BAYESIAN NETWORKS

Vibhav Gogate

Today – Bayesian networks

- One of the most exciting advancements in statistical Al and machine learning in the last 10-15 years
- Generalizes naïve Bayes and logistic regression classifiers
- Compact representations of exponentially-large probability distributions
- Exploit conditional independences

Judea Pearl: Turing award in 2011 for his contributions to Bayesian networks

CAUSAL STRUCTURE

- Draw a directed acyclic (causal) graph for the following
 - Direct arrows from cause to effect
- Story:
 - There is a Burglar alarm that rings when we have Burglary
 - However, sometimes it may ring because of winds that exceed
 60mph
 - When the alarm rings your neighbor Mary Calls
 - When the alarm rings your neighbor John Calls

CAUSAL STRUCTURE

- There is a Burglar alarm that rings when we have Burglary
- However, sometimes it may ring because of winds that exceed 60mph
- When the alarm rings your neighbor Mary Calls
- When the alarm rings your neighbor John Calls

Representation of Joint Distribution

In general:

$$P(x_1, ..., x_n) = \prod_{i=1}^{n} P(x_i | pa(x_i))$$

Possible Queries

- Inference
 - P(W=?|J=True)
- Most probable explanation
 - Assignment of values to all other variables that has the highest probability given that J=True and M=False
- Maximum Aposteriori Hypothesis.

Number of Parameters

- Assume Binary variables
- How many parameters with each CPT $P(x_i|x_1,...,x_j)$?
 - (Domain-size of x_i -1)*(All possible combinations of $x_1,...,x_j$).

Can any distribution be represented as a Bayesian network

Let $\mathbf{X} = \{X_1, \dots, X_n\}$ be a set of discrete random variables such that each variable X_i takes values from a finite domain $D(X_i)$. Let $\mathbf{x} = (x_1, \dots, x_n)$ be an assignment to all variables \mathbf{X} such that each variable X_i is assigned the value x_i from its domain $D(X_i)$. Let (X_1, \dots, X_n) be any ordering of the variables, then:

$$Pr(\mathbf{x}) = P(x_1) \prod_{i=2}^{n} P(x_i | x_1, \dots, x_{i-1})$$

Let $pa(X_i)$ be a subset of variables of the set $\{X_1, \ldots, X_{i-1}\}$ such that X_i is conditionally independent of all other variables ordered before it given $pa(X_i)$. Then, we can rewrite the joint probability distribution as:

$$Pr(\mathbf{x}) = \prod_{i=1}^{n} P(x_i | \pi(\mathbf{x}, pa(X_i)))$$
 (1)

where $\pi(\mathbf{x}, pa(X_i))$ is the projection of \mathbf{x} on the parents of X_i . (For instance, the projection of the assignment $(X_1 = 0, X_2 = 0, X_3 = 1)$ on $\{X_1, X_3\}$ is the assignment $(X_1 = 0, X_3 = 1)$).

Relationship to Naïve Bayes

Distribution?

Number of parameters?

Real Bayesian networks applications

- Diagnosis of lymph node disease
- Speech recognition
- Microsoft office and Windows
 - http://www.research.microsoft.com/research/dtg/
- Study Human genome
- Robot mapping
- Robots to identify meteorites to study
- Modeling fMRI data
- Anomaly detection
- Fault dianosis
- Modeling sensor network data

Now What?

- Given a Bayesian network, answer queries
 - Inference
- Learning Bayesian networks from Data
 - Structure and weight learning
 - Partially and fully observed data
 - MLE and Bayesian approach
 - Requires Inference, i.e., computing P(X|evidence) where evidence is an assignment to a subset of variables
- Unfortunately, Inference is NP-hard.
 - Tractable classes based on treewidth
 - Approximate Inference approaches