Point Estimation

Vibhav Gogate
 The University of Texas at Dallas

Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer.

Basics: Expectation and Variance

Random variable x has domain $D(x)$. Example: x has domain: $\{1,2,3,4\}$ The distribution P is defined over $D(x)$.

$$
\begin{gathered}
\mathbb{E}_{P}[x]=\sum_{x \in D(x)} x P(x) \\
\operatorname{var}_{P}[x]=\sum_{x \in D(x)}\left(x-\mathbb{E}_{P}[x]\right)^{2} P(x)
\end{gathered}
$$

Binary Variables (1)

- Coin flipping: heads=1, tails=0

$$
p(x=1 \mid \mu)=\mu
$$

- Bernoulli Distribution

$$
\begin{aligned}
\operatorname{Bern}(x \mid \mu) & =\mu^{x}(1-\mu)^{1-x} \\
\mathbb{E}[x] & =\mu \\
\operatorname{var}[x] & =\mu(1-\mu)
\end{aligned}
$$

Binary Variables (2)

- N coin flips:

$$
p(m \text { heads } \mid N, \mu)
$$

- Binomial Distribution

$$
\begin{gathered}
\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m} \\
\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m \mid N, \mu)=N \mu \\
\operatorname{var}[m] \equiv \sum_{m=0}^{N}(m-\mathbb{E}[m])^{2} \operatorname{Bin}(m \mid N, \mu)=N \mu(1-\mu)
\end{gathered}
$$

Your first consulting job

Billionaire in Dallas asks:

- He says: I have thumbtack, if I flip it, what's the probability it will fall with the nail up?
- You say: Please flip it a few times:

- You say: The probability is:
- $P(H)=3 / 5$
- He says: Why???
- You say: Because...

Thumbtack - Binomial Distribution

- $P($ Heads $)=\theta, P($ Tails $)=1-\theta$

- Flips are i.i.d.:
- Independent events
- Identically distributed according to Binomial distribution
- Sequence D of α_{H} Heads and α_{T} Tails

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha} H(1-\theta)^{\alpha_{T}}
$$

Maximum Likelihood Estimation

- Data: Observed set D of α_{H} Heads and α_{T} Tails
- Hypothesis: Binomial distribution
- Learning: finding θ is an optimization problem
- What's the objective function?

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- MLE: Choose θ to maximize probability of D

$$
\begin{aligned}
\widehat{\theta} & =\arg \max _{\theta} P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)
\end{aligned}
$$

Your first parameter learning algorithm

$\widehat{\theta}=\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta)$
$=\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$

- Set derivative to zero, and solve!

$$
\begin{aligned}
& \frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=\frac{d}{d \theta}\left[\ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}\right] \\
& \quad=\frac{d}{d \theta}\left[\alpha_{H} \ln \theta+\alpha_{T} \ln (1-\theta)\right] \\
& \quad=\alpha_{H} \frac{d}{d \theta} \ln \theta+\alpha_{T} \frac{d}{d \theta} \ln (1-\theta) \\
& \quad=\frac{\alpha_{H}}{\theta}-\frac{\alpha_{T}}{1-\theta}=0 \quad \widehat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
\end{aligned}
$$

At each point, the derivative is the slope of a line that is tangent to the curve. Note: derivative is positive where green, negative where red, and zero where black.

Source: Wikipedia.com

Data

But, how many flips do I need?

$$
\hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}
$$

- Billionaire says: I flipped 3 heads and 2 tails.
- You say: $\theta=3 / 5$, I can prove it!
- He says: What if I flipped 30 heads and 20 tails?
- You say: Same answer, I can prove it!
- He says: What's better?
- You say: Umm... The more the merrier???
- He says: Is this why I am paying you the big bucks???
- You say: I will give you a theoretical bound.

A bound (from Hoeffding's inequality)

For $N=\alpha_{H}+\alpha_{T}$, and $\quad \hat{\theta}_{M L E}=\frac{\alpha_{H}}{\alpha_{H}+\alpha_{T}}$
Let θ^{*} be the true parameter, for any $\varepsilon>0$:

$$
P\left(\left|\hat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

PAC Learning

- PAC: Probably Approximate Correct
- Billionaire says: I want to know the thumbtack θ, within $\varepsilon=0.1$, with probability of mistake, $\delta<=0.05$.
- How many flips? Or, how big do I set N ?

$$
P\left(\left|\widehat{\theta}-\theta^{*}\right| \geq \epsilon\right) \leq 2 e^{-2 N \epsilon^{2}}
$$

P (mistake) is less than or equal to $2 e^{-2 N \epsilon^{2}} \leq \delta$

$$
\begin{aligned}
& \ln \delta \geq \ln 2-2 N \epsilon^{2} \quad \text { Interesting! Lets look at } \\
& \text { some numbers! } \\
& N \geq \frac{\ln (2 / \delta)}{2 \epsilon^{2}} \\
& \varepsilon=0.1, \delta=0.05 \\
& N \geq \frac{\ln (2 / 0.05)}{2 \times 0.1^{2}} \approx \frac{3.8}{0.02}=190
\end{aligned}
$$

What if I have prior beliefs?

- Billionaire says: Wait, I know that the thumbtack is "close" to 50-50. What can you do for me now?
- You say: I can learn it the Bayesian way...
- Rather than estimating a single θ, we obtain a distribution over possible values of θ

In the beginning

After observations

Bayesian Learning

Use Bayes rule:

Or equivalently: $\quad P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$
Also, for uniform priors:
\rightarrow reduces to MLE objective

$$
P(\theta) \propto 1 \quad P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta)
$$

Bayesian Learning for Thumbtacks

$$
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)
$$

Likelihood function is Binomial:

$$
P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
$$

- What about prior?
- Represent expert knowledge
- Simple posterior form
- Conjugate priors:
- Closed-form representation of posterior
- For Binomial, conjugate prior is Beta distribution

Beta Distribution

- Distribution over $\mu \in[0,1] . \quad B(a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)}$

$$
\begin{aligned}
& \operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1} \\
& \mathbb{E}[\mu]=\frac{a}{a+b} \\
& \operatorname{var}[\mu]=\frac{a b}{(a+b)^{2}(a+b+1)} \\
& B(a, b)=\int_{0}^{1} u^{a-1}(1-u)^{b-1} d u, \quad \mathrm{a}>0, \mathrm{~b}>0 \\
& \Gamma(a)=\int_{0}^{\infty} u^{a-1} e^{-a} d u
\end{aligned}
$$

Beta

Distribution

$$
\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}
$$

Beta prior distribution $-P(\theta)$

$$
P(\theta)=\frac{\theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}}{B\left(\beta_{H}, \beta_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)
$$

- Likelihood function: $P(\mathcal{D} \mid \theta)=\theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}$
- Posterior: $P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta)$
$P(\theta \mid \mathcal{D}) \propto \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}} \theta^{\beta_{H}-1}(1-\theta)^{\beta_{T}-1}$

$$
=\theta^{\alpha_{H}+\beta_{H}-1}(1-\theta)^{\alpha_{T}+\beta_{T}-1}
$$

$$
=\operatorname{Beta}\left(\alpha_{H}+\beta_{H}, \alpha_{T}+\beta_{T}\right)
$$

Posterior Distribution

- Prior: $\operatorname{Beta}\left(\beta_{H}, \beta_{T}\right)$
- Data: α_{H} heads and α_{T} tails
- Posterior distribution:
$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$

Bayesian Posterior Inference

- Posterior distribution:

$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$
- Bayesian inference:
- No longer single parameter
- For any specific f, the function of interest
- Compute the expected value of f

$$
E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
$$

- Integral is often hard to compute

MAP: Maximum a Posteriori

Approximation

$$
\begin{aligned}
& P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right) \\
& E[f(\theta)]=\int_{0}^{1} f(\theta) P(\theta \mid \mathcal{D}) d \theta
\end{aligned}
$$

- As more data is observed, Beta is more certain
- MAP: use most likely parameter to approximate the expectation

$$
\begin{gathered}
\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D}) \\
E[f(\theta)] \approx f(\widehat{\theta})
\end{gathered}
$$

MAP for Beta distribution

$P(\theta \mid \mathcal{D})=\frac{\theta^{\beta_{H}+\alpha_{H}-1}(1-\theta)^{\beta_{T}+\alpha_{T}-1}}{B\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)} \sim \operatorname{Beta}\left(\beta_{H}+\alpha_{H}, \beta_{T}+\alpha_{T}\right)$
MAP: use most likely parameter:

$$
\widehat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})=\frac{\alpha_{H}+\beta_{H}-1}{\alpha_{H}+\beta_{H}+\alpha_{T}+\beta_{T}-2}
$$

Beta prior equivalent to extra thumbtack flips
As $N \rightarrow \infty$, prior is "forgotten"
But, for small sample size, prior is important!

What about continuous variables?

- Billionaire says: If I am measuring a continuous variable, what can you do for me?
- You say: Let me tell you about Gaussians...

$$
P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Learning a Gaussian

- Collect a bunch of data
-Hopefully, i.i.d. samples
- e.g., exam scores
- Learn parameters
-Mean: μ

$X_{i}=i$	Exam Score
0	85
1	95
2	100
3	12
\ldots	\ldots
99	89

- Variance: σ

$$
P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

MLE for Gaussian: $P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$

- Prob. of i.i.d. samples $D=\left\{x_{1}, \ldots, x_{N}\right\}$:

$$
\begin{aligned}
& P(\mathcal{D} \mid \mu, \sigma)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}} \\
& \quad \mu_{M L E}, \sigma_{M L E}=\arg \max _{\mu, \sigma} P(\mathcal{D} \mid \mu, \sigma)
\end{aligned}
$$

- Log-likelihood of data:

$$
\begin{aligned}
\ln P(\mathcal{D} \mid \mu, \sigma) & =\ln \left[\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{N} \prod_{i=1}^{N} e^{\frac{-\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}}\right] \\
& =-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Your second learning algorithm: MLE for mean of a Gaussian

- What's MLE for mean?

$$
\begin{aligned}
& \frac{d}{d \mu} \ln P(\mathcal{D} \mid \mu, \sigma)=\frac{d}{d \mu}\left[-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
&=\frac{d}{d \mu}[-N \ln \sigma \sqrt{2 \pi}]-\sum_{i=1}^{N} \frac{d}{d \mu}\left[\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
&=-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)}{\sigma^{2}}=0 \\
&=-\sum_{i=1}^{N} x_{i}+N \mu=0 \\
& \quad \widehat{\mu}_{M L E}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
\end{aligned}
$$

MLE for variance

- Again, set derivative to zero:

$$
\begin{aligned}
\frac{d}{d \sigma} \ln P(\mathcal{D} \mid \mu, \sigma) & =\frac{d}{d \sigma}\left[-N \ln \sigma \sqrt{2 \pi}-\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =\frac{d}{d \sigma}[-N \ln \sigma \sqrt{2 \pi}]-\sum_{i=1}^{N} \frac{d}{d \sigma}\left[\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right] \\
& =-\frac{N}{\sigma}+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{\sigma^{3}}=0
\end{aligned}
$$

$$
\widehat{\sigma}_{M L E}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
$$

Learning Gaussian parameters

- MLE:

$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

- BTW. MLE for the variance of a Gaussian is biased
- Expected result of estimation is not true parameter!
- Unbiased variance estimator:

$$
\widehat{\sigma}_{\text {unbiased }}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
$$

