Learning to program:
Difficulties for beginners

1. Syntax errors

• struggle for hours to fix syntax errors

• Loose confidence

• Frustrating experience

• Run away & never come back if possible!

2. Logic errors

 Logic is simple for small programs. It can be an issue
if student has mental block against math.

11

Difficulties for experienced
programmer?

NOT syntax errors – it is just a nuisance!

More worried about logic errors (aka SW bugs)
that are hard to reproduce.

Continuous learning

12

How to reduce difficulties for beginners?

• Use the “start of the art” tools like Netbeans IDE
(Integrated Development Environment) to help
us!

• Few other IDEs are Eclipse, JGRASP, … (Search for
“Java IDE” in the web to learn more)

• IDEs take care of mundane steps so that we can
focus on learning and programming.

• Also, take advantage of expanded libraries
provided by new languages and use them as
building blocks.

13

A typical software project
development in 1990

C standard library Home-grown library

New code

14

Same project NOW

C++/Java standard
library

Home-grown library

Open source
components

Commercial libraries
for industry segment IDE modules

New code

15

A few examples

• Recipe to make your favorite food

• Assembly instructions for a toy

• Coming to college from home

What is common about these activities?

16

A few examples

• Recipe to make your favorite food

• Assembly instructions for a toy

• Coming to college from home

What is common about these activities?

Sequence

17

Programming concepts:
Sequence structure

instruction 1;

instruction 2;

instruction 3;

…

18

NetBeans IDE – getting started

• Start the tool

• Click on new Project icon in top toolbar

• Java category and Java Application have
been pre-selected. Click on Next

• Use a meaningful project name for each
project/program. Click on Finish.

• It will add a Java source file
automatically with a skeleton code.

19

Sample skeleton code
package hello;

/**

 *

 * @author veerasam

 */

public class Hello {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 }

} 20

Program to print Hello!

package hello;

import java.util.*;

public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello to Java!");
 }
}

21 Comments have been removed to conserve space. Assumes project name “hello”

Few notes
• Compiler translates the program to binary executable.
• NetBeans features automatic incremental compilation – syntax

errors appear as you type in.
• It is good to keep the code formatted properly (indentation).

Right-click within the editor any time and select Format.
• Comments are ignored by the compiler. Comments are used for

recording ideas/thoughts in plain English so that we can make
sense of the code later.

• // is used for one line comment, /* …. */ is used multi-line
comments.

• For initial sessions, almost all our code will go into main()
method. Do not change anything else.

• Java is case-sensitive. Example: int and Int are treated
differently.

22

Structure for simple programs

• Input – get the necessary user input

• Processing – do some computation

• Output – show the results to the user

23

Problem:
get 5 numbers and output average

Enter 5 numbers:

11

12

12

14

15

Average is 12.2

24
Program output in GREEN, user input in BLUE

Idea/pseudocode: get 5 numbers
and output average

Prompt & get the score for number1

Prompt & get the score for number2

Prompt & get the score for number3

Prompt & get the score for number4

Prompt & get the score for number5

average = (number1 + number2 + number3 +
number4 + number5) / 5

output average

25

Idea/pseudocode - why?
• As the problems become bigger, it is harder to

code directly from the problem description.
• It is better to capture the logic first, build

confidence, then convert it to actual code.
• Pseudocode is for human understanding, so plain

English is preferred. It can use indentation and
language constructs like IF, WHILE, FOR, … but no
need to follow any language syntax specifics.

• Can contain just high level ideas or detailed
instructions that is equivalent to actual code.

• Another option is to use Flowcharts, but it
occupies too much space & it cannot be stored as
comments within the source files.

26

Java program
package add5;

import java.util.*;

public class Add5 {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter 5 numbers: ");

 int number1 = keyboard.nextInt();

 int number2 = keyboard.nextInt();

 int number3 = keyboard.nextInt();

 int number4 = keyboard.nextInt();

 int number5 = keyboard.nextInt();

 double average = (number1 + number2 + number3 + number4 + number5) /
5.0;

 System.out.println("Average is " + average);

 }

}

27
Comments have been removed to conserve space. Assumes project name “add5”

Variables

• Placeholders to store values, similar to variables
we use in math equations. Names should start
with a letter, then they can contain numbers.

• Popular variable types in Java are

– int to store integer values

– double to store real numbers (contains fractions, also
too huge or too small values)

– String to store strings typically used for messages

– Other data types: byte, char, boolean, float so on.

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
28

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Basic/Primitive Data Types

– byte

– short

– int

– long

– float

– double

– boolean

– char

• Primitive data types are built into the Java language
and are not derived from classes.

• There are 8 Java primitive data types.

29

Numeric Data Types
byte 1 byte Integers in the range

-128 to +127 (-27 to 27-1)

short 2 bytes Integers in the range of

-32,768 to +32,767 (-215 to 215-1)

int 4 bytes Integers in the range of

-2,147,483,648 to +2,147,483,647 (0xFFFFFFFF to 0x7FFFFFFF)

(Two’s complement form to handle negative numbers)

-231 to 231-1

long 8 bytes Integers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

-263 to 263-1

float 4 bytes Floating-point numbers in the range of

±3.410E-38 to ±3.410E38, with 7 digits of accuracy

double 8 bytes Floating-point numbers in the range of

±1.710E-308 to ±1.710E308, with 15 digits of accuracy 30

http://en.wikipedia.org/wiki/Two's_complement

Java program: add 5 numbers
and output average - notes

• Need to use double or float to store average. int
data type cannot handle fractional part.

• int / int results in integer division - returns the
quotient and throws away the remainder. For
example, 5 / 2 results in 2, NOT 2.5.

• To avoid integer division, at least one operand
has to be real number. Easiest way is to divide the
sum by 5.0 instead of 5 (as shown in the code).
Another option is to use “double” for all
variables.

31

Problem: compute weighted average

• Compute the weighted score based on
individual assignments’ scores. Let us say
there are only 3 assignments & 2 exams, each
with max score of 100. Respective weights are
(10%, 10%, 10%, 35% and 35%)

32

Sample input & output

Enter score for assignment #1:
100
Enter score for assignment #2:
100
Enter score for assignment #3:
100
Enter score for exam #1:
95
Enter score for exam #2:
95
Weighted sum is 96.5%

33

Idea/Pseudocode

Prompt & get the score for assignment1

Prompt & get the score for assignment2

Prompt & get the score for assignment3

Prompt & get the score for exam1

Prompt & get the score for exam2

weightedScore = (assignment1 + assignment2 +
assignment3) * 0.1 + (exam1 + exam2) * .35

output weightedScore

 34

Java program
package weightedsum;

import java.util.*;

public class WeightedSum {

 public static void main(String[] args) {

 Scanner keyboard = new Scanner(System.in);

 System.out.print("Enter score for assignment #1: ");

 int assign1 = keyboard.nextInt();

 System.out.print("Enter score for assignment #2: ");

 int assign2 = keyboard.nextInt();

 System.out.print("Enter score for assignment #3: ");

 int assign3 = keyboard.nextInt();

 System.out.print("Enter score for exam 1: ");

 int exam1 = keyboard.nextInt();

 System.out.print("Enter score for exam 2: ");

 int exam2 = keyboard.nextInt();

 double sum = assign1 * 0.1 + assign2 * 0.1 + assign3 * 0.1

 + exam1 * 0.35 + exam2 * 0.35;

 System.out.println("Weighted sum is " + sum + "%");

 }

}

35
Comments have been removed to conserve space. Assumes project name “add5”

Java program : several ways to do
same computation

double sum = assign1 * 0.1 + assign2 * 0.1 + assign3 * 0.1

 + exam1 * 0.35 + exam2 * 0.35;

can also be written as

double sum = 0.1 * (assign1 + assign2 + assign3)

 + 0.35 * (exam1 + exam2);

(or)

double sum = 0.1 * (assign1 + assign2 + assign3);

sum += 0.35 * (exam1 + exam2);

(or)

double sum = 0;

sum += 0.1 * (assign1 + assign2 + assign3);

sum += 0.35 * (exam1 + exam2);

36

Java program : several ways to do
same computation …

(or)

double sum = assign1 * 0.1;

sum += assign2 * 0.1;

sum += assign3 * 0.1;

sum += exam1 * 0.35;

sum += exam2 * 0.35;

(or)

double assignWeight = 0.1; double examWeight = 0.35;

double sum = assignWeight * (assign1 + assign2 + assign3)

 + examWeight * (exam1 + exam2);

(or several more ways!)

Note: When variable names contain multiple words, Java
convention is to camel casing – use uppercase for first letter
each additional word. That is why we used variable names like
examWeight.

37

Problem: Country Store
Let us say we have a simple store that sells only
the following 5 items. Write a program to do the
check-out. That is, ask the user to input the
weights for each product and output the total
price.

38

Product Price per pound

Bananas $ 0.44

Apples $ 0.99

Cucumbers $ 1.19

Carrots $ 0.89

Oranges $ 0.79

Sample input & output

Enter weight for Bananas:
2.5
Enter weight for Apples:
3.4
Enter weight for Cucumbers:
2.3
Enter weight for Carrots:
4.5
Enter weight for Oranges:
3.7
Total price is $ 14.13

39

Product Price per
pound

Bananas $ 0.44

Apples $ 0.99

Cucumbers $ 1.19

Carrots $ 0.89

Oranges $ 0.79

Pseudocode #1

Prompt & get the weight for Bananas

Prompt & get the weight for Apples

Prompt & get the weight for Cucumbers

Prompt & get the weight for Carrots

Prompt & get the weight for Oranges

total = bananaWeight * 0.44 + appleWeight *
0.99 + cucumberWeight * 1.19 + carrotWeight *
0.89 + orangeWeight * 0.79

output total

40

Pseudocode #2

Initialize total to 0
Prompt & get the weight for Bananas
total += weight * 0.44
Prompt & get the weight for Apples
total += weight * 0.99
Prompt & get the weight for Cucumbers
total += weight * 1.19
Prompt & get the weight for Carrots
total += weight * 0.89
Prompt & get the weight for Oranges
total += weight * 0.79
output total

41
See store.java for the code.

Pseudocode #1 vs #2

• 2nd version uses minimal # of variables –
reuses weight for all 5 products since
individual weights are not needed after
computing sub-totals.

• Both are acceptable mechanisms!

42

Activities

• Drive car or take DART bus?

• Party or study?

• Fly or drive?

What is the common idea for all these activities?

43

Activities

• Drive car or take DART bus?

• Party or study?

• Fly or drive?

What is the common idea for all these activities?

Decision or Selection

44

Selection structure

IF condition is true THEN

 do this;

ELSE

 do that;

ENDIF

Note: ELSE portion is optional.

45

Selection structure in Java

if (condition)

 statement;

if (condition)

 statement1;

else

 statement2;

if (condition) {

 statement1;

 …

} else {

 statement2;

 …

}

46

if statement – be careful!
if (condition)

 statement1;

 statement2;

is treated by compiler as

if (condition)

 statement1;

statement2;

Important to use { } when there are multiple
statements in the body!

47

Problem:
compute weekly pay with a restriction

Get hourly pay rate & # of hours, compute the
weekly pay, but do not pay for hours beyond 50.

48

Sample input/output

Enter hourly pay rate: 100

Enter hours: 30

Weekly pay is $ 3000

Enter hourly pay rate: 100

Enter hours: 60

Weekly pay is $ 5000

 49

Pseudocode

Prompt & get hourly pay rate & # of hours

IF hours <= 50

 pay = hours * payRate;

ELSE

 pay = 50 * payRate;

output pay

50

Java code
 System.out.print("Enter hourly pay rate: ");

 double payRate = keyboard.nextDouble();

 System.out.print("Enter # of hours: ");

 double hours = keyboard.nextDouble();

 double pay;

 if (hours <= 50) {

 pay = payRate * hours;

 } else {

 pay = payRate * 50;

 }

 System.out.println("Weekly pay is " + pay);

51
Note: only the relevant code is shown.

Several other ways to do
same computation

 if (hours > 50) {

 pay = payRate * 50;

 } else {

 pay = payRate * hours;

}

(or)

if (hours > 50) {

 hours = 50;

}

pay = payRate * hours;

Note: { } is not required when IF statement contains only one line. It is a good habit though.
52

Problem: Weekly Pay Version 2

Get hourly pay rate & # of hours, compute the
weekly pay as per the following table:

Basically, workers get paid 50% more for each
hour beyond 40, but they will not be paid for
hours beyond 50.

Hour Actual pay rate

0 to 40 Hourly Rate

41 to 50 Hourly Rate * 1.5

Hours > 50 0

53

Problem: Weekly Pay Version 2

• How many tests we need to run to validate
the program?

3, one for each case.

54

Sample input/output

Enter hourly pay rate: 100

Enter hours: 30

Weekly pay is $ 3000

Enter hourly pay rate: 100

Enter hours: 60

Weekly pay is $ 5500

Enter hourly pay rate: 100

Enter hours: 45

Weekly pay is $ 4750

55

Pseudocode #1

IF hours <= 40

 pay = hours * payRate;

ELSE IF hours <= 50

 pay = 40 * payRate + (hours – 40) *payRate * 1.5;

ELSE

 pay = 40 * payRate + 10 * payRate * 1.5;

56

Java code – chained IF statement

if (hours <= 40)

 pay = hours * payRate;

else if (hours <= 50)

 pay = 40 * payRate + (hours – 40) *payRate * 1.5;

else

 pay = 40 * payRate + 10 * payRate * 1.5;

57

Java code – nested if statement

if (hours <= 40)

 pay = hours * payRate;

else

 if (hours <= 50)

 pay = 40 * payRate + (hours – 40) *payRate * 1.5;

 else

 pay = 40 * payRate + 10 * payRate * 1.5;

58

Chained IF statement is preferred since it involves less indentation.

Pseudocode #2 – 3 IF statements

IF hours <= 40

 pay = hours * payRate;

IF (hours > 40) && (hours <= 50)

 pay = 40 * payRate + (hours – 40) *payRate * 1.5;

IF (hours > 50)

 pay = 40 * payRate + 10 * payRate * 1.5;

59

Pseudocode #3 – simplify equations

IF hours <= 40

 pay = hours * payRate;

ELSE

 basePay = 40 * payRate;

 overtimeRate = payRate * 1.5;

 IF hours <= 50

 pay = basePay + (hours – 40) *overtimeRate;

 ELSE

 pay = basePay + 10 * overtimeRate;

60

Java code #3

if (hours <= 40)

 pay = hours * payRate;

else {

 basePay = 40 * payRate;

 overtimeRate = payRate * 1.5;

 if (hours <= 50)

 pay = basePay + (hours – 40) *overtimeRate;

 else

 pay = basePay + 10 * overtimeRate;

}

61

Pseudocode #4

IF hours > 50

 hours= 50;

IF hours <= 40

 pay = payRate * hours;

ELSE

 pay = payRate * 40 + payRate * 1.5 * (hours – 40);

62
These are just a handful of ways. Several more ways are possible!

Problem: Country Store Version 2
Enhance the checkout program to apply the
following discount based on final total price.

63

Total price Discount

$50 and above 10%

$75 and above 15%

$100 and above 20%

Pseudocode/idea

After computing the total:

if (total > 100)

 apply 20%

else if (total > 75)

 apply 15%

else if (total > 50)

 apply 10%

64

Java : switch structure

switch (num) {
 case 0: ….
 break;
 case 1: ….
 break;
 case 2: …
 break;
 case 3: …
 break;
 default:
 …
}

if (num == 0)
 …
else if (num == 1)
 …
else if (num == 2)
 …
else if (num == 3)
 …
else
 …

65

Note: int or char is commonly used ones with switch(). Real
numbers cannot be used with switch().

series of if statements vs. switch()

• case statements within switch() look bit
cleaner, compared to so many IF conditions.

66

Problem: Math practice

Program should come up with 2 random
integers (first one between 1 and 100 and
second one between 1 and 20) and randomly
select an operator (+, -, * or /) and post the
question to the user. Get the answer and
validate and output a message.

• Sample input & output:

45 * 15 ? 675

Very good.

67

Ideas

• Use Java’s random number generator to get
numbers.

• For operator, generate random number 0 to 3,
then map it to operator (+, -, *, /) using switch
statement.

• See MathPractice.java for full Java code.

68

Activities

• Bring in tons of purchased items from car to
house

• Load up truck when moving from a home

• Eat cookies from a box

• Taking an exam that has several questions

What is the common idea for all these activities?

69

Activities

• Bring in tons of purchased items from car to
house

• Load up truck when moving from a home

• Eat cookies from a box

• Taking an exam that has several questions

What is the common idea for all these activities?

Repetition/Loop

70

Repetition structure (pseudocode)

WHILE (more items to process)

 process the next item;

ENDWHILE

FOR month = 1 to 12

 do monthly processing

ENDFOR

 71

Repetition structures in Java
while (condition)
 statement;

while (condition) {
 statement1;
 statement2;
 …
}

do {
 statement1;
 …
} while (condition);

for(int i=0 ; i<n ; i++)
 statement;

for(int i=0 ; i<n ; i++) {
 statement1;
 statement2;
 …
}

72

while vs. do … while vs. for

• body of while loop may not execute at all!

• body of do…while loop is guaranteed to
execute at least once.

• for loop is a simpler version of while loop & it
is used when we know exact # of times loop
needs to be executed.

73

Problem:
average of 5 numbers

Re-do the problem to compute the average of 5
numbers using a loop. Use minimal # of variables.

Enter the numbers:
91
92
92
93
94
Average is: 92.4

74

Idea

• Use a loop to get 5 numbers and add them up.

• Since we know the count upfront, for loop is
preferred.

• See add5while.java and add5for.java for the
code.

75

Problem:
compute average for any input list

Let us say you want to compute the average
score of a class, but you do not know # of
students in the class! What can you do?

76

Problem:
compute average of any input list

Let us say you want to compute the average score of a
class, but you do not know # of students in the class!
What you will do?

Use out-of-range value like -1 to indicate the end of input.

Enter the numbers:
91
92
93
94
-1
Average is: 92.5

77

Idea

• Repeat the loop until -1 is seen as input.

• Keep track of # of input items

• Compute the average as total / count

78

break statement
• breaks the loop and continues to the

statement after the loop body:

79

continue statement
• Ignores the lines below that statement and

continues with the loop.

80

Problem: Math Practice - Version 2

Make the user answer 10 questons and keep
track of user’s performance. Output the final
score.

Here is a sample message after answering 10
questions:

You got 7 correct and 3 wrong. Play again soon!

81

Ideas

• use for loop to repeat 10 times

• use loop variable as question #

• use 2 variables to keep track of
correct/incorrect – increment as needed

• print final stats (# correct, # incorrect)

82

Problem: Math Practice - Version 3

Same as Version 2, but uses additional method
for playing the game.

See the code for details.

83

For advanced level students only

• Let us say we want to control the distribution of
questions per operator. For example, let us say
we want addition problems for ~35% of the time,
subtraction problems for another ~35% of the
time, multiplication problems for ~20% of the
time, and integer division problems for remaining
~10%.

• We can even make it more generic: We can
prompt & get those % values from the user, then
we can try to setup the distribution of questions
accordingly.

• I will be happy to discuss your ideas in the class
after each session is over (after 12 noon).

84

Problem: Country Store Version 3

Change the input mechanism for the store – list
all 5 products every time, let the user select a
product, then enter the weight. Keep adding
the purchase to total, repeat the prompt until
the user is done.

85

Country Store Version 3 : Prompt

Available products:

1. Bananas ($ 0.44 / lb)

2. Apples ($ 0.99 / lb)

3. Cucumbers ($ 1.19 / lb)

4. Carrots ($ 0. 89 / lb)

5. Oranges ($ 0.79 / lb)

Enter selection (0 to finish check-out) : 2

Enter weight: 2.45

86

Guessing game
Pair up with your neighbor and play this game:

Think of a number between 1 and 100. Ask your
neighbor to guess that number.

Repeat the following steps as many times as
needed:

• Neighbor asks, “Is it NN?”

• You respond with “yes!” or “go lower” or “go
higher”

Goal is to ask minimum # of questions.

 87

Guessing game – ideas?

• Ask about the middle value

• Based on the response, we can focus on one-
half of the range.

• Repeat the top 2 steps until you say “yes!”

88

Let the computer find your number:
Guessing game

Think of a number between 1 and 100. Write a
program so that the computer will ask you a
series of questions and determine that number
based on your answers.

Repeat the following steps as many times as
needed:

• Computer asks, “Is it NN?”

• User responds with <, =, or >

89

Guessing game : Sample runs
Is it 50?

<

Is it 25?

>

Is it 37?

>

Is it 43?

=

Good game!

Is it 50?

<

Is it 25?

<

Is it 12?

>

Is it 18?

>

Is it 21?

<

Is it 19?

>

Your number is 20. Good game!

90

Pseudocode

• Initialize range (low = 1, high = 100)

• while (true)

– compute mid = (low + high) / 2

– ask the user

– user responds with <, >, =

• String input = keyboard.next();

– =  we are done!

• if (input.equals("<"))

– <  high = mid-1 // go into first half.

– > low = mid+1 // go into second half.

 91

Ideas for coding

• Get the user input as a String.

String input = keyboard.next();

• Since String is a complex data type, it needs to
be compared like

 (input.equals("<"))

• You can also check the first character of the
string alone:

(input.charAt(0) == '<‘)

92

Reverse Guessing game

Let the computer think of a number between 1
and 100 (In other words, generate a random
number from 1 to 100 range). Write a program
so that the computer will respond to your
guesses until the number is guessed.

Repeat the following steps as many times as
needed:

• You say, “NN”

• Computer responds with “Yes! Good job!!”,
“go lower!” or “go higher!”

93

Reverse Guessing game : Sample runs

Enter your guess: 80

go higher!

Enter your guess: 95

go lower!

Enter your guess: 90

Yes! Good job!!

Enter your guess: 20

go higher!

Enter your guess: 60

go lower!

Enter your guess: 40

go higher!

Enter your guess: 45

go higher!

Enter your guess: 50

Yes! Good job!!

94

Pseudocode

• Computer thinks of a number – uses random
number generator
– Random generator = new Random();

– int number = generator.nextInt(100) + 1

• while (user has not guessed it correctly yet)
– get user’s guess

– compare and output appropriate message
• if (guess == number)

• if (guess < number)

• if (guess > number)

 95

Reverse Guessing game Version 2
What is the point of playing a game if it does not
output points?  Let us enhance the reverse
guessing game to output the # of points based
on your performance.

96

of guesses Points

1 100

2 50

3 35

4 25

5 20

6 and above 16 - # of guesses, but

do not go negative.

Ideas

• have a variable count to keep track # of
guesses

• use switch() statement in the bottom to
convert # of guesses to actual points.

97

For more details

• Java language basics : official tutorial
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

98

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

