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Basics: Expectation and Variance 



Binary Variables (1) 

• Coin flipping: heads=1, tails=0 

 

 

• Bernoulli Distribution 



Binary Variables (2) 

• N coin flips: 

 

• Binomial Distribution 



Your first consulting job 

Billionaire in Dallas asks: 
– He says: I have thumbtack, if I flip it, what’s the 

probability it will fall with the nail up? 

– You say: Please flip it a few times: 

 

 

 

– You say: The probability is: 
• P(H) = 3/5 

– He says: Why??? 
– You say: Because… 



Thumbtack – Binomial Distribution 

• P(Heads) = ,  P(Tails) = 1- 

 

 

 

• Flips are i.i.d.: 
– Independent events 

– Identically distributed according to Binomial 
distribution 

• Sequence D of H Heads and T Tails   

… 



Maximum Likelihood Estimation 

• Data: Observed set D of H Heads and T Tails   

• Hypothesis: Binomial distribution  

• Learning: finding  is an optimization problem 

– What’s the objective function? 

 

• MLE: Choose  to maximize probability of D 



Your first parameter learning algorithm 

• Set derivative to zero, and solve! 

 



At each point, the derivative is the slope of a line that is tangent to 
the curve. Note: derivative is positive where green, negative where 
red, and zero where black. 
 
 
Source: Wikipedia.com 



Data 



But, how many flips do I need? 

• Billionaire says: I flipped 3 heads and 2 tails. 

• You say:  = 3/5, I can prove it! 

• He says: What if I flipped 30 heads and 20 tails? 

• You say: Same answer, I can prove it! 

• He says: What’s better? 
• You say: Umm… The more the merrier??? 

• He says: Is this why I am paying you the big bucks??? 

• You say: I will give you a theoretical bound. 
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Exponential  
Decay! 

A bound  (from Hoeffding’s inequality) 

For N =H+T, and 

 

Let  
* be the true parameter, for any >0: 



PAC Learning 

• PAC: Probably Approximate Correct 

• Billionaire says: I want to know the thumbtack , 
within  = 0.1, with probability of mistake,  <= 0.05.  

• How many flips? Or, how big do I set N ? 

 

Interesting! Lets look at 
some numbers! 
     = 0.1, =0.05 



What if I have prior beliefs?  

• Billionaire says: Wait, I know that the thumbtack 
is “close” to 50-50. What can you do for me now? 

• You say: I can learn it the Bayesian way… 

• Rather than estimating a single , we obtain a 
distribution over possible values of  

 

 
In the beginning After observations 

Observe flips 
e.g.: {tails, tails} 



Bayesian Learning 

Use Bayes rule: 

Or equivalently: 

Also, for uniform priors: 

Prior 

Normalization 

Data Likelihood 

Posterior 

  reduces to MLE objective 



Bayesian Learning for Thumbtacks 

Likelihood function is Binomial: 
 
 

• What about prior? 
– Represent expert knowledge 
– Simple posterior form 

• Conjugate priors: 
– Closed-form representation of posterior 
– For Binomial, conjugate prior is Beta distribution 

 



Beta Distribution 

• Distribution over              . 𝐵 𝑎, 𝑏 =
Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
 

𝐵 𝑎, 𝑏 =  𝑢𝑎−1(1 − 𝑢)𝑏−1𝑑𝑢
1

0
,   a>0, b>0 

Γ 𝑎 =  𝑢𝑎−1𝑒−𝑎𝑑𝑢
∞

0

 



Beta 
Distribution 



Beta prior distribution – P() 

• Likelihood function: 

• Posterior: 

= 𝜃𝛼𝐻+𝛽𝐻−1(1 − 𝜃)𝛼𝑇+𝛽𝑇−1 



Posterior Distribution 

• Prior: 

• Data: H heads and T tails 
 

• Posterior distribution:  

 



Bayesian Posterior Inference 

• Posterior distribution:  

 

 

• Bayesian inference: 
– No longer single parameter 

– For any specific f, the function of interest 

– Compute the expected value of f 

 

 

 

– Integral is often hard to compute 



MAP: Maximum a Posteriori 
Approximation 

 

 

 

• As more data is observed, Beta is more certain 

• MAP: use most likely parameter to approximate the 
expectation 



MAP for Beta distribution 

 

 

MAP: use most likely parameter: 

 

Beta prior equivalent to extra thumbtack flips 

As N →∞, prior is “forgotten” 
But, for small sample size, prior is important! 



What about continuous variables? 

• Billionaire says: If I am 
measuring a 
continuous variable, 
what can you do for 
me? 

• You say: Let me tell 
you about Gaussians… 



Learning a Gaussian 

• Collect a bunch of data 

–Hopefully, i.i.d. samples 

–e.g., exam scores 

• Learn parameters 

–Mean: μ 

–Variance: σ 

Xi =i Exam 
Score 

0 85 

1 95 

2 100 

3 12 

… … 

99 89 



MLE for Gaussian: 

• Prob. of i.i.d. samples D={x1,…,xN}: 

• Log-likelihood of data: 



Your second learning algorithm: 
MLE for mean of a Gaussian 

• What’s MLE for mean? 



MLE for variance 

• Again, set derivative to zero: 



Learning Gaussian parameters 

• MLE: 

 

 

 

 

• BTW. MLE for the variance of a Gaussian is biased 

– Expected result of estimation is not true parameter!  

– Unbiased variance estimator: 


