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Basics: Expectation and Variance

Random variable x has domain D(x).
Example: x has domain: {1, 2, 3,4}
The distribution P is defined over D(x).

Eplz] = Z rP(x)

xeD(x)

varp[z] = »  (z—Ep[z])*P(z)

xeD(x)



Binary Variables (1)

* Coin flipping: heads=1, tails=0

p(x = 1|p) = p

e Bernoulli Distribution

Bern(z|u)

var|x|

| I .
=



Binary Variables (2)

* N coin flips:
p(m heads|N, )

 Binomial Distribution
Bin(m|N, p) = (ﬁ) Pt (1= )t

E[m] = Z mBin(m|N,u) = Npu
var\m| = Z (m — E[m])* Bin(m|N, u) = Nu(1 — p)

m=0



Your first consulting job

Billionaire in Dallas asks:

— He says: | have thumbtack, if | flip it, what’s the
probability it will fall with the nail up?

— You say: Please flip it a few times:

OAO0?*O

— You say: The probability is:
 P(H)=3/5

— He says: Why???

— You say: Because...



Thumbtack — Binomial Distribution

 P(Heads) =0, P(Tails) =1-6

OAO0D - O

* Flips arei.i.d.:
— Independent events

— ldentically distributed according to Binomial
distribution

* Sequence D of a,; Heads and a; Tails

P(D|0) =0%(1—0)T




Maximum Likelihood Estimation

* Data: Observed set D of o, Heads and a; Tails
* Hypothesis: Binomial distribution
* Learning: finding O is an optimization problem
— What'’s the objective function?
P(D|60) =0%H(1 — 0)%T
e MLE: Choose 0 to maximize probability of D

f = arg max P(D | 6)

= arg m@ax In P(D | 6)



Your first parameter learning algorithm

)

= arg meax In P(D | 9)

= argm@ax INO“H(1 — )T

e Set derivative to zero, and solve!

d - d on 1 Mot
=N P(D ] 6) = 25 [In6* (1~ 6)°7]
d
:@[OAH|H9—|—O¢T|H(1—6’)]
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flz) == ssin(z® ) +1
f'{z)=sin(z® ) +22° scos(z”)
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At each point, the derivative is the slope of a line that is tangent to
the curve. Note: derivative is positive where green, negative where
red, and zero where black.

Source: Wikipedia.com
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But, how many flips do | need?

1
apr + ar

OvbE =

Billionaire says: | flipped 3 heads and 2 tails.
You say: 0 = 3/5, | can prove it!

He says: What if | flipped 30 heads and 20 tails?
You say: Same answer, | can prove it!

He says: What’s better?

You say: Umm... The more the merrier???

He says: Is this why | am paying you the big bucks???
You say: | will give you a theoretical bound.



A bound (from Hoeffding’s inequality)

01
afp + ar

ForN=a+ar, and Oy g =

Let &" be the true parameter, for any £>0:

~ 2
P(|6—0"|>¢e) < 2e 2Ne

Exponential
Decay!

Prob. of Mistake




PAC Learning

* PAC: Probably Approximate Correct

 Billionaire says: | want to know the thumbtack 0,
within € = 0.1, with probability of mistake, 0 <= 0.05.

e How many flips? Or, how big do | set N?

P10 — 0% > ¢) < 272N

P(mistake) is less than or equal to 2e 2N < §

INd > In2 — 2N 2 Interesting! Lets look at
- some numbers!
N > In(2/9) £ = 0.1, 5=0.05
= T 52 |
€ N> In(2/0.05) 3.8 100

2 % 0.12 0.02



What if | have prior beliefs?

* Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

e Rather than estimating a single 0, we obtain a
distribution over possible values of 0

In the beginning After observations
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Bayesian Learning

Prior

Use Bayes rule: Data Likelihood gzm

Posterior P(H ’ D) —

/ P(D)
i \ Normalization

02 0.4 0.6
parameter veluo

Or equivalently: P(Q | D) X P(D \ Q)P(Q)
Also, for uniform priors:
—> reduces to MLE objective

P(#)x1 P(0|D)xP(D|0)



Bayesian Learning for Thumbtacks

PO |D) x P(D|O)P(H)
Likelihood function is Binomial:
P(D|0) = OH (1 — )T

 What about prior?
— Represent expert knowledge
— Simple posterior form
* Conjugate priors:
— Closed-form representation of posterior
— For Binomial, conjugate prior is Beta distribution



Beta Distribution

* Distribution over p € [0,1]. B(a,b) =£((Z)Jrr(?)
I'a+0b6) _ _
Beta(pu|a,b) = F((Z)F(b))ua M1 — ) !
a
Blul = a+b
ab
var(u] =

(a+b)2(a+b+1)

B(a,b) = fol u? 11 —w)?1du, a>0,b>0

I'(a) =J u®le=du
0




Beta
Distribution
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Beta prior distribution — P(0)
6°n—1(1 — 9)fr—1
BBy, Br)

Beta(1,1) .6 | Beta(2,2)

P(0) = ~ Beta(By, Br)

Beta(3,2) 6 ‘ Bgta(30,29) .

* Likelihood function: p(p | 9) = 9¥H (1 — 9)°T
* Posterior: P(0| D) < P(D|0O)P(0)
P(0 | D) x 0% (1 — 9)°T gPr—1(1 — g)Pr—1
— 9 tBym1(1 — §)%rtFr1
= Beta(ag+0y, ar+8T1)



Posterior Distribution

* Prior: Beta(By, 1)
* Data: o, heads and o tails

e Posterior distribution:
P(0 | D) ~ Beta(By + ap, Br + ar)

Beta(1,1) .6 Beta(2,2) Beta(3,2) . Beta(30,20)




Beta(30,20)

Bayesian Posterior Inference

e Posterior distribution:

meter val

P(0 | D) ~ Beta(By + ap, Br + ar)

e Bayesian inference:
— No longer single parameter
— For any specific f, the function of interest
— Compute the expected value of f

1 -
ELf(0)] = /O £(0)P(0 | D)do

— Integral is often hard to compute



Beta(30,20)

MAP: Maximum a Posteriori
Approximation

P(0 | D) ~ Beta(By + oy, By + ap) 7 7 s

1
BIf(0)) = [ £(0)P(6 | D)db

 As more data is observed, Beta is more certain

* MAP: use most likely parameter to approximate the
expectation

0 = arg max P(6 | D)

E[f(0)] =~ f()



Beta(30,20)

p

MAP for Beta distribution }

atar valiia

oButag—1¢1 _ 9\Brtar—1 o
( ) ~ Beta(By+amy, br+oar)

PO | D) =
S B(By + oy, Br + ar)

MAP: use most likely parameter:

~ ag + By —1
60 = arg m@axP(Q | D) = o T B far i 8,2
Beta prior equivalent to extra thumbtack flips

As N — 0, prior is “forgotten”
But, for small sample size, prior is important!



What about continuous variables?

 Billionaire says: If | am

1 i L LR
measuring a | pro- gr02—
continuous variable, | b ol
what can you do for =
me?

* You say: Let me tell . .
you about Gaussians... * * * * T x T 7
1 —(z—p)?
P(:Ij | My U) — e 202



Learning a Gaussian m
0 85

e Collect a bunch of data

1 95
—Hopefully, i.i.d. samples S P
—e.g., exam scores

3 12

* Learn parameters
—Mean: u |
—Variance: o

1 —(z—p)?



1 (a2

MLE for Gaussian: pe|u,0) =

e 202

o\ 27

* Prob. of i.i.d. samples D={x,...,x\}:

1 \NV N —@w?
O'\/27T>

UMLE,OMLE = arg m%xP(D |, 0)

Y

P(Dlu,cf):(

* Log-likelihood of data:
1 \V N —@-w?
InP(D | pu,0) = In {( ) [[e 27 }

o\ 27T i—1

N (o — )2
— _Ninovar— Y 2”)
i=1 20



Your second learning algorithm:
MLE for mean of a Gaussian

e What’s MLE for mean?

d
—InP(D’:u'vO-)
dp

d Y (z— )
— | —=Nlnov2nm —
du ne Z; 202
d L d [z — p)?
— =N | V27| —
d,u _ No 7T} = d,u[ 20.2
N
:_Z(%—M) — 0
. o?
1=1
N
—innLN,u:O
1=1 1 N
U = — x
MMLE N@; i




MLE for variance

e Again, set derivative to zero:

d d (2 — p)?
— InP(D | p, = — |—NlInoV2r — ’
do (Dl ns0) do 7 7,;1 202
d Nod [(z; — )2
= — |—NlnoVv2nr| — :
do { ’ ﬂ Z;l do [ 202




Learning Gaussian parameters

e MLE: 1
UMILE = NZ T
i—=1
> 1< >
'3MLE — NZ(CEZ_//I’)
i—1

e BTW. MLE for the variance of a Gaussian is biased

— Expected result of estimation is not true parameter!

— Unbiased variance estimator: N
1
D _ N2
Tunbiased — N _ 1 Z (37@ — U)
i=1




