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Machine Learning 
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Supervised Learning 

Y Discrete  Y Continuous  

Gaussians 

Learned in closed form 

Linear Functions 

1. Learned in closed form 

2. Using gradient descent 

Decision Trees 

Greedy search; pruning 
Probability of class | features 

1. Learn P(Y), P(X|Y); apply Bayes  

2. Learn P(Y|X) w/ gradient descent 

Parametric 

Reinforcement Learning 

Unsupervised Learning 

Non-parametric 

Non-probabilistic  

Linear: perceptron gradient descent 

Nonlinear: neural net: backprop 

Support vector machines 
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Clustering 

Clustering systems: 
– Unsupervised learning 

– Requires data, but no labels 

– Detect patterns e.g. in 

• Group emails or search results 

• Customer shopping patterns 

• Program executions         

(intrusion detection) 

– Useful when don’t know what 

you’re looking for 

– But: often get gibberish 



Clustering 
• Basic idea: group together similar instances 

• Example: 2D point patterns 

 

 

 

 

 

 

 

• What could “similar” mean? 
– One option: small (squared) Euclidean distance 



Outline 

• K-means & Agglomerative Clustering 

• Agglomerative Clustering 

• Expectation Maximization (EM) 
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K-Means: Algorithm 

• An iterative clustering algorithm 
– Pick K random points as cluster centers (means) 

– Alternate: 
• Assign data instances to closest cluster center 

• Change the cluster center to the average of its assigned 
points 

– Stop when no points’ assignments change 



K-means clustering: Example 

• Pick K random 

points as cluster 

centers (means) 
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K-means clustering: Example 

Iterative Step 1 

• Assign data instances 

to closest cluster center 
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K-means clustering: Example 
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Iterative Step 2 

• Change the cluster 

center to the average of 

the assigned points 

 



K-means clustering: Example 

• Repeat until 
convergence 
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K-means clustering: Example 
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K-means clustering: Example 
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K-means clustering: Example 
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Example: K-Means for Segmentation 

Original imageK=2 Original 
Goal of Segmentation is 

to partition an image 

into regions each of 

which has reasonably 

homogenous visual 

appearance. 



Example: K-Means for Segmentation 

Original imageK=2 K=3 K=10 Original 



Example: K-Means for Segmentation 

Original imageK=2 K=3 K=10 Original 

4% 8% 17% 



K-Means as Optimization 
• Consider the total distance to the means: 

 

 

 
 

• Two stages each iteration: 
– Update assignments: fix means c, 

        change assignments a 

– Update means: fix assignments a, 

        change means c 

• Co-ordinate Gradient Descent 

• Will it converge? 
– Yes!, if you can argue that each update can’t increase Φ 

 
 

 

 

points 
assignments 

means 



Phase I: Update Assignments 

• For each point, re-assign to 

closest mean: 

 

 
 

• Can only decrease total 

distance phi! 



Phase II: Update Means 

• Move each mean to the 
average of its assigned 
points: 

 

 

 

 

• Also can only decrease total 
distance… (Why?) 

 

• Fun fact: the point y with 
minimum squared Euclidean 
distance to a set of points {x} 
is their mean 



Initialization 

• K-means is non-deterministic 

– Requires initial means 

– It does matter what you pick! 

 

– What can go wrong? 

 

– Various schemes for preventing 

this kind of thing: variance-

based split / merge, initialization 

heuristics 

 



K-Means Getting Stuck 

A local optimum: 



K-Means Questions 

• Will K-means converge? 
– To a global optimum? 

 

• Will it always find the true patterns in the data? 
– If the patterns are very very clear? 

 

• Runtime? 

 

• Do people ever use it? 
 

• How many clusters to pick? 

 

  



Agglomerative Clustering 
• Agglomerative clustering: 

– First merge very similar instances 

– Incrementally build larger clusters out 
of smaller clusters 

 

• Algorithm: 
– Maintain a set of clusters 

– Initially, each instance in its own 
cluster 

– Repeat: 
• Pick the two closest clusters 

• Merge them into a new cluster 

• Stop when there’s only one cluster left 

 

• Produces not one clustering, but a 
family of clusterings represented 
by a dendrogram 

 



Agglomerative Clustering 
• How should we define “closest” for clusters 

with multiple elements? 

 



Agglomerative Clustering 
• How should we define “closest” for clusters 

with multiple elements? 

 

• Many options: 
– Closest pair          

 (single-link clustering) 

– Farthest pair         
 (complete-link clustering) 

– Average of all pairs 

– Ward’s method          
 (min variance, like k-means) 

• Find pair of clusters that leads to minimum increase in 
total within cluster distance after merging 

 

• Different choices create                        
different clustering behaviors 



Clustering Behavior 
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Average 

Mouse tumor data from [Hastie] 

Farthest Nearest 



Agglomerative Clustering Questions 

• Will agglomerative clustering converge? 
– To a global optimum? 

 

• Will it always find the true patterns in the data? 
 

• Do people ever use it? 
 

• How many clusters to pick? 
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EM: Soft Clustering 

• Clustering typically assumes that each instance is 
given a “hard” assignment to exactly one cluster. 

• Does not allow uncertainty in class membership or 
for an instance to belong to more than one cluster. 

– Problematic because data points that lie roughly midway 
between cluster centers are assigned to one cluster  

• Soft clustering gives probabilities that an 
instance belongs to each of a set of clusters. 



Probabilistic Clustering 

• Try a probabilistic model! 
• allows overlaps, clusters of different 

size, etc. 

• Can tell a generative story for 
data 

– P(X|Z) P(Z) 

• Challenge: we need to estimate 
model parameters without 
labeled Zs  

Z X1 X2 

?? 0.1 2.1 

?? 0.5 -1.1 

?? 0.0 3.0 

?? -0.1 -2.0 

?? 0.2 1.5 

… … … 



Finite Mixture Models 

• Given a dataset:  

• Mixture model: 
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Note: only one of them equals 1 at any given point. Each point is 

assumed to be generated from exactly one mixture component! 

Mixture Weights. 



Finite Mixture Model:  
Probabilistic View 

 

 

 

• The membership weight express our 
uncertainty about which of the “K” 
components generated the vector  
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Gaussian Mixture Models (GMMs) 

• We can define a GMM by making each “k-th” 
component a Gaussian density with 
parameters: 
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Question: How to learn these parameters from data? 



Expectation 
Maximization 



EM algorithm: Key Idea 

• Start with random parameters 

• Find a class for each example (E-step) 
– Since we are using probabilistic classification, each 

example will be given a vector of probabilities 

• Now we have a supervised learning problem. 
Estimate the parameters of the model using 
the maximum likelihood method (M-step) 

• Iterate between the E-step and M-step until 
convergence 



EM: Two Easy Steps 
• E-step: (Yields a N x K matrix) 

– Compute          for all data points indexed by “i” 
and all mixture components indexed by “k.” 

• M-step: 

– Use the membership weights and data to 
compute the new parameters  



Gaussian Mixture Example: Start 



After first iteration 



After 2nd iteration 



After 3rd iteration 



After 4th iteration 



After 5th iteration 



After 6th iteration 



After 20th iteration 



Properties of EM 

• EM converges to a local minima 

– This is because each iteration improves the log-
likelihood 

– Proof same as K-means 

• E-step can never decrease likelihood 

• M-step can never decrease likelihood 

• If we make hard assignments instead of soft 
ones. Algorithm is equivalent to K-means! 

 



What you should know 

• K-means for clustering: 

– algorithm 

– converges because it’s coordinate ascent 

• Know what agglomerative clustering is 

• EM for mixture of Gaussians: 

• Remember, E.M. can get stuck in local minima,   

– And empirically it DOES! 


