
Bias/Variance Tradeoff and
Ensemble Methods

Vibhav Gogate
The University of Texas at Dallas

Machine learning
CS 6375

Slide courtesy of Tom Dietterich and Vincent Ng

Outline

• Bias-Variance Decomposition for Regression
• Ensemble Methods

– Bagging
– Boosting

• Summary and Conclusion

A Classifier Ensemble

Classifier 1 Classifier 2 Classifier N. . .

Input Features

Combiner

Class Predictions

Class Prediction

Intuition 1

• The goal in learning is not to learn an exact representation of the
training data itself, but to build a statistical model of the process
which generates the data. This is important if the algorithm is to
have good generalization performance

• We saw that
– models with too few parameters can perform poorly
– models with too many parameters can perform poorly

• Need to optimize the complexity of the model to achieve the best
performance

• One way to get insight into this tradeoff is the decomposition of
generalization error into bias2 + variance
– a model which is too simple, or too inflexible, will have a large bias
– a model which has too much flexibility will have high variance

Intuition
• bias:

– measures the accuracy or quality of the algorithm
– high bias means a poor match

• variance:
– measures the precision or specificity of the match
– a high variance means a weak match

• We would like to minimize each of these

• Unfortunately, we can’t do this independently, there is a
trade-off

Bias-Variance Analysis in Regression

Example: 20 points
y = x + 2 sin(1.5x) + N(0,0.2)

50 fits (20 examples each)

Bias-Variance Analysis

Bias-Variance-Noise
Decomposition

Bias-Variance-Noise
Decomposition

Bias-Variance-Noise
Decomposition

Bias, Variance, and Noise
• Prediction Error = Bias-squared + Variance +

Noise.
• Variance: Describes how much the hypothesis

“h” varies from one dataset to another
• Bias: Describes the average error of “h”
• Noise: Describes how much y varies from f(x)

50 fits (20 examples each)

Bias

Variance

Noise

20

Bias2

• Low bias
– linear regression applied to linear data
– 2nd degree polynomial applied to quadratic data
– neural net with many hidden units trained to

completion
• High bias

– constant function
– linear regression applied to non-linear data
– neural net with few hidden units applied to non-

linear data

21

Variance

• Low variance
– constant function
– model independent of training data

• High variance
– high degree polynomial
– neural net with many hidden units trained to

completion

22

Bias/Variance Tradeoff

• (bias2+variance) is what counts for prediction
• Often:

– low bias => high variance
– low variance => high bias

• Tradeoff:
– bias2 vs. variance

23

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001

24

Reduce Variance Without Increasing
Bias

• Averaging reduces variance:

Var(X)=
Var(X)
N

Average models to reduce model variance
One problem:

only one training set
where do multiple models come from?

25

Bagging: Bootstrap Aggregation

• Leo Breiman (1994)
• Take repeated bootstrap samples from training set D.
• Bootstrap sampling: Given set D containing N training

examples, create D’ by drawing N examples at random
with replacement from D.

• Bagging:
– Create k bootstrap samples D1 … Dk.
– Train distinct classifier on each Di.
– Classify new instance by majority vote / average.

26

Bagging

• Best case:
Var(Bagging(L(x,D))) =

Variance(L(x,D))
N

In practice:
models are correlated, so reduction is smaller than 1/N
variance of models trained on fewer training cases

usually somewhat larger

27

Bagging Experiments

28

Bagging Results

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994

29

When Will Bagging Improve Accuracy?
• Depends on the stability of the base-level classifiers.

• A learner is unstable if a small change to the training
set D causes a large change in the output hypothesis
j.
– If small changes in D causes large changes j in then there

will be an improvement in performance.

• Bagging helps unstable procedures, but could hurt the
performance of stable procedures.

• Neural nets and decision trees are unstable.

• k-nn and naïve Bayes classifiers are stable.

More Randomness:
Random Forests

• Build large collection of de-correlated trees
and average them.588 15. Random Forests

Algorithm 15.1 Random Forest for Regression or Classification.

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size nmin is reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x:

Regression: f̂B
rf (x) =

1
B

∑B
b=1 Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth random-forest
tree. Then ĈB

rf (x) = majority vote {Ĉb(x)}B1 .

structures in the data, and if grown sufficiently deep, have relatively low
bias. Since trees are notoriously noisy, they benefit greatly from the averag-
ing. Moreover, since each tree generated in bagging is identically distributed
(i.d.), the expectation of an average of B such trees is the same as the ex-
pectation of any one of them. This means the bias of bagged trees is the
same as that of the individual (bootstrap) trees, and the only hope of im-
provement is through variance reduction. This is in contrast to boosting,
where the trees are grown in an adaptive way to remove bias, and hence
are not i.d.

An average of B i.i.d. random variables, each with variance σ2, has vari-
ance 1

Bσ
2. If the variables are simply i.d. (identically distributed, but not

necessarily independent) with positive pairwise correlation ρ, the variance
of the average is (Exercise 15.1)

ρσ2 +
1− ρ
B

σ2. (15.1)

As B increases, the second term disappears, but the first remains, and
hence the size of the correlation of pairs of bagged trees limits the benefits
of averaging. The idea in random forests (Algorithm 15.1) is to improve
the variance reduction of bagging by reducing the correlation between the
trees, without increasing the variance too much. This is achieved in the
tree-growing process through random selection of the input variables.

Specifically, when growing a tree on a bootstrapped dataset:

31

Reduce Bias2 and Decrease Variance?

• Bagging reduces variance by averaging
• Bagging has little effect on bias
• Can we average and reduce bias?
• Yes:

• Boosting

32

Boosting

• Freund & Schapire:
– theory for “weak learners” in late 80’s

• Weak Learner: performance on any train set is
slightly better than chance prediction

• intended to answer a theoretical question, not
as a practical way to improve learning

• tested in mid 90’s using not-so-weak learners
• works anyway!

33

Boosting

• Weight all training samples equally
• Train model on training set
• Compute error of model on training set
• Increase weights on training cases model gets wrong
• Train new model on re-weighted training set
• Re-compute errors on weighted training set
• Increase weights again on cases model gets wrong
• Repeat until tired (100+ iterations)
• Final model: weighted prediction of each model

Boosting: Graphical Illustration

10.1 Boosting Methods 339

Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M :

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =

∑N
i=1 wiI(yi ̸= Gm(xi))∑N

i=1 wi

.

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp[αm · I(yi ̸= Gm(xi))], i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

to concentrate on those training observations that are missed by previous
ones in the sequence.

Algorithm 10.1 shows the details of the AdaBoost.M1 algorithm. The
current classifier Gm(x) is induced on the weighted observations at line 2a.
The resulting weighted error rate is computed at line 2b. Line 2c calculates
the weight αm given to Gm(x) in producing the final classifier G(x) (line
3). The individual weights of each of the observations are updated for the
next iteration at line 2d. Observations misclassified by Gm(x) have their
weights scaled by a factor exp(αm), increasing their relative influence for
inducing the next classifier Gm+1(x) in the sequence.
The AdaBoost.M1 algorithm is known as “Discrete AdaBoost” in Fried-

man et al. (2000), because the base classifier Gm(x) returns a discrete class
label. If the base classifier instead returns a real-valued prediction (e.g.,
a probability mapped to the interval [−1, 1]), AdaBoost can be modified
appropriately (see “Real AdaBoost” in Friedman et al. (2000)).

The power of AdaBoost to dramatically increase the performance of even
a very weak classifier is illustrated in Figure 10.2. The features X1, . . . , X10

are standard independent Gaussian, and the deterministic target Y is de-
fined by

Y =

{
1 if

∑10
j=1 X

2
j > χ2

10(0.5),
−1 otherwise.

(10.2)

Here χ2
10(0.5) = 9.34 is the median of a chi-squared random variable with

10 degrees of freedom (sum of squares of 10 standard Gaussians). There are
2000 training cases, with approximately 1000 cases in each class, and 10,000
test observations. Here the weak classifier is just a “stump”: a two terminal-
node classification tree. Applying this classifier alone to the training data
set yields a very poor test set error rate of 45.8%, compared to 50% for

36

Example

37

Round 1

38

Round 2

39

Round 3

40

Final Hypothesis

41

Reweighting vs Resampling

• Example weights might be harder to deal with
– Some learning methods can’t use weights on

examples

• We can resample instead:
– Draw a bootstrap sample from the data with the

probability of drawing each example proportional to
its weight

• Reweighting usually works better but resampling
is easier to implement

42

Boosting Performance

43

Summary: Boosting vs. Bagging

• Bagging doesn’t work so well with stable models.
Boosting might still help.

• Boosting might hurt performance on noisy
datasets. Bagging doesn’t have this problem.

• On average, boosting helps more than bagging,
but it is also more common for boosting to hurt
performance.

• Bagging is easier to parallelize.

Other Approaches

• Mixture of Experts (See Bishop, Chapter 14)
• Cascading Classifiers
• many others…

