Unsupervised Learning: Clustering

Vibhav Gogate The University of Texas at Dallas

Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer

Overview of Learning

Type of Supervision

(eg, Experience, Feedback)

\leq				
/hat is Being Learned?		Labeled Examples	Reward	Nothing
	Discrete Function	Classification		Clustering
	Continuous Function	Regression		
	Policy	Apprenticeship Learning	Reinforcement Learning	

Clustering

Clustering systems:

- Unsupervised learning
- Requires data, but no labels
- Detect patterns e.g. in
 - Group emails or search results
 - Customer shopping patterns
 - Program executions (intrusion detection)
- Useful when don't know what you're looking for
- But: often get gibberish

Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns

- What could "similar" mean?
 - One option: small (squared) Euclidean distance

dist
$$(x, y) = (x - y)^{\mathsf{T}}(x - y) = \sum_{i} (x_i - y_i)^2$$

Outline

- K-means & Agglomerative Clustering
- Agglomerative Clustering
- Expectation Maximization (EM)

K-Means: Algorithm

- An iterative clustering algorithm
 - Pick K random points as cluster centers (means)
 - Alternate:
 - Assign data instances to closest cluster center
 - Change the cluster center to the average of its assigned points
 - Stop when no points' assignments change

 Pick K random points as cluster centers (means)

Iterative Step 1

 Assign data instances to closest cluster center

Iterative Step 2

 Change the cluster center to the average of the assigned points

• Repeat until convergence

Example: K-Means for Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual

appearance.

Example: K-Means for Segmentation

K=2

Example: K-Means for Segmentation

K=10

Original

4%

8%

K-Means as Optimization

• Consider the total distance to the means:

$$\phi(\{x_i\}, \{a_i\}, \{c_k\}) = \sum_i \operatorname{dist}(x_i, c_{a_i})$$
points
assignments

- Two stages each iteration:
 - Update assignments: fix means c, change assignments a
 - Update means: fix assignments a, change means c
- Co-ordinate Gradient Descent
- Will it converge?

- Yes!, if you can argue that each update can't increase Φ

Phase I: Update Assignments

• For each point, re-assign to closest mean:

$$a_i = \underset{k}{\operatorname{argmin}} \operatorname{dist}(x_i, c_k)$$

Can only decrease total distance phi!

$$\phi(\{x_i\},\{a_i\},\{c_k\}) = \sum_i \operatorname{dist}(x_i,c_{a_i})$$

Phase II: Update Means

 Move each mean to the average of its assigned points:

$$c_k = \frac{1}{|\{i : a_i = k\}|} \sum_{i:a_i = k} x_i$$

- Also can only decrease total distance... (Why?)
- Fun fact: the point y with minimum squared Euclidean distance to a set of points {x} is their mean

Initialization

- K-means is non-deterministic
 - Requires initial means
 - It does matter what you pick!
 - What can go wrong?
 - Various schemes for preventing this kind of thing: variancebased split / merge, initialization heuristics

K-Means Getting Stuck

A local optimum:

K-Means Questions

- Will K-means converge?
 To a global optimum?
- Will it always find the true patterns in the data?
 If the patterns are very very clear?
- Runtime?
- Do people ever use it?
- How many clusters to pick?

Agglomerative Clustering

- Agglomerative clustering:
 - First merge very similar instances
 - Incrementally build larger clusters out of smaller clusters
- Algorithm:
 - Maintain a set of clusters
 - Initially, each instance in its own cluster
 - Repeat:
 - Pick the two closest clusters
 - Merge them into a new cluster
 - Stop when there's only one cluster left
- Produces not one clustering, but a family of clusterings represented by a dendrogram

Agglomerative Clustering

 How should we define "closest" for clusters with multiple elements?

Agglomerative Clustering

- How should we define "closest" for clusters with multiple elements?
- Many options:
 - Closest pair (single-link clustering)
 - Farthest pair (complete-link clustering)
 - Average of all pairs
 - Ward's method (min variance, like k-means)
 - Find pair of clusters that leads to minimum increase in total within cluster distance after merging
- Different choices create different clustering behaviors

Clustering Behavior

Mouse tumor data from [Hastie]

Agglomerative Clustering Questions

- Will agglomerative clustering converge?
 To a global optimum?
- Will it always find the true patterns in the data?
- Do people ever use it?
- How many clusters to pick?

EM: Soft Clustering

- Clustering typically assumes that each instance is given a "hard" assignment to exactly one cluster.
- Does not allow uncertainty in class membership or for an instance to belong to more than one cluster.
 - Problematic because data points that lie roughly midway between cluster centers are assigned to one cluster
- Soft clustering gives probabilities that an instance belongs to each of a set of clusters.

Probabilistic Clustering

• Try a probabilistic model!

- allows overlaps, clusters of different size, etc.
- Can tell a *generative story* for data
 - P(X|Z) P(Z)
- Challenge: we need to estimate model parameters without labeled Zs

Ζ	X ₁	X ₂
??	0.1	2.1
??	0.5	-1.1
??	0.0	3.0
??	-0.1	-2.0
??	0.2	1.5
•••	•••	•••

Finite Mixture Models

 $\longrightarrow \underline{x}_i$ is a *d*-dimensional vector

- Given a dataset: $D = \{\underline{x}_1, \dots, \underline{x}_N\}$
- **Mixture model**: $\Theta = \{\alpha_1, \ldots, \alpha_K, \theta_1, \ldots, \theta_K\}$

$$p(\underline{x}|\Theta) = \sum_{k=1}^{K} \alpha_k p_k(\underline{x}|z_k, \theta_k)$$

The $p_k(\underline{x}|z_k, \theta_k)$ are *mixture components*, $1 \le k \le K$ $z = (z_1, \ldots, z_K)$ is a vector of K binary indicator variables Note: only one of them equals 1 at any given point. Each point is assumed to be generated from exactly one mixture component!

Mixture Weights.
$$lpha_k = p(z_k)$$
 $\sum_{k=1}^K lpha_k = 1$.

Finite Mixture Model: Probabilistic View

the "membership weight" of data point \underline{x}_i in cluster k, given parameters Θ

$$w_{ik} = p(z_{ik} = 1 | \underline{x}_i, \Theta) = \frac{p_k(\underline{x}_i | z_k, \theta_k) \cdot \alpha_k}{\sum_{m=1}^{K} p_m(\underline{x}_i | z_m, \theta_m) \cdot \alpha_m}$$

• The membership weight express our uncertainty about which of the "K" components generated the vector \underline{x}_i .

Gaussian Mixture Models (GMMs)

$$p_k(\underline{x}|\theta_k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} e^{-\frac{1}{2}(\underline{x}-\underline{\mu}_k)^t \Sigma_k^{-1}(\underline{x}-\underline{\mu}_k)}$$

 We can define a GMM by making each "k-th" component a Gaussian density with parameters:

$$\theta_k = \{\underline{\mu}_k, \Sigma_k\}$$

Question: How to learn these parameters from data?

EM algorithm: Key Idea

- Start with random parameters
- Find a class for each example (E-step)
 - Since we are using probabilistic classification, each example will be given a vector of probabilities
- Now we have a supervised learning problem. Estimate the parameters of the model using the maximum likelihood method (M-step)
- Iterate between the E-step and M-step until convergence

EM: Two Easy Steps

- E-step: (Yields a N x K matrix)
 - Compute w_{ik} for all data points indexed by "i" and all mixture components indexed by "k."
- M-step:
 - Use the membership weights and data to compute the new parameters

$$N_{k} = \sum_{i=1}^{N} w_{ik} \qquad \alpha_{k}^{new} = \frac{N_{k}}{N}$$
$$\underline{\mu}_{k}^{new} = \left(\frac{1}{N_{k}}\right) \sum_{i=1}^{N} w_{ik} \cdot \underline{x}_{i}$$
$$\Sigma_{k}^{new} = \left(\frac{1}{N_{k}}\right) \sum_{i=1}^{N} w_{ik} \cdot (\underline{x}_{i} - \underline{\mu}_{k}^{new}) (\underline{x}_{i} - \underline{\mu}_{k}^{new})^{t}$$

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

Properties of EM

- EM converges to a local minima
 - This is because each iteration improves the loglikelihood
 - Proof same as K-means
 - E-step can never decrease likelihood
 - M-step can never decrease likelihood
- If we make hard assignments instead of soft ones. Algorithm is equivalent to K-means!

What you should know

- K-means for clustering:
 - algorithm
 - converges because it's coordinate ascent
- Know what agglomerative clustering is
- EM for mixture of Gaussians:
- Remember, E.M. can get stuck in local minima,
 - And empirically it **DOES!**