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Intuition 1

The goal in learning is not to learn an exact representation of the
training data itself, but to build a statistical model of the process
which generates the data. This is important if the algorithm is to
have good generalization performance
We saw that

— models with too few parameters can perform poorly

— models with too many parameters can perform poorly

Need to optimize the complexity of the model to achieve the best
performance
One way to get insight into this tradeoff is the decomposition of
generalization error into bias? + variance

— a model which is too simple, or too inflexible, will have a large bias

— a model which has too much flexibility will have high variance



Intuition

bias:
— measures the accuracy or quality of the algorithm
— high bias means a poor match

variance:
— measures the precision or specificity of the match
— a high variance means a weak match

We would like to minimize each of these

Unfortunately, we can’t do this independently, there is a
trade-off



Bias-Variance Analysis in Regression

True function is y = f(x) + €

where € is normally distributed with

zero mean and standard deviation o

Given a set of training examples {z;,y;} we fit an hypothesis

h(z) = wl'z + b to the data to minimize the squared error

Z [y — h(z))’
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Example: 20 points
y =x+ 2 sin(1.5x) + N(0,0.2)

fitted hypothesis




50 fits (20 examples each)




Bias-Variance Analysis

Given a new data point z* (with observed value y* = f(z*) + ¢€)

we would like to understand the expected prediction error

E|(y* — h(z"))’]



Bias-Variance-Noise
Decomposition

E [(y* —~ h(x*))z] = E[(¥")* — 2h(z*)y* + h(z")?]
= E[h(z*)?] - 2E[h(z")|E[y*] + E[(y*)*]

We know that variance is given by
E[(Z - E[Z])°] = E[Z°] - E[Z]?
Rewriting the equation above, we get
E[Z?] = E[(Z - E[Z])*] + E[Z]*



Bias-Variance-Noise

Note: y* — f(z*) =€

ey~ ey Decomposition

Using the following formula

E[Z°] = E[(Z - E[Z])’] + E[Z]*

in the Equation for expected prediction error
E[h(z*)?] — 2E[h(z")E[y*] + E[(y*)’]

= E[(h(z") — E[h(z")])*] + E[h(z")]*
—2E[h(z")]f(z¥)

+E[(y" — f(2")*] + f(z")?

= E[(h(z*) — E[h(z*)])?]. .. Variance
+(E[h(z*)] — f(z*))?...Bias

+E[€e?] ... Noise



Bias-Variance-Noise
e e v Decomposition

and E[y*] = f(z")
Using the following formula

E[Z*] = E[(Z - E[Z])*] + E[Z]’

in the Equation for expected prediction error
E[h(z*)?] — 2E[h(z")|E[y"] + E[(y*)?]

= E[(h(z") — E[h(z”

+E[(y" — f(z"))
= E[(h(z*) — E[h(z*)])?] ... Variance

+(E|h(:1c*)| — f(x*>)2 ... Bias

+E[€e?] ... Noise



Bias, Variance, and Noise

Prediction Error = Bias-squared + Variance +
Noise.

Variance: Describes how much the hypothesis
“h” varies from one dataset to another

Bias: Describes the average error of “h”
Noise: Describes how much y varies from f(x)



50 fits (20 examples each)
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Bias?
* Low bias
— linear regression applied to linear data

— 2nd degree polynomial applied to quadratic data

— neural net with many hidden units trained to
completion

* High bias
— constant function

— linear regression applied to non-linear data

— neural net with few hidden units applied to non-
linear data



Variance

* Low variance

— constant function

— model independent of training data
* High variance

— high degree polynomial

— neural net with many hidden units trained to
completion



Bias/Variance Tradeoff

 (bias?+variance) is what counts for prediction
e Often:

— low bias => high variance
— low variance => high bias
* Tradeoff:

— bias? vs. variance



Prediction Error

Bias/Variance Tradeoff

High Bias Low Bias
Low Variance High Variance
e e B e e

Test Sample

/
/

Training Sample

Low High

Model Complexity

Hastie, Tibshirani, Friedman “Elements of Statistical Learning” 2001



Reduce Variance Without Increasing
Bias
* Averaging reduces variance:

Var(X)

Var()_( )= v

Average models to reduce model variance

One problem:
only one training set
where do multiple models come from?



Bagging: Bootstrap Aggregation

Leo Breiman (1994)
Take repeated bootstrap samples from training set D.

Bootstrap sampling: Given set D containing N training
examples, create D’ by drawing N examples at random
with replacement from D.

Bagging:
— Create k bootstrap samples D, ... D,.
— Train distinct classifier on each D..

— Classify new instance by majority vote / average.



Bagging

e Best case: :
' Vi L(x,D
Var(Bagging(L(x,D))) = “”“”‘fé S22,
In practice:

models are correlated, so reduction is smaller than 1/N

variance of models trained on fewer training cases
usually somewhat larger



Bagging Experiments

i) The data set is randomly divided into a test set 7 and a learning set L. In the real data
sets 7 is 10% of the data. In the simulated waveform data, 1800 samples are generated.
L consists of 300 of these, and 7 the remainder.

i1) A classification tree is constructed from £ using 10-fold cross-validation. Running the
test set 7 down this tree gives the misclassification rate eg (L, 7).

ii1) A bootstrap sample L g is selected from L, and a tree grown using L£p. The original
learning set L is used as test set to select the best pruned subtree (see Section 4.3). This
is repeated 50 times giving tree classifiers ¢1(x), . .., ¢so(x).

iv) If (j,,x,) € T, then the estimated class of x,, is that class having the plurality in
O1(Xn), -, Ps0(xn). If there is a tie, the estimated class is the one with the lowest
class label. The proportion of times the estimated class differs from the true class is the
bagging misclassification rate ez (L, 7).

v) The random division of the data into £ and 7 is repeated 100 times and the reported
g, €p are the averages over the 100 iterations. For the waveform data, 1800 new cases
are generated at each iteration. Standard errors of €5 and ez over the 100 iterations are
also computed.



Bagging Results

Data Set €g eR Decrease
waveform 29.1 19.3 34%
heart 4.9 2.8 43%

breast cancer 5.9 3.7 37%
ionosphere 11.2 7.9 29%
diabetes 253 239 6%

glass 304 236 22%
soybean 8.6 6.8 21%

Breiman “Bagging Predictors” Berkeley Statistics Department TR#421, 1994



When Will Bagging Improve Accuracy?

Depends on the stability of the base-level classifiers.

A learner is unstable if a small change to the training
set D causes a large change in the output hypothesis

Q.
— If small changes in D causes large changes ¢ in then there
will be an improvement in performance.

Bagging helps unstable procedures, but could hurt the
performance of stable procedures.

Neural nets and decision trees are unstable.

k-nn and naive Bayes classifiers are stable.



More Randomness:
Random Forests

Build large collection of de-correlated trees
and average them.

Algorithm 15.1 Random Forest for Regression or Classification.
1. For b=1to B:

(a) Draw a bootstrap sample Z* of size N from the training data.

(b) Grow a random-forest tree T} to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

i. Select m variables at random from the p variables.
ii. Pick the best variable/split-point among the m.
iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {T}}¥.
To make a prediction at a new point x:
Regression: fB(z) = - 25:1 Ty(x).

Classification: Let Cy(z) be the class prediction of the bth random-forest
tree. Then C%(x) = majority vote {Cy(z)} 2.




Reduce Bias? and Decrease Variance?

* Bagging reduces variance by averaging
* Bagging has little effect on bias
 Can we average and reduce bias?

* Yes:

* Boosting



Boosting

Freund & Schapire:
— theory for “weak learners” in late 80’s

Weak Learner: performance on any train set is
slightly better than chance prediction

intended to answer a theoretical question, not
as a practical way to improve learning

tested in mid 90’s using not-so-weak learners

works anyway!



Boosting

Weight all training samples equally

Train model on training set

Compute error of model on training set

Increase weights on training cases model gets wrong
Train new model on re-weighted training set
Re-compute errors on weighted training set

Increase weights again on cases model gets wrong
Repeat until tired (100+ iterations)

Final model: weighted prediction of each model



Boosting: Graphical lllustration



Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights w; = 1/N, i =1,2,... N.
2. Form =1 to M:

(a) Fit a classifier G, () to the training data using weights w;.
(b) Compute
_ L wil (g # Gon(2))

(c) Compute a,y, = log((1 — erry,)/erry,).
(d) Set w; < w; - explam, - L(y; # Gp(x;))], 1 =1,2,...,N.

3. Output G(z) = sign [2%21 ame(:c)].
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£5=0.21
0.=0.65
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Final Hypothesis




Reweighting vs Resampling

 Example weights might be harder to deal with

— Some learning methods can’t use weights on
examples

 We can resample instead:

— Draw a bootstrap sample from the data with the
probability of drawing each example proportional to
its weight

 Reweighting usually works better but resampling
is easier to implement



Boosting Performance
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Summary: Boosting vs. Bagging

Bagging doesn’t work so well with stable models.
Boosting might still help.

Boosting might hurt performance on noisy
datasets. Bagging doesn’t have this problem.

On average, boosting helps more than bagging,
but it is also more common for boosting to hurt
performance.

Bagging is easier to parallelize.



Other Approaches

* Mixture of Experts (See Bishop, Chapter 14)
e Cascading Classifiers
* many others...



