CS 6375: Machine Learning
 Bayesian Networks: Inference

Vibhav Gogate

Some Slides borrowed from Adnan
 Darwiche and Chris Bishop

Possible Queries

Inference Algorithms: Algorithms that take a Bayesian network as input and output an answer to the query.

Probability of Evidence

- $P(E=T r u e)=$?

Marginal Estimation

- $\mathrm{P}(\mathrm{A}=$? $\mid \mathrm{E}=$ True $)=$?

Most probable explanation

- Assignment of values to all other variables that has the highest probability given that $\mathrm{A}=$ True and $\mathrm{E}=$ False
- Maximum Aposteriori Hypothesis.

Inference Algorithms

- Exact Algorithm
- Variable Elimination
- Approximate Algorithms
- Belief Propagation
- Importance sampling
- Markov Chain Monte Carlo sampling

Variable Elimination

- One of the simplest algorithms for inference in Bayesian networks
- Successively remove variables from the Bayesian network until only the query variables remain

A	B	$\Theta_{B \mid A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	C	$\Theta_{C \mid A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

B	C	D	$\Theta_{D \mid B C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Joint Probability Distribution

A	B	C	D	E	Pr(.)
true	true	true	true	true	0.06384
true	true	true	true	false	0.02736
true	true	true	false	true	0.00336
true	true	true	false	false	0.00144
true	true	false	true	true	0.0
true	true	false	true	false	0.02160
true	true	false	false	true	0.0
true	true	false	false	false	0.00240
true	false	true	true	true	0.21504
true	false	true	true	false	0.09216
true	false	true	false	true	0.05376
true	false	true	false	false	0.02304
true	false	false	true	true	0.0
true	false	false	true	false	0.0
true	false	false	false	true	0.0
true	false	false	false	false	0.09600
false	true	true	true	true	0.01995
false	true	true	true	false	0.00855
false	true	true	false	true	0.00105
false	true	true	false	false	0.00045
false	true	false	true	true	0.0
false	true	false	true	false	0.24300
false	true	false	false	true	0.0
false	true	false	false	false	0.02700
false	false	true	true	true	0.00560
false	false	true	true	false	0.00240
false	false	true	false	true	0.00140
false	false	true	false	false	0.00060
false	false	false	true	true	0.0
false	false	false	true	false	0.0
false	false	false	false	true	0.0
false	false	false	false	false	0.0900

$$
\begin{aligned}
& \mathrm{P}(\mathrm{D}=\text { true } \mathrm{E}=\text { true })=\text { ? } \\
& \mathrm{P}(\mathrm{~A}=\text { true } \mid \mathrm{D}=\text { true }, \mathrm{E}=\text { true })=\text { ? }
\end{aligned}
$$

How does the algorithm work? Task: Computing probability of evidence

- Instantiate Evidence variables and remove them from all conditional probability tables
- Select an ordering of variables
- Eliminate variables one by one along the ordering
- How to eliminate a variable ?
- Multiply all functions/factors that mention the variable yielding a function f
- Sum-out the variable from f yielding a function f^{\prime}
- Add f' to the set of original functions

Multiplication of factors

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\phi(\mathbf{A}, \mathbf{B}, \mathbf{C})$
0	0	0	3
0	0	1	2
0	1	0	1
0	1	1	5
1	0	0	3
1	0	1	8
1	1	0	6
1	1	1	3

\mathbf{A}	\mathbf{C}	\mathbf{D}	$\phi(\mathbf{A}, \mathrm{C}, \mathrm{D})$
0	0	0	4
0	0	1	2
0	1	0	11
0	1	1	4
1	0	0	2
1	0	1	1
1	1	0	5
1	1	1	1

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	$\phi(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$
0	0	0	0	$3^{*} 4=12$
0	0	0	1	$3^{*} 2=6$
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Complexity is the size of the product table ($\exp (w)$) times the number of factors (m) where w is the cardinality of the union of the scopes of functions

Summing out a set of variables

A	B	C	$\phi(A, B, C)$
0	0	0	3
0	0	1	2
0	1	0	1
0	1	1	5
1	0	0	3
1	0	1	8
1	1	0	6
1	1	1	3

Sum-out B and C

Complexity is the size of the table : $\exp (w)$

The Formal Algorithm

input:
\mathcal{N} : Bayesian network
Q: variables in network \mathcal{N}
π : ordering of network variables not in \mathbf{Q}

1: $\mathcal{S} \leftarrow$ CPTs of network \mathcal{N}
2: for $i=1$ to length of order π do
3: $\quad f \leftarrow \prod_{k} f_{k}$, where f_{k} belongs to \mathcal{S} and mentions variable $\pi(i)$
4: $\quad f_{i} \leftarrow \sum_{\pi(i)} f$
5: \quad replace all factors f_{k} in \mathcal{S} by factor f_{i}
6: end for
7: return $\prod_{f \in \mathcal{S}} f$

Variable Elimination: Example

- Compute $\mathrm{P}(\mathrm{D}=$ true, $\mathrm{E}=$ true $)$?
- On the board.

A	B	$\Theta_{B \mid A}$
true	true	.2
true	false	.8
false	true	.75
false	false	.25

A	C	$\Theta_{C \mid A}$
true	true	.8
true	false	.2
false	true	.1
false	false	.9

B	C	D	$\Theta_{D \mid B C}$
true	true	true	.95
true	true	false	.05
true	false	true	.9
true	false	false	.1
false	true	true	.8
false	true	false	.2
false	false	true	0
false	false	false	1

C	E	$\Theta_{E \mid C}$
true	true	.7
true	false	.3
false	true	0
false	false	1

Variable Elimination: Complexity

- Schematic operation on a graph

- Process nodes in order
- Eliminate = Connect all children of a node to each other

Variable elimination: Complexity

- Complexity of eliminating variable "i"
- exp(children ${ }_{i}$)
- Complexity of variable elimination:
- nexp(max(children ${ }_{i}$))
- Treewidth
- Minimum over all possible graphs constructed this way

Variable Elimination for MPE and MAR
 - MARGINAL TASK

- Ratio of two evidence probabilities
$-P(A=a \mid B=b)=P(A=a, B=b) / P(B=b)$
- Use VE to compute numerator and denominator
- MPE TASK
- Replace sum-out operation by max-out operation

$M A X_{S}$	S	C	Value	C	Value
	male	yes	0.05	yes	0.05
	male	no	0.95	no	0.99
	female	yes	0.01		
	female	no	0.99		

Message Passing: Factor Graphs

Message Passing Algorithms: Belief Propagation on Factor graphs

- Initialize each message
- Repeat until convergence
- Send messages from variable nodes to factor nodes
- Send messages from factor nodes to variable nodes
- How to construct the message from sender to receiver node?
- At sender, multiply all incoming messages and the factor (for factor nodes only) except the message received from the receiver yielding a new factor f_{S}
- Sum-out all the variables that are not in the receiver node from f_{S}

The Sum-Product Algorithm (7)

- Initialization

Sum-Product: Example (1)

Sum-Product: Example (2)

Sum-Product: Example (3)

Sum-Product: Example (4)

The Junction Tree Algorithm

- Exact inference on general graphs.
- Works by turning the initial graph into a junction tree and then running a sum-productlike algorithm.
- Intractable on graphs with large cliques.

Loopy Belief Propagation

- Sum-Product on general graphs.
- Initial unit messages passed across all links, after which messages are passed around until convergence (not guaranteed!).
- Approximate but tractable for large graphs.
- Sometime works well, sometimes not at all.

