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What we will cover

Type of Data sets:
Fully observed
Partially observed

Tasks:
Parameter Learning
Structure Learning

Approach:
Maximum likelihood estimation approach
Bayesian approach

8 combinations and we will study the 2 highlighted
combinations.
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PART 1

Fully Observed Data
Parameter Learning
MLE approach
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Maximum Likelihood Estimation principles

Single variable example: A biased coin
Two outcomes: head and tail
Data set: Tosses of the biased coin
Task: Estimate the probability of heads/tails on the next
flip
Assumption: the process is controlled by a probability
distribution Pr(x) where x ∈ {h, t}
Value of Pr(x = h) = θ if 60 out of 100 tosses yield
heads.
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MLE scoring for the coin example

Distribution: Pr(x = h) = θ and Pr(x = t) = 1− θ
Evaluation metric: How well we can predict the data?
Example data: H,H,T ,H,T
Likelihood of data =

∏
i Pr(xi) = θ.θ.(1− θ).θ.(1− θ)
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MLE scoring for the coin example: Analytical
derivation

Distribution: Pr(x = h) = θ and Pr(x = t) = 1− θ.
Log-Likelihood function

LogL(θ) = log(θ#heads.(1− θ)#tails)

= #heads. log(θ) + #tails. log(1− θ)

MLE Aim: Find θ∗ such that LogL(θ∗) is maximum.
Differentiate the likelihood function with respect to θ
and set the derivative to zero. We get:

θ∗ =
#heads

#heads + #tails
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Extending the MLE principle to a Bayesian
network

Given a Bayesian network Pr(x) =
∏n

i=1 θxi |pa(xi )

Decomposition of Likelihood function

L(θ,D) =
m∏

j=1

Pr(x (j))

=
m∏

j=1

n∏
i=1

θ
x (j)

i |pa(x (j)
i )

=
n∏

i=1

m∏
j=1

θ
x (j)

i |pa(x (j)
i )

Each term is a conditional likelihood of a variable given
its parents
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Extending the MLE principle to a Bayesian
network

Given a Bayesian network Pr(x) =
∏n

i=1 θxi |pa(xi )

L(θ,D) =
n∏

i=1

m∏
j=1

θ
x (j)

i |pa(x (j)
i )

Let #(xi ,pa(xi)) be the number of times the tuple
(xi ,pa(xi)) appears in the data set. We can write
Likelihood function as:

L(θ,D) =
n∏

i=1

θ
#(xi ,pa(xi ))
xi |pa(xi )
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Extending the MLE principle to a Bayesian
network

Given a Bayesian network Pr(x) =
∏n

i=1 θxi |pa(xi )

Given (fully observed) data X , MLE solution is:

θ∗xi |pa(xi )
=

#(xi ,pa(xi))

#(pa(xi))

where #(xi ,pa(xi)) is the number of times the tuple
(xi ,pa(xi)) appears in X . #(pa(xi)) is the number of
times the tuple pa(xi) appears in X .
#(xi ,pa(xi)) is called the sufficient statistic.
Any function of the data is called a statistic. A sufficient
statistic is a statistic that contains all of the information
in the data set that is needed for a particular estimation
task.
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MLE Learning example: Bayesian network
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MLE Learning example: Bayesian network
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MLE Learning: Bayesian network (fully
observable case)

Impact of data set size
ML estimate will have different values depending upon
the size of the data set
The variance of the estimate will decrease as the data
set increases in size.

Theorem:

The distribution of the ML estimate is asymptotically normal
and can be approximated by a Gaussian with mean
Pr(xi |pa(xi)) and variance:

Pr(xi |pa(xi ))×(1−Pr(xi |pa(xi )))
N×Pr(pa(xi ))

Issue: Pr(pa(xi)) should not be too small.
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PART 2

Partially Observed Data
Parameter Learning
MLE approach

Examples: missing data, hidden variables, some
variables are just not observable
Gradient Ascent (Not covered)
Expectation maximization (The EM algorithm)
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Partially Observed Data (POD)

Missing data, hidden variables
H,T ,H, ?,T , ?, . . .
Why is the data missing?

Randomly missing
Deliberately missing
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Why is parameter learning in presence of POD
challenging?

Likelihood function for POD:

L(θ,X ) =
m∏

j=1

∑
y/∈x(j)

Pr
θ

(x(j),y)

Compare with Likelihood function for FOD:

L(θ,X ) =
m∏

j=1

Pr
θ

(x(j))

Likelihood function for POD:
is not unimodal.
cannot be expressed in closed form
is not decomposable
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Why is parameter learning in presence of POD
challenging?

L
(Q

 |  
  

)

Q

POD case:
Each point in the sum yields a
unimodal distribution. When combined,
we get a multi-modal distribution.
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FOD case:
Unimodal
distribution

The optimization problem, a.k.a. maximizing our
objective, the likelihood of the data is hard. We need an
iterative approach.
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Approach 1: The Expectation Maximization
(EM) Algorithm

Start with random parameters
Repeat until convergence

1 Complete the incomplete data using current
parameters.

2 Update the parameters based on the completed data

STEP 1: computes expected sufficient statistics (E-step)
STEP 2: maximizes the likelihood (M-step)
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The Expectation Maximization Algorithm:
Example

C

D

BA

θa = .3
θb = .9
θc|ā,b̄ = .83
θc|ā,b = .09
θc|a,b̄ = .6
θc|a,b = .2
θd |c̄ = .1
θd |c = .8

Data instance: (a, ?, ?, d̄)
How to complete this
example?
For each possible completion

STEP 1: Compute how
likely the completion is.
STEP 2: Data set is now
weighted
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The Expectation Maximization Algorithm:
E-Step

Data set is now bigger and weighted
(a, ?, ?, d̄) corresponds to four weighted examples

(a,b, c, d̄), weight = .0492
(a,b, c̄, d̄), weight = .8852
(a, b̄, c, d̄), weight = .0164
(a, b̄, c̄, d̄), weight = .0492

Intuition is nice. But if a large number of values are
missing, the amount of computation involved is huge!!!
(exponential in the number of missing values).
Fortunately, we only need to estimate the sufficient
statistics which do not require access to the completed
data.
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The Expectation Maximization Algorithm:
M-Step

Updating: θd |c̄

Unweighted MLE estimate:

θd |c̄ =
#(d , c̄)

#(c̄)

Weighted MLE estimate:

θd |c̄ =
TotalWeight(d , c̄)

TotalWeight(c̄)
=

∑m
j=1 Prθ(d , c̄|x(j))∑m

j=1 Prθ(c̄|x(j))

Prθ(d , c̄|x(j)) and Prθ(c̄|x(j)) are the conditional marginal
probabilities of the partial assignments (d , c̄) and c̄ given
evidence x(j) and the current setting of parameters θ. They
can be computed using variable elimination or belief
propagation.

Vibhav Gogate University of Texas, Dallas Machine Learning, CS 6375



Machine
Learning, CS

6375

Vibhav
Gogate

University of
Texas, Dallas

EM: Properties

EM may converge to different parameters, with different
likelihoods, depending on the initial estimates θ(0) that it
starts with.
Each iteration of the EM algorithm will have to perform
inference on a Bayesian network.
In each iteration, the algorithm computes the probability
of each instantiation (x ,u) given each example as
evidence.
All of these computations correspond to posterior
marginals over network families. Namely, the require
inference. That is why inference is the key problem in
Bayesian networks.
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EM: Properties

EM parameter estimates are the only estimates that
maximize the expected log-likelihood function
EM is indeed searching for estimates that maximize the
expected log-likelihood function, which also explains its
name.
Parameters that maximize the expected log-likelihood
function cannot decrease the log-likelihood function.

Each iteration of EM can only increase the likelihood
and never decrease it.
It will always converge to a local maxima.
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