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We can view a Bayesian network as a compact representation of a joint probability distribution
(the computational view). We can also view it as a graphical representation of a set of conditional
independence statements (the conditional independence view). As it turns out, the two views are
equivalent. (For more details please refer to [1] and [2]). In this class, we will focus exclusively on
the computational view. Namely, we will look at a Bayesian network as a polynomial representation
of a multi-dimensional (typically 1000s of dimensions) joint probability distribution.

1 Computational View

A Bayesian network is a directed acyclic graph (DAG)1 G(X,E) where X = {X1, . . . ,Xn} is a set
of random variables and E is a set of directed edges. A node Xj is a parent of node Xi if there
is a directed edge from Xj to Xi. We will denote by pa(Xi), the set of parents of Xi. Let D(Xi)
denote the set of finite values that Xi can take, i.e., the domain of Xi. For example, if Xi is a
binary variable, then D(Xi) = {True, False}. Each node in a Bayesian network is associated with
a conditional probability table or CPT, whose functional form is P (Xi|pa(Xi)) (i.e., variable given
its parents). A Bayesian network B represents the following joint probability distribution

Pr(x) =

n
∏

i=1

P (xi|π(x, pa(Xi))) (1)

where x = (x1, . . . , xn) is an assignment to all variables in X and π(x, pa(Xi)) is the projection of
x on the parents of Xi. (For instance, the projection of the assignment (X1 = 0,X2 = 0,X3 = 1)
on {X1,X3} is the assignment (X1 = 0,X3 = 1)).

Example 1. Figure 1 shows a Bayesian network over five binary variables {A,B,C,D,E} and its
CPTs. From Eq. (1), we can see that the probability of an assignment to all random variables can
be calculated by multiplying the probability values obtained by projecting the assignment on each
CPT. For example, the probability of (A = 0, B = 0, C = 0,D = 1, E = 0) is 0.6×1×0.2×0.8×1 =
0.096.

Exercise 1. Compute the probability of (A = 1, B = 1, C = 0,D = 0, E = 0) and (A = 0, B =
1, C = 1,D = 0, E = 0).

1A DAG is a directed graph that has no directed cycles. Namely, if you follow the arrows, you should not be able
to come back to the same point.
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A

B C

D E

(a)

P(A)
A=0 A=1

.6 .4

P(B|A)
A B=0 B=1
0 1 0
1 .1 .9

P(C|A)
A C=0 C=1
0 .2 .8
1 .7 .3

P(D|B,C)
B C D=0 D=1
0 0 .2 .8
0 1 .1 .9
1 0 .3 .7
1 1 .5 .5

P(E|A,C)
A C E=0 E=1
0 0 1 0
0 1 .5 .5
1 0 .7 .3
1 1 0 1

(b)

Figure 1: A Bayesian network and its CPTs

Space Complexity The space required by a CPT is exponential in the number of its par-
ents. Assuming that the Bayesian network has n variables, the space required to store it is
O(n

∑

i exp(|pa(Xi)| + 1)). Thus, if the number of parents for each node is bounded by a con-
stant, the Bayesian network can be specified in polynomial space.

Forget the O-notation for the time being. Let us calculate how much memory units are actually
needed to represent a CPT on our computer. Assume that we need one memory unit to store a
real-number. Then, the number of memory units required to represent a CPT P (Xi|pa(Xi)) is:

M [P (Xi|pa(Xi)] = (|D(Xi)| − 1)
∏

Xj∈pa(Xi)

|D(Xj)| (2)

where |D(Xi)| denotes the cardinality of D(Xi), i.e., the domain size of Xi. How did we arrive at
this number? Notice that to represent a marginal distribution over k points, we have to specify
probabilities over some arbitrary selected k− 1 points only; we can calculate the probability of the
k-th point by subtracting the sum of the known probabilities over the k − 1 points from 1. Thus,
to represent a marginal distribution over a variable Xi, we need |D(Xi)| − 1 memory units. This
gives us the first term in Equation (2). To specify a CPT for a variable, we have to represent
a conditional marginal distribution for each possible assignment to its parents. The number of
possible assignments to the parents equals the product of the domain sizes of the variables in the
parent set. This gives us the second term in Equation (2).

The number of memory units required to represent a Bayesian network B is simply a sum over
the memory units required by each of its CPTs:

M [B] =
∑

i

M [P (Xi|pa(Xi))]

Example 2. The number of memory units required to represent the CPT P (C|A) in Figure 1 is
2.

Exercise 2. Calculate the number of memory units required for representing the remaining CPTs
in Figure 1. Also, calculate the number of memory units required to represent the Bayesian network.
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2 Common Queries over Bayesian networks

Since a Bayesian network represents a joint probability distribution (i.e., complete knowledge about
the world), it can be used to answer any query defined over the random variables. Some common
query types are:

• Probability of Evidence (PE) We define evidence as an assignment to a subset of variables
in the Bayesian network. Given evidence, the aim of this task, as the name suggests, is to
compute the probability of evidence. Formally, let E be the set of evidence variables, E = e
be the evidence and let Z = X \E be the set of non-evidence variables.

Pr(e) =
∑

z∈D(Z)

Pr(c(z, e)) =
∑

z∈D(Z)

n
∏

i=1

P (π(c(z, e), {Xi})|π(c(z, e), pa(Xi)) (3)

where c(z, e) denotes the composition of the assignments z and e and D(Z) is the Cartesian
product of domains of all variables in Z.

We have to use cumbersome notation in Equation 3 in order to be mathematically precise.
To better understand the equation, recall that the probability of an event is a sum over all
possible assignments in the joint distribution that are consistent with the event. To calculate
it, we fix each evidence variable to the given value and sum over all possible assignments to
the non-evidence variables.

• Posterior Marginal probabilities (MAR) Given evidence e and a variable Xi, the aim
here is to compute Pr(Xi = xi|e), which is defined as:

Pr(xi|e) =
Pr(c(xi, e))

Pr(e)
(4)

Since the posterior marginal probability is a ratio of two probabilities, algorithms used for
computing probability of evidence can be used to compute it.

• Most Probable explanation (MPE) Given evidence e, the aim here is to find an assign-
ment to all the non-evidence variables that has the highest probability. Formally, we have to
find:

argmax
z

Pr(c(z, e)) (5)

Algorithms used to solve these queries or tasks are called inference algorithms.

3 Variable Elimination: An Exact Inference Algorithm

Before, we derive the variable elimination, we will briefly describe three inference operators, sum-
mation, multiplication and maximization.

3.1 Inference Operators

Function or Factor Given a set of variables Y, a function or a factor φ(Y) is a mapping from
all possible assignments to Y to a positive real number. We will refer to Y as the scope of the
function.
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Multiplication or Product The product of two functions: φ1 having scope X1 and φ2 having
scope X2 is a function φ having scope X = X1 ∪X2. The value associated with each assignment
x ∈ D(X) is given by:

φ(x) = φ1(π(x,X1))× φ2(π(x,X2))

Example 3. The product of two functions φ1(A,B) and φ(B,C) is a function φ(A,B,C) given
below

AB φ1(a, b)

0 0 5

0 1 7

1 0 3

1 1 4

×

BC φ2(b, c)

0 0 2

0 1 9

1 0 3

1 1 1

=

ABC φ(a, b, c)

0 0 0 5 × 2=10

0 0 1 5 × 9=45

0 1 0 7 × 3=21

0 1 1 7 × 1=7

1 0 0 3 × 2=6

1 0 1 3 × 9=27

1 1 0 4 × 3=12

1 1 1 4 × 1=4

Sum-out The sum-out of a variable Xi from a function φ(X) such that Xi ∈ X is a function φ′

defined over the set of variables X′ = X \ {Xi}. The value of each assignment x′ ∈ D(X′) is given
by:

φ′(x′) =
∑

xi

φ(c(xi,x
′))

Example 4. Summing out A from function φ(A,B) yields a function φ′(B) given below:

∑

a

AB φ(a, b)

0 0 5

0 1 7

1 0 3

1 1 4

=

B φ′(b)

0 5+3=8

1 7+4=11

Max-out The max-out of a variable Xi from a function φ(X) such that Xi ∈ X is a function φ′

defined over the set of variables X′ = X \ {Xi}. The value of each assignment x′ ∈ D(X′) is given
by:

φ′(x′) = max
xi

φ(c(xi,x
′))

Example 5. Maxing out A from function φ(A,B) yields a function φ′(B) given below:

maxa

AB φ(a, b)

0 0 5

0 1 7

1 0 3

1 1 4

=

B φ′(b)

0 max(5,3)=5

1 max(7,4)=7
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3.2 Example

We explain the main concepts in variable elimination using an example. Consider the Bayesian
network given in Figure 1. Let E = true be evidence. By definition,

P (E = true) =
∑

a,b,c,d,E=true

P (A = a)P (B = b|A = a)P (C = c|B = b)

P (D = d|B = b, c = c)P (E = true|A = a,C = c) (6)

However, notice that since E is already assigned a value, we can rewrite the CPT P (E|A,C)
as:

AC φ(a, c)

0 0 0

0 1 .5

1 0 .3

1 1 1

Rewriting Equation (6) using φ, we get

P (E = true) =
∑

a,b,c,d

P (A = a)P (B = b|A = a)P (C = c|B = b)

P (D = d|B = b, c = c)φ(A = a,C = c) (7)

Distributing sums over products along the order (A,B,C,D), we get

P (E = true) =
∑

a

P (A = a)
∑

b

P (B = b|A = a)
∑

c

P (C = c|B = b)φ(A = a,C = c)

(

∑

d

P (D = d|B = b, c = c)

)

(8)

We obtain Equation (8) from Equation (7) by applying the distributive law. Recall that the
distributive law states that:

ab1 + ab2 = a(b1 + b2)

Summing out D from P (D = d|B = b, c = c) yields a function φ(B,C) defined over B and C.

∑

d

BCDP (D = d|B = b, C = c)

0 0 0 .2

0 0 1 .8

0 1 0 .1

0 1 1 .9

1 0 0 .3

1 0 1 .7

1 1 0 .5

1 1 1 .5

=

BC φ(b, c)

0 0 1

0 1 1

1 0 1

1 1 1
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Substituting (
∑

d P (D = d|b = b, c = c) with φ(B = b, C = c), we get

P (E = true) =
∑

a

P (A = a)
∑

b

P (B = b|A = a)

∑

c

P (C = c|B = b)φ(A = a,C = c)φ(B = b, C = c) (9)

Multiplying P (C = c|B = b), φ(A = a,C = c) φ(B = b, C = c) yields a function φ(A,B,C) and
we can rewrite Equation 9 as:

P (E = true) =
∑

a

P (A = a)
∑

b

P (B = b|A = a)
∑

c

φ(A = a,B = b, C = c) (10)

Summing out C from φ(A = a,B = b, C = c) yields a function φ(A,B). Substituting it in Equation
(10), we get

P (E = true) =
∑

a

P (A = a)
∑

b

P (B = b|A = a)φ(A = a,B = b) (11)

Summing out B from P (B = b|A = a)φ(A = a,B = b) yields a function φ(A). Substituting it in
Equation (11), we get

P (E = true) =
∑

a

P (A = a)φ(A = a) (12)

Summing out A from Equation P (A = a)φ(A = a) yields a number which equals the probability
of E = true.

3.3 The Algorithm (for the PE task)

Algorithm 1: Variable Elimination

Input: A Bayesian network and Evidence E = e
Output: Probability of Evidence
begin

for each CPT that mentions one or more evidence variables do
Instantiate evidence and remove evidence variables;

// Let Φ = {φ1, . . . , φn} be the set of functions. Note that these functions

include the original CPTs as well as evidence instantiated CPTs

Let o = (X1, . . . ,Xn) be an ordering of non-evidence variables;
for i = 1 to n do

Multiply all functions in Φ that mention Xi yielding a function φ;
Sum-out Xi from φ yielding a function φnew;
Remove all functions that mention Xi from φ;
Add φnew to Φ;

return
∏

φ∈Φ φ;
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Next, we generalize the process described in the previous subsection, yielding Algorithm 1. The
algorithm takes as input a Bayesian network and evidence and outputs the probability of evidence.
First, we instantiate evidence in every CPT that mentions one or more evidence variables. Namely,
we remove all tuples that are not consistent with the evidence from the CPT and then project the
CPT on the non-evidence variables in its scope. Let Φ denote the set (or database) of all valid
functions (which is the union of the set of evidence instantiated CPTs and the CPTs which do
not have any evidence variables). Then, given an ordering o of variables, the algorithm eliminates
variables one by one, along o. A variable Xi is eliminated by computing a product of all the
functions that mention Xi in Φ, and then summing out Xi from this product. This creates a new
function, whose scope is the union of the scopes of all functions that mention Xi, minus Xi. The
algorithm then deletes the functions involving Xi from Φ, adds the newly created function to it
and continues. After all variables are eliminated, the algorithm returns the product of all functions
in Φ.

3.4 Complexity

The time and space complexity of eliminating a variable Xi is linear in the size of the function
obtained by computing the product of all functions that mention Xi. Since the size of this function
is exponential in the cardinality of the union of the scopes of the functions that mention Xi, the
time and space complexity of eliminating a variable is exponential in the number of variables that
co-occur with Xi in one or more functions. The complexity of variable elimination is the sum of
complexity of eliminating variables along the ordering o.

It is possible to compute the complexity of variable elimination graphically. More precisely,
the complexity can be determined using an undirected graph associated with a Bayesian network,
called its primal graph (or moral graph).

Definition 1 (Primal Graph). Given a set of functions Φ defined over a set of non-evidence
variables X, the primal graph is a graph G(X,E) which has variables of X as its vertices and an
edge between two variables that appear in the scope of a function φ ∈ Φ.

Example 6. Given evidence E = e, the set Φ associated with the Bayesian network given in Figure
1 equals {P (A), P (B|A), P (C|A), P (D|B,C), φ(A,C)}. The primal graph for Φ is given below:

A

B C

D

To compute the complexity of variable elimination, we have to convert the primal graph into
an induced graph.

Definition 2 (Induced Graph). Given a primal graph G(X,E) and an ordering o = (X1, . . . ,Xn)
over the vertices of G, the induced graph of G along o is the graph G′(X,E′) (i.e., it has the same
vertices as G) obtained as follows:
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• Initialize G′ = G

• For i = 1 to n do

– Form a clique between all vertices Xj that are neighbors of Xi but ordered below it in
o (i.e., j > i)

The width of a node in an induced graph is the number of neighbors of Xi that are connected to
Xi but ordered below it. The width of an induced graph is the maximum width of a node.

Example 7. The induced graph along the ordering (A,B,C,D) is given below. It is same as the
primal graph.

A

B

C

D

The induced graph along the ordering (B,C,D,A) is given below. The new edges, which we
will call induced edges are drawn using dashed lines.

B

C

D

A

Intuitively, the scheme used to construct the induced graph schematically follows the variable
elimination algorithm. When we eliminate a variable Xi, we create a function whose scope equals
all nodes that are neighbors of Xi but ordered below it. At each variable Xi, the graph over the
variables ordered below it is the primal graph w.r.t. the current set of functions Φ.

From the discussion above, it is clear that the complexity of variable elimination along an
ordering o is exponential in the width of the induced graph along o. Formally,
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Theorem 1. The time and space complexity of variable elimination along an ordering o is O(n exp(w))
where n is the number of variables and w is the width of the induced graph along o.

Thus, in order to reduce the complexity of variable elimination, we should try to find an or-
dering that will yield an induced graph having minimum width. The minimum width is called the
treewidth. In other words, given a primal graph G, the best we can do in terms of complexity is
O(n exp(w∗)) where w∗ is the treewidth of G.

Unfortunately, the problem of finding the treewidth of a graph is NP-hard and therefore in
practice we have to resort to various heuristic alternatives. Some notable heuristics are the min-
degree heuristic and the min-fill heuristic.

The min-fill heuristic

• G=primal graph

• For i = 1 to n do

1. Select a variable X which when eliminated will add the least number of edges in the
induced graph. Ties broken randomly. Place X at position i in the ordering.

2. Update G by creating a clique out of nodes that are neighbors of X and are not yet
ordered.

The min-degree heuristic

• G=primal graph

• For i = 1 to n do

1. Select a variable X with the smallest degree. Ties broken randomly. Place X at position
i in the ordering.

2. Update G by creating a clique out of nodes that are neighbors of X and are not yet
ordered.

Various empirical studies have shown that the min-fill heuristic yields orderings having smaller
width than the min-degree heuristic.

Exercise 3. Draw the induced graph for the primal graph given below along the ordering (A,B,C,D,E, F ).
What is the complexity of performing variable elimination along this ordering.

A B C

D E F
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3.5 Variable Elimination for MAR and MPE tasks

Variable elimination can be used to compute the conditional marginal probabilities in a straight-
forward manner. Since, the conditional marginal probability is a ratio of two probabilities, all we
have to do is run variable elimination twice, one to compute the numerator and second to compute
the denominator. To compute the marginal distribution over a set of variables Y, all we have to do
is eliminate all non-evidence variables except Y. You can verify that at termination, the product
∏

φ∈Φ φ yields the marginal distribution P (Y|e).
To compute the MPE value using variable elimination, all we have to do is replace the sum-out

operation by the max-out operation. At termination, the algorithm will output the MPE value.
To compute the MPE assignment, we have to walk back along the reverse order of elimination and
find the value for each variable that yielded the MPE value.

Remarks. Since the complexity of variable elimination is exponential in the treewidth of the
primal graph associated with the Bayesian network, it is infeasible when the treewidth is large.
Unfortunately, in practice, large treewidth Bayesian networks are a norm rather than an exception.
Therefore, in practice, we have to rely on approximate inference algorithms. There are two classes
of approximate inference algorithms: Belief propagation based and sampling or simulation based.
Belief propagation algorithms are loosely based on variable elimination; they iteratively apply the
elimination operation in an approximate manner.
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4 Solutions

1 The probabilities are .4× .9× .7× .3× .7 = 0.05292 and .6× 0× .8× .5× .5 = 0 respectively.

2 The number of memory units required to represent the CPTs associated with A,B,C,D,E is
1, 2, 2, 4, 4. The number of memory units required to represent the Bayesian network is 1+ 2+ 2+
4 + 4 = 13.

3 The induced graph along the ordering (A,B,C,D,E, F ) is given below.
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A

B

C

D

E

F

The width of the nodes A, B, C, D, E and F are 2, 3, 3, 2, 1 and 0 respectively. The width
of the ordering is the maximum width among the nodes, which is 3. Therefore, the complexity of
running variable elimination along this ordering is O(6 exp(3)).
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