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Logistics 

• Laptops – work with your neighbor if you did not 
bring a laptop 

• Restrooms – go right when you go out of TI 
auditorium 

• Break : 10:45am to 11am – I will use this time to 
provide extra help too. 

• Cell-phones – poor signal within the classrooms - 
switch off to avoid distractions and battery drain.  

• Signup sheet will be there for every class – please 
sign-in. You are welcome to bring your friends 
since we have plenty of additional seats!  
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Instructor: Dr. Jey Veerasamy 

• Dad was a school teacher 

• Completed M.S. and Ph.D. in UT Dallas in 1999 

• 16 years of telecom software industry 
experience in Nortel and Samsung 

• Taught as adjunct and online faculty in several 
colleges along with full-time work. 

• Returned back to UT Dallas as full-time teaching 
faculty in Fall 2010. 
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     ________________________________________________________________________ 
     Department of Computer Science             Jonsson School of Engineering and Computer Science 

CS Department: Highlights 

• The UTD CS dept started as a small program 

within the Mathematical Sciences in the 70s 

• One of the largest CS dept’s in the US today 

• 55 faculty members 

• 120+ Research and Teaching Assistants  

•  15   Staff members including 4 Tech. Support 

• 1500+ Students (130 Ph.D. +700 MS +720 BS) 

• Full range of programs in CS, SE and TE:  

-- BS, MS and Ph.D.  

 

 

     

 



5 
     ________________________________________________________________________ 
     Department of Computer Science             Jonsson School of Engineering and Computer Science 

CS Department: Accomplishments 

• Ranked 29th in UC Irvine’s publications ranking of 
CS graduate programs  

• Ranked 24th worldwide in UC Irvine’s 
publications ranking of SE graduate programs 

• 8 of our faculty hold Young Investigator awards 

• Top 5 producer of CS degrees 

• Placed 14th worldwide in ACM Programming 
Competition (just behind MIT & CalTech in US) 

 



6 
     ________________________________________________________________________ 
     Department of Computer Science             Jonsson School of Engineering and Computer Science 

CS Department: Distinguished Faculty 

• Over 55 memberships on editorial boards of 

computer science journals 

• Research expenditure over $16 million in last two 

years 

• Published 250+ papers last year 

• Involved in numerous leading technical 

conferences as conference chairs or program 

committee chairs/members 



What is programming? 

• Developing software applications & games  

• Software is not limited to PC  

– most complex systems run software 

– smart phones, game devices, even DVD players 
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Programming … 

• is NOT a boring or repetitive activity 

• does NOT require you to sit in dark room and 
type in computer all day!  

• does NOT involve complex Math 

 

• requires logical thinking – technical common 
sense 

• write minimal code & combine with existing 
components to build new applications 

• Solve customers’ problems & improves quality 
of life for every one. 
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Why learn programming? 

• Software Engineers get great pay! 

• Less stressful compared to several other high 
paying jobs – room for trial & error 

• Automation continues… 

• Computer touches our lives more & more 
every day… 

• More component based programming  
always room for simple programs to do large 
tasks! 
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Analogy for learning to program:  
Learning to ride bicycle 

• Difficulties for beginners: 

– Learning to balance & go forward together 

 

• Difficulties for experienced folks: 

– None. 
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Learning to program: 
Difficulties for beginners 

1. Syntax errors  

• struggle for hours to fix syntax errors 

• Loose confidence  

• Frustrating experience 

• Run away & never come back if possible! 

 

2. Logic errors 

 Logic is simple for small programs. It can be an issue 
if student has mental block against math. 
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Difficulties for experienced 
programmer? 

NOT syntax errors – it is just a nuisance!  

 

More worried about logic errors (aka SW bugs) 
that are hard to reproduce. 

 

Continuous learning  
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How to reduce difficulties for beginners? 

• Use the “start of the art” tools like Netbeans IDE 
(Integrated Development Environment) to help 
us!  

• Few other IDEs are Eclipse, JGRASP, … (Search for 
“Java IDE” in the web to learn more) 

• IDEs take care of mundane steps so that we can 
focus on learning and programming. 

• Also, take advantage of expanded libraries 
provided by new languages and use them as 
building blocks. 
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A typical software project 
development in 1990 

C standard library Home-grown library 

New code 
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Same project NOW 

C++/Java standard 
library 

Home-grown library 

Open source 
components 

Commercial libraries 
for industry segment IDE modules 

New code 
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A few examples 

• Recipe to make your favorite food 

• Assembly instructions for a toy 

• Coming to college from home 

What is common about these activities? 
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A few examples 

• Recipe to make your favorite food 

• Assembly instructions for a toy 

• Coming to college from home 

What is common about these activities? 

Sequence 
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Programming concepts: 
Sequence structure 

instruction 1; 

instruction 2; 

instruction 3; 

… 
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NetBeans IDE – getting started 

• Start the tool  

• Click on new Project icon in top toolbar 

• Java category and Java Application have 
been pre-selected. Click on Next 

• Use a meaningful project name for each 
project/program. Click on Finish. 

• It will add a Java source file 
automatically with a skeleton code. 
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Sample skeleton code 
package hello; 

 

/** 

 * 

 * @author veerasam 

 */ 

public class Hello { 

 

    /** 

     * @param args the command line arguments 

     */ 

    public static void main(String[] args) { 

        // TODO code application logic here 

    } 

} 20 



Program to print Hello! 

package hello; 
 
import java.util.*; 
 
public class Hello { 
    public static void main(String[] args) { 
        System.out.println("Hello to Java!"); 
    } 
} 

21 Comments have been removed to conserve space. Assumes project name “hello” 



Few notes 
• Compiler translates the program to binary executable.  
• NetBeans features automatic incremental compilation – syntax 

errors appear as you type in. 
• It is good to keep the code formatted properly (indentation). 

Right-click within the editor any time and select Format. 
• Comments are ignored by the compiler. Comments are used for 

recording ideas/thoughts in plain English so that we can make 
sense of the code later. 

• // is used for one line comment, /* …. */ is used multi-line 
comments. 

• For initial sessions, almost all our code will go into main() 
method. Do not change anything else. 

• Java is case-sensitive. Example: int and Int are treated 
differently. 
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Structure for simple programs 

• Input – get the necessary user input 

• Processing – do some computation 

• Output – show the results to the user 
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Problem: 
get 5 numbers and output average 

Enter 5 numbers: 

11 

12 

12 

14 

15 

Average is 12.2  

24 
Program output in GREEN, user input in BLUE 



Idea/pseudocode: get 5 numbers  
and output average 

Prompt & get the score for number1 

Prompt & get the score for number2 

Prompt & get the score for number3 

Prompt & get the score for number4 

Prompt & get the score for number5 

average = (number1 + number2 + number3 + 
number4 + number5) / 5 

output average 
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Idea/pseudocode - why? 
• As the problems become bigger, it is harder to 

code directly from the problem description. 
• It is better to capture the logic first, build 

confidence, then convert it to actual code. 
• Pseudocode is for human understanding, so plain 

English is preferred. It can use indentation and 
language constructs like IF, WHILE, FOR, … but no 
need to follow any language syntax specifics. 

• Can contain just high level ideas or detailed 
instructions that is equivalent to actual code. 

• Another option is to use Flowcharts, but it 
occupies too much space & it cannot be stored as 
comments within the source files. 
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Java program 
package add5; 

 

import java.util.*; 

 

public class Add5 { 

 

    public static void main(String[] args) { 

 

        Scanner keyboard = new Scanner(System.in); 

 

        System.out.print("Enter 5 numbers: "); 

        int number1 = keyboard.nextInt(); 

        int number2 = keyboard.nextInt(); 

        int number3 = keyboard.nextInt(); 

        int number4 = keyboard.nextInt(); 

        int number5 = keyboard.nextInt(); 

 

        double average = (number1 + number2 + number3 + number4 + number5) / 
5.0; 

 

        System.out.println("Average is " + average); 

    } 

} 

27 
Comments have been removed to conserve space. Assumes project name “add5” 



Variables 

• Placeholders to store values, similar to variables 
we use in math equations. Names should start 
with a letter, then they can contain numbers. 

• Popular variable types in Java are  

– int to store integer values 

– double to store real numbers (contains fractions, also 
too huge or too small values) 

– String to store strings typically used for messages 

– Other data types: byte, char, boolean, float so on. 

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html 
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Basic/Primitive Data Types 

– byte 

– short 

– int 

– long 

– float 

– double 

– boolean 

– char 

• Primitive data types are built into the Java language 
and are not derived from classes. 

• There are 8 Java primitive data types. 
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Numeric Data Types 
byte 1 byte Integers in the range 

-128 to +127  (-27 to 27-1) 

short 2 bytes Integers in the range of 

-32,768 to +32,767 (-215 to 215-1) 

 

int 4 bytes Integers in the range of 

-2,147,483,648 to +2,147,483,647 (0xFFFFFFFF to 0x7FFFFFFF) 

(Two’s complement form to handle negative numbers) 

-231 to 231-1 

long 8 bytes Integers in the range of 

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 

-263 to 263-1  
 

float 4 bytes Floating-point numbers in the range of  

±3.410E-38 to ±3.410E38, with 7 digits of accuracy 

double 8 bytes Floating-point numbers in the range of  

±1.710E-308 to ±1.710E308, with 15 digits of accuracy 30 

http://en.wikipedia.org/wiki/Two's_complement


Java program: add 5 numbers  
and output average - notes 

• Need to use double or float to store average. int 
data type cannot handle fractional part. 

• int / int results in integer division - returns the 
quotient and throws away the remainder. For 
example, 5 / 2 results in 2, NOT 2.5. 

• To avoid integer division, at least one operand 
has to be real number. Easiest way is to divide the 
sum by 5.0 instead of 5 (as shown in the code). 
Another option is to use “double” for all 
variables. 
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Problem: compute weighted average 

• Compute the weighted score based on 
individual assignments’ scores. Let us say 
there are only 3 assignments & 2 exams, each 
with max score of 100. Respective weights are 
(10%, 10%, 10%, 35% and 35%)  
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Sample input & output 

Enter score for assignment #1: 
100  
Enter score for assignment #2: 
100  
Enter score for assignment #3: 
100  
Enter score for exam #1: 
95 
Enter score for exam #2: 
95 
Weighted sum is 96.5% 

 

33 



Idea/Pseudocode 

Prompt & get the score for assignment1 

Prompt & get the score for assignment2 

Prompt & get the score for assignment3 

Prompt & get the score for exam1 

Prompt & get the score for exam2 

weightedScore = (assignment1 + assignment2 + 
assignment3) * 0.1 + (exam1 + exam2) * .35 

output weightedScore 
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Java program 
package weightedsum; 

 

import java.util.*; 

 

public class WeightedSum { 

 

    public static void main(String[] args) { 

        Scanner keyboard = new Scanner(System.in); 

 

        System.out.print("Enter score for assignment #1: "); 

        int assign1 = keyboard.nextInt(); 

        System.out.print("Enter score for assignment #2: "); 

        int assign2 = keyboard.nextInt(); 

        System.out.print("Enter score for assignment #3: "); 

        int assign3 = keyboard.nextInt(); 

 

        System.out.print("Enter score for exam 1: "); 

        int exam1 = keyboard.nextInt(); 

        System.out.print("Enter score for exam 2: "); 

        int exam2 = keyboard.nextInt(); 

 

        double sum = assign1 * 0.1 + assign2 * 0.1 + assign3 * 0.1  

                        + exam1 * 0.35 + exam2 * 0.35; 

         

        System.out.println("Weighted sum is " + sum + "%" ); 

    } 

} 

35 
Comments have been removed to conserve space. Assumes project name “add5” 



Java program : several ways to do 
same computation 

double sum = assign1 * 0.1 + assign2 * 0.1 + assign3 * 0.1  

                        + exam1 * 0.35 + exam2 * 0.35; 

can also be written as 

 

double sum = 0.1 * (assign1 + assign2 + assign3) 

              + 0.35 * (exam1 + exam2); 

(or) 

double sum = 0.1 * (assign1 + assign2 + assign3); 

sum += 0.35 * (exam1 + exam2); 

(or) 

double sum = 0; 

sum += 0.1 * (assign1 + assign2 + assign3); 

sum += 0.35 * (exam1 + exam2); 
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Java program : several ways to do 
same computation … 

(or) 

double sum = assign1 * 0.1; 

sum += assign2 * 0.1; 

sum += assign3 * 0.1; 

sum += exam1 * 0.35; 

sum += exam2 * 0.35; 

(or) 

double assignWeight = 0.1; double examWeight = 0.35; 

 

double sum = assignWeight * (assign1 + assign2 + assign3) 

              + examWeight * (exam1 + exam2); 

(or several more ways!) 

 

Note: When variable names contain multiple words, Java 
convention is to camel casing – use uppercase for first letter 
each additional word. That is why we used variable names like 
examWeight. 
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Problem: Country Store 
Let us say we have a simple store that sells only 
the following 5 items. Write a program to do the 
check-out. That is, ask the user to input the 
weights for each product and output the total 
price. 
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Product Price per pound 

Bananas $ 0.44 

Apples $ 0.99 

Cucumbers $ 1.19 

Carrots $ 0.89 

Oranges $ 0.79 



Sample input & output 

Enter weight for Bananas: 
2.5 
Enter weight for Apples: 
3.4 
Enter weight for Cucumbers: 
2.3 
Enter weight for Carrots: 
4.5 
Enter weight for Oranges: 
3.7 
Total price is $ 14.13 
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Product Price per 
pound 

Bananas $ 0.44 

Apples $ 0.99 

Cucumbers $ 1.19 

Carrots $ 0.89 

Oranges $ 0.79 



Pseudocode #1 

Prompt & get the weight for Bananas 

Prompt & get the weight for Apples 

Prompt & get the weight for Cucumbers 

Prompt & get the weight for Carrots 

Prompt & get the weight for Oranges 

total = bananaWeight * 0.44 + appleWeight * 
0.99 + cucumberWeight * 1.19 + carrotWeight * 
0.89 + orangeWeight * 0.79 

output total 
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Pseudocode #2 

Initialize total to 0 
Prompt & get the weight for Bananas 
total += weight * 0.44 
Prompt & get the weight for Apples 
total += weight * 0.99 
Prompt & get the weight for Cucumbers 
total += weight * 1.19 
Prompt & get the weight for Carrots 
total += weight * 0.89 
Prompt & get the weight for Oranges 
total += weight * 0.79 
output total 

41 
See store.java for the code. 



Pseudocode #1 vs #2 

• 2nd version uses minimal # of variables – 
reuses weight for all 5 products since 
individual weights are not needed after 
computing sub-totals. 

• Both are acceptable mechanisms! 
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Activities 

• Drive car or take DART bus? 

• Party or study? 

• Fly or drive? 

 

What is the common idea for all these activities? 
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Activities 

• Drive car or take DART bus? 

• Party or study? 

• Fly or drive? 

 

What is the common idea for all these activities? 

Decision or Selection 
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Selection structure 

IF condition is true THEN 

      do this; 

ELSE 

      do that; 

ENDIF 

 

 

Note: ELSE portion is optional. 
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Selection structure in Java 

if (condition) 

       statement; 

 

 

if (condition) 

       statement1; 

else 

       statement2; 

if (condition) { 

       statement1; 

       … 

} else { 

       statement2; 

       … 

} 
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if statement – be careful! 
if (condition) 

 statement1; 

 statement2; 

 

is treated by compiler as 

 

if (condition) 

 statement1; 

statement2; 

Important to use { } when there are multiple 
statements in the body! 
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Problem: 
compute weekly pay with a restriction 

Get hourly pay rate & # of hours, compute the 
weekly pay, but do not pay for hours beyond 50. 
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Sample input/output 

Enter hourly pay rate: 100 

Enter hours: 30 

Weekly pay is $ 3000 

 

Enter hourly pay rate: 100 

Enter hours: 60 

Weekly pay is $ 5000 
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Pseudocode 

Prompt & get hourly pay rate & # of hours 

IF hours <= 50 

     pay = hours * payRate; 

ELSE 

     pay = 50 * payRate; 

output pay 

50 



Java code 
        System.out.print("Enter hourly pay rate: "); 

        double payRate = keyboard.nextDouble(); 

 

        System.out.print("Enter # of hours: "); 

        double hours = keyboard.nextDouble(); 

 

        double pay; 

 

        if (hours <= 50) { 

            pay = payRate * hours; 

        } else { 

            pay = payRate * 50; 

        } 

 

   System.out.println("Weekly pay is " + pay); 

51 
Note: only the relevant code is shown. 



Several other ways to do  
same computation 

 if (hours > 50) { 

 pay = payRate * 50; 

 } else { 

 pay = payRate * hours; 

} 

 

(or) 

 

if (hours > 50) { 

 hours = 50; 

} 

pay = payRate * hours; 

Note: { } is not required when IF statement contains only one line. It is a good habit though. 
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Problem: Weekly Pay Version 2 

Get hourly pay rate & # of hours, compute the 
weekly pay as per the following table: 

 

 

 

 

 

Basically, workers get paid 50% more for each 
hour beyond 40, but they will not be paid for 
hours beyond 50. 

 

 

 

 

Hour Actual pay rate 

0 to 40 Hourly Rate 

41 to 50 Hourly Rate * 1.5 

Hours > 50 0 
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Problem: Weekly Pay Version 2 

• How many tests we need to run to validate 
the program? 

 

3, one for each case. 
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Sample input/output 

Enter hourly pay rate: 100 

Enter hours: 30 

Weekly pay is $ 3000 

 

Enter hourly pay rate: 100 

Enter hours: 60 

Weekly pay is $ 5500 

 

 

Enter hourly pay rate: 100 

Enter hours: 45 

Weekly pay is $ 4750 
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Pseudocode #1 

IF hours <= 40 

 pay = hours * payRate; 

ELSE IF hours <= 50 

 pay = 40 * payRate + (hours – 40) *payRate * 1.5; 

ELSE   

 pay = 40 * payRate + 10 * payRate * 1.5; 
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Java code – chained IF statement 

if (hours <= 40) 

 pay = hours * payRate; 

else if (hours <= 50) 

 pay = 40 * payRate + (hours – 40) *payRate * 1.5; 

else 

 pay = 40 * payRate + 10 * payRate * 1.5; 
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Java code – nested if statement 

if (hours <= 40) 

 pay = hours * payRate; 

else  

 if (hours <= 50) 

  pay = 40 * payRate + (hours – 40) *payRate * 1.5; 

        else 

  pay = 40 * payRate + 10 * payRate * 1.5; 

 

58 

Chained IF statement is preferred since it involves less indentation. 



Pseudocode #2 – 3 IF statements  

IF hours <= 40 

 pay = hours * payRate; 

 

IF (hours > 40) && (hours <= 50) 

 pay = 40 * payRate + (hours – 40) *payRate * 1.5; 

 

IF (hours > 50) 

 pay = 40 * payRate + 10 * payRate * 1.5; 

 

59 



Pseudocode #3 – simplify equations 

 

IF hours <= 40 

 pay = hours * payRate; 

ELSE  

 basePay = 40 * payRate; 

 overtimeRate = payRate * 1.5; 

 IF hours <= 50 

  pay = basePay + (hours – 40) *overtimeRate; 

 ELSE   

  pay = basePay + 10 * overtimeRate; 
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Java code #3 

 

if (hours <= 40) 

 pay = hours * payRate; 

else { 

 basePay = 40 * payRate; 

 overtimeRate = payRate * 1.5; 

 if (hours <= 50) 

  pay = basePay + (hours – 40) *overtimeRate; 

 else 

  pay = basePay + 10 * overtimeRate; 

} 
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Pseudocode #4 

IF hours > 50 

 hours= 50; 

 

IF hours <= 40 

     pay = payRate * hours; 

ELSE  

     pay = payRate * 40 + payRate * 1.5 * (hours – 40); 

62 
These are just a handful of ways. Several more ways are possible!  



Problem: Country Store Version 2 
Enhance the checkout program to apply the 
following discount based on final total price. 
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Total price Discount 

$50 and above 10% 

$75 and above 15% 

$100 and above 20% 



Pseudocode/idea 

After computing the total: 

 

if (total > 100) 

 apply 20% 

else if (total > 75) 

 apply 15% 

else if (total > 50) 

 apply 10% 
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Java : switch structure  

switch (num) { 
 case 0: …. 
                         break; 
 case 1: …. 
                         break; 
 case 2: … 
  break; 
 case 3: … 
  break; 
 default: 
  … 
} 

if (num == 0) 
 … 
else if (num == 1) 
 … 
else if (num == 2) 
 … 
else if (num == 3) 
 … 
else 
 … 

65 

Note: int or char is commonly used ones with switch(). Real 
numbers cannot be used with switch().   



series of if statements vs. switch() 

• case statements within switch() look bit 
cleaner, compared to so many IF conditions. 
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Problem: Math practice 

Program should come up with 2 random 
integers (first one between 1 and 100 and 
second one between 1 and 20) and randomly 
select an operator (+, -, * or /) and post the 
question to the user. Get the answer and 
validate and output a message. 

• Sample input & output: 

45 * 15 ? 675 

Very good. 
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Ideas 

• Use Java’s random number generator to get 
numbers. 

• For operator, generate random number 0 to 3, 
then map it to operator (+, -, *, /) using switch 
statement. 

• See MathPractice.java for full Java code. 
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Activities 

• Bring in tons of purchased items from car to 
house 

• Load up truck when moving from a home 

• Eat cookies from a box  

• Taking an exam that has several questions  

 

What is the common idea for all these activities? 
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Activities 

• Bring in tons of purchased items from car to 
house 

• Load up truck when moving from a home 

• Eat cookies from a box  

• Taking an exam that has several questions  

 

What is the common idea for all these activities? 

Repetition/Loop 
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Repetition structure (pseudocode) 

WHILE (more items to process) 

        process the next item; 

ENDWHILE 

 

FOR  month = 1 to 12 

      do monthly processing 

ENDFOR 
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Repetition structures in Java 
while (condition) 
 statement; 
 
while (condition) { 
 statement1; 
 statement2; 
 … 
} 
 
do { 
 statement1; 
 … 
} while (condition); 
 
 

 
for( int i=0 ; i<n ; i++ ) 
 statement; 
 
 
for( int i=0 ; i<n ; i++ ) { 
 statement1; 
 statement2; 
 … 
} 
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while vs. do … while vs. for 

• body of while loop may not execute at all! 

• body of do…while loop is guaranteed to 
execute at least once. 

• for loop is a simpler version of while loop & it 
is used when we know exact # of times loop 
needs to be executed. 
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Problem:  
average of 5 numbers 

Re-do the problem to compute the average of 5 
numbers using a loop. Use minimal # of variables. 

 
Enter the numbers: 
91 
92 
92 
93 
94 
Average is: 92.4 
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Idea 

• Use a loop to get 5 numbers and add them up.  

• Since we know the count upfront, for loop is 
preferred. 

• See add5while.java and add5for.java for the 
code. 
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Problem:  
compute average for any input list 

Let us say you want to compute the average 
score of a class, but you do not know # of 
students in the class! What can you do? 
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Problem:  
compute average of any input list 

Let us say you want to compute the average score of a 
class, but you do not know # of students in the class! 
What you will do? 

 
Use out-of-range value like -1 to indicate the end of input.  

 
Enter the numbers: 
91 
92 
93 
94 
-1 
Average is: 92.5 
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Idea 

• Repeat the loop until -1 is seen as input. 

• Keep track of # of input items 

• Compute the average as total / count 
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break statement 
• breaks the loop and continues to the 

statement after the loop body: 
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continue statement 
• Ignores the lines below that statement and 

continues with the loop. 
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Problem: Math Practice - Version 2 

Make the user answer 10 questons and keep 
track of user’s performance. Output the final 
score. 

 

Here is a sample message after answering 10 
questions: 

You got 7 correct and 3 wrong. Play again soon! 
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Ideas 

• use for loop to repeat 10 times 

• use loop variable as question # 

• use 2 variables to keep track of 
correct/incorrect – increment as needed 

• print final stats (# correct, # incorrect)  
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Problem: Math Practice - Version 3 

Same as Version 2, but uses additional method 
for playing the game. 

See the code for details. 
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For advanced level students only 

• Let us say we want to control the distribution of 
questions per operator. For example, let us say 
we want addition problems for ~35% of the time, 
subtraction problems for another ~35% of the 
time, multiplication problems for ~20% of the 
time, and integer division problems for remaining 
~10%. 

• We can even make it more generic: We can 
prompt & get those % values from the user, then 
we can try to setup the distribution of questions 
accordingly. 

• I will be happy to discuss your ideas in the class 
after each session is over (after 12 noon). 
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Problem: Country Store Version 3 

Change the input mechanism for the store – list 
all 5 products every time, let the user select a 
product, then enter the weight. Keep adding 
the purchase to total, repeat the prompt until 
the user is done.  
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Country Store Version 3 : Prompt 

Available products: 

1. Bananas ($ 0.44 / lb) 

2. Apples ($ 0.99 / lb) 

3. Cucumbers ($ 1.19 / lb) 

4. Carrots ($ 0. 89 / lb) 

5. Oranges ($ 0.79 / lb) 

Enter selection (0 to finish check-out) : 2 

Enter weight: 2.45 
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Guessing game 
Pair up with your neighbor and play this game: 

Think of a number between 1 and 100. Ask your 
neighbor to guess that number. 

 

Repeat the following steps as many times as 
needed: 

• Neighbor asks, “Is it NN?” 

• You respond with “yes!” or “go lower” or “go 
higher” 

Goal is to ask minimum # of questions. 

 87 



Guessing game – ideas? 

• Ask about the middle value 

• Based on the response, we can focus on one-
half of the range. 

• Repeat the top 2 steps until you say “yes!” 
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Let the computer find your number: 
Guessing game 

Think of a number between 1 and 100. Write a 
program so that the computer will ask you a 
series of questions and determine that number 
based on your answers. 

 

Repeat the following steps as many times as 
needed: 

• Computer asks, “Is it NN?” 

• User responds with <, =, or > 
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Guessing game : Sample runs 
Is it 50? 

< 

Is it 25? 

> 

Is it 37? 

> 

Is it 43? 

= 

Good game!  

 

 

 

Is it 50? 

< 

Is it 25? 

< 

Is it 12? 

> 

Is it 18? 

> 

Is it 21? 

< 

Is it 19? 

> 

Your number is 20. Good game! 
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Pseudocode 

• Initialize range (low = 1, high = 100) 

• while (true) 

– compute mid = (low + high) / 2 

– ask the user 

– user responds with <, >, =  

• String input = keyboard.next(); 

– =  we are done! 

• if (input.equals("<")) 

– <  high = mid-1   // go into first half. 

– > low = mid+1  // go into second half. 
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Ideas for coding 

• Get the user input as a String.  

String input = keyboard.next(); 

• Since String is a complex data type, it needs to 
be compared like 

 (input.equals("<")) 

• You can also check the first character of the 
string alone: 

(input.charAt(0) == '<‘) 
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Reverse Guessing game 

Let the computer think of a number between 1 
and 100 (In other words, generate a random 
number from 1 to 100 range). Write a program 
so that the computer will respond to your 
guesses until the number is guessed. 

 

Repeat the following steps as many times as 
needed: 

• You say, “NN” 

• Computer responds with “Yes! Good job!!”, 
“go lower!” or “go higher!” 
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Reverse Guessing game : Sample runs 

Enter your guess: 80 

go higher! 

Enter your guess: 95 

go lower! 

Enter your guess: 90 

Yes! Good job!! 

 

 

 

Enter your guess: 20 

go higher! 

Enter your guess: 60 

go lower! 

Enter your guess: 40 

go higher! 

Enter your guess: 45 

go higher! 

Enter your guess: 50 

Yes! Good job!! 
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Pseudocode 

• Computer thinks of a number – uses random 
number generator 
– Random generator = new Random(); 

– int number = generator.nextInt(100) + 1 

• while (user has not guessed it correctly yet) 
– get user’s guess 

– compare and output appropriate message 
• if (guess == number) 

• if (guess < number) 

• if (guess > number) 
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Reverse Guessing game Version 2 
What is the point of playing a game if it does not 
output points?  Let us enhance the reverse 
guessing game to output the # of points based 
on your performance. 
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# of guesses Points 

1 100 

2 50 

3 35 

4 25 

5 20 

6 and above 16 - # of guesses, but  

do not go negative. 

  
  



Ideas 

• have a variable count to keep track # of 
guesses 

• use switch() statement in the bottom to 
convert # of guesses to actual points. 
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For more details 

• Java language basics : official tutorial 
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html  
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