
CS 6375: Machine Learning
Computational Learning Theory

Vibhav Gogate
The University of Texas at Dallas

Many slides borrowed from Ray Mooney

1



Learning Theory

• Theoretical characterizations of

– Difficulty of several types of ML problems

– Capabilities of several types of ML algorithms

• Questions:

– Under what conditions is successful ML possible 
and impossible?

– Under what conditions will a particular ML 
algorithm perform successfully?

2



Learning Theory

• Theorems that characterize 
– classes of learning problems or 

– specific algorithms in terms of 
• computational complexity or 

• sample complexity, i.e. the number of training examples necessary or sufficient to 
learn hypotheses of a given accuracy.

• Complexity of a learning problem depends on:
– Size or expressiveness of the hypothesis space.

– Accuracy to which a target concept must be approximated.

– Probability with which the learner must produce a successful 
hypothesis.

– Manner in which training examples are presented, e.g. randomly or by 
query to an oracle.

3



Types of Results

• We will not focus on specific learning algorithms but rather on 
broad classes of ML algorithms characterized by their 
hypothesis spaces, the presentation of training examples, etc.

• Sample Complexity: How many training examples are needed 
for a learner to construct (with high probability) a highly 
accurate concept?

• Computational Complexity: How much computational 
resources (time and space) are needed for a learner to 
construct (with high probability) a highly accurate concept?
– High sample complexity implies high computational complexity, since 

learner at least needs to read the input data.

• Mistake Bound: Learning incrementally, how many training 
examples will the learner misclassify before constructing a 
highly accurate concept. (not covered)

4



Is Perfect Learning possible?

• Number of training examples needed to learn a 
hypothesis h for which error(h)=0

• Futile:

– There may be multiple hypotheses that are consistent with 
the training data and the learner cannot be certain to pick 
the one that equals the target concept

– Since training data is drawn randomly, there is always a 
chance that the training examples are misleading!

8



9

Cannot Learn Exact Concepts
from Limited Data, Only Approximations

Negative

Learner Classifier

Positive

Negative

Positive



10

Cannot Learn Even Approximate Concepts
from Pathological Training Sets

Learner Classifier
Negative

Positive

NegativePositive



PAC Learning

• Probably approximately correct (PAC)
– Developed by Leslie Valiant (who later won the Turing 

award)

• The only reasonable expectation of a learner is 
that with high probability it learns a close 
approximation to the target concept.

• In the PAC model, we specify two small 
parameters, ε and δ, and require that with 
probability at least (1  δ) a system learn a 
concept with error at most ε.

11









Formal Definition of PAC

15



PAC Learnability

• PAC learnability seems to be concerned about 
computational resources required for learning

• In practice, we are only concerned about the number 
of training examples required

• The two are related
– The computational limitation also imposes a polynomial 

constraint on the training set size, since a learner can 
process at most polynomial data in polynomial time.

– The learner must visit each example at least once

16



Sample Complexity

• Sample complexity is a useful notion

– How many training examples are required for a 
problem of given size?

• How to prove PAC learnability:
– First prove sample complexity of learning C using H is 

polynomial.
– Second prove that the learner can train on a polynomial-

sized data set in polynomial time.

• To be PAC-learnable, there must be a hypothesis in H
with arbitrarily small error for every concept in C, 
generally CH.

17



Sample Complexity for Consistent 
Learners

• A learner L using a hypothesis space H and training 
data D is said to be a consistent learner if it always 
outputs a hypothesis with zero error on D whenever 
H contains such a hypothesis.

• By definition, a consistent learner must produce a 
hypothesis in the version space for H given D.

• Therefore, to bound the number of examples needed 
by a consistent learner, we just need to bound the 
number of examples needed to ensure that the 
version-space contains no hypotheses with 
unacceptably high error.

18





ε-Exhausted Version Space
• The version space, VSH,D, is said to be ε-exhausted iff every 

hypothesis in it has true error less than or equal to ε.

• In other words, there are enough training examples to 
guarantee than any consistent hypothesis has error at most 
ε.

• One can never be sure that the version-space is ε-
exhausted, but one can bound the probability that it is not.

• Theorem 7.1 (Haussler, 1988): If the hypothesis space H is 
finite, and D is a sequence of m1 independent random 
examples for some target concept c, then for any 0 ε  1, 
the probability that the version space VSH,D is not ε-
exhausted is less than or equal to:|𝐻|𝑒−𝜀𝑚

20



Proof
• Let Hbad={h1,…hk} be the subset of H with error > ε.  The VS is 

not ε-exhausted if any of these are consistent with all m
examples.

• A single hi Hbad is consistent with one example with 
probability:

• A single hi Hbad is consistent with all m independent random 
examples with probability:

• The probability that any hi Hbad is consistent with all m
examples is:

21

)1()),(consist( ji ehP

m

i DhP )1()),(consist( 

)),(consist),(consist()),(consist( 1 DhDhPDHP kbad  



Proof (cont.)

• Since the probability of a disjunction of events is at most the 
sum of the probabilities of the individual events:

• Since:   |Hbad|  |H|    and  (1–ε)m  e–εm, 0 ε  1, m ≥ 0

22

m

badbad HDHP )1()),(consist( 

m

bad eHDHP )),(consist(

Q.E.D



Sample Complexity Analysis

• Let δ be an upper bound on the probability of not exhausting 
the version space. So:

23



















/ln
1

ln                                   

/ln                                   

)inequality (flip  /ln                                   

)ln(                                  

                                    

)),(consist(



















































Hm

H
m

H
m

H
m

H
e

eHDHP

m

m

bad



Sample Complexity Result

• Therefore, any consistent learner, given at least:

examples will produce a result that is PAC.

• Just need to determine the size of a hypothesis space to 
instantiate this result for learning specific classes of concepts.

• This gives a sufficient number of examples for PAC learning, 
but not a necessary number.  Several approximations like that 
used to bound the probability of a disjunction make this a 
gross over-estimate in practice.

24




/ln
1

ln 







 H



Sample Complexity of Conjunction Learning

• Consider conjunctions over n boolean features. There are 3n of these 
since each feature can appear positively, appear negatively, or not 
appear in a given conjunction.  Therefore |H|= 3n, so a sufficient 
number of examples to learn a PAC concept is:

• Concrete examples:

– δ=ε=0.05, n=10 gives 280 examples

– δ=0.01, ε=0.05, n=10 gives 312 examples

– δ=ε=0.01, n=10 gives 1,560 examples

– δ=ε=0.01, n=50 gives 5,954 examples

25







/3ln
1

ln/3ln
1

ln 
















 nn





Sample Complexity of Learning
Arbitrary Boolean Functions

• Consider any boolean function over n boolean features such as the 
hypothesis space of DNF or decision trees. There are 22^n of these, so 
a sufficient number of examples to learn a PAC concept is:

• Concrete examples:

– δ=ε=0.05, n=10 gives 14,256 examples

– δ=ε=0.05, n=20 gives 14,536,410 examples

– δ=ε=0.05, n=50 gives 1.561x1016 example

27







/2ln2
1

ln/2ln
1

ln 2

















 nn





Infinite Hypothesis Spaces

• The preceding analysis was restricted to finite hypothesis 
spaces. Moreover, the bounds were quite weak.

• Some infinite hypothesis spaces (such as those including real-
valued thresholds or parameters) are more expressive than 
others.
– Compare a rule allowing one threshold on a continuous feature 

(length<3cm) vs one allowing two thresholds (1cm<length<3cm).

• Need some measure of the expressiveness of infinite 
hypothesis spaces.

• The Vapnik-Chervonenkis (VC) dimension provides just such a 
measure, denoted VC(H).

• Analogous to ln|H|, there are bounds for sample complexity 
using VC(H).

34



Shattering Instances
• A hypothesis space is said to shatter a set of instances iff for 

every partition of the instances into positive and negative, 
there is a hypothesis that produces that partition.

• For example, consider 2 instances described using a single real-
valued feature being shattered by intervals.

35

+      –

_ x,y

x       y

y       x

x,y

x y



Shattering Instances (cont)
• But 3 instances cannot be shattered by a single interval.

36

+        –

_ x,y,z

x       y,z

y       x,z

x,y      z

x,y,z    

y,z      x

z       x,y

x,z       y  

x y z

Cannot do

• Since there are 2m partitions of m instances, in order for H 
to shatter instances: |H|  ≥ 2m.



VC Dimension
• An unbiased hypothesis space shatters the entire instance 

space.

• The larger the subset of X that can be shattered, the more 
expressive the hypothesis space is, i.e. the less biased.

• The Vapnik-Chervonenkis dimension, VC(H). of hypothesis 
space H defined over instance space X is the size of the largest 
finite subset of X shattered by H. If arbitrarily large finite 
subsets of X can be shattered then VC(H) = 

• If there exists at least one subset of X of size d that can be 
shattered then VC(H) ≥ d. If no subset of size d can be 
shattered, then VC(H) < d.

• For a single intervals on the real line, all sets of 2 instances can 
be shattered, but no set of 3 instances can, so VC(H) = 2.

• Since |H| ≥ 2m, to shatter m instances, VC(H) ≤ log2|H|
37



The VC dimension of hypothesis space H defined over instance space X
is the size of the largest finite subset of X shattered by H. If arbitrarily 
large finite subsets of X can be shattered then VC(H) = 



VC Dimension Example
• Consider axis-parallel rectangles in the real-plane, i.e. 

conjunctions of intervals on two real-valued features. 
Some 4 instances can be shattered.

39



VC Dimension Example (cont)

• No five instances can be shattered since there can be at most 
4 distinct extreme points (min and max on each of the 2 
dimensions) and these 4 cannot be included without including 
any possible 5th point.

• Therefore VC(H) = 4
• Generalizes to axis-parallel hyper-rectangles (conjunctions of 

intervals in n dimensions): VC(H)=2n.

40



Upper Bound on Sample Complexity with VC

• Using VC dimension as a measure of expressiveness, the 
following number of examples have been shown to be 
sufficient for PAC Learning (Blumer et al., 1989).

• Compared to the previous result using ln|H|, this bound has 
some extra constants and an extra log2(1/ε) factor. Since 
VC(H) ≤ log2|H|, this can provide a tighter upper bound on 
the number of examples needed for PAC learning.

41




























13
log)(8

2
log4

1
22 HVC



Conjunctive Learning 
with Continuous Features

• Consider learning axis-parallel hyper-rectangles, conjunctions 
on intervals on n continuous features.

– 1.2 ≤ length ≤ 10.5  2.4 ≤ weight ≤ 5.7

• Since VC(H)=2n sample complexity is

• Since the most-specific conjunctive algorithm can easily find 
the tightest interval along each dimension that covers all of 
the positive instances (fmin ≤ f ≤  fmax) and runs in linear time, 
O(|D|n), axis-parallel hyper-rectangles are PAC learnable.

42




























13
log16

2
log4

1
22 n



Sample Complexity Lower Bound with VC

• There is also a general lower bound on the minimum number 
of examples necessary for PAC learning (Ehrenfeucht, et al., 
1989):

Consider any concept class C such that VC(H)≥2 any learner L
and any 0<ε<1/8, 0<δ<1/100. Then there exists a distribution D
and target concept in C such that if L observes fewer than:

examples, then with probability at least δ,  L outputs a 
hypothesis having error greater than ε.

• Ignoring constant factors, this lower bound is the same as the 
upper bound except for the extra log2(1/ ε) factor in the upper 
bound.

43








 









 32

1)(
,

1
log

1
max 2

CVC



No Free Lunch Theorem

• If we are interested solely in the generalization 
performance, are there any reasons to prefer one 
classifier over the other?

• If we make no prior assumptions about the 
nature of the classification task, can we expect 
any classification method to be superior overall?

• Can we find an algorithm that is superior to 
random guessing?

• Answer  is  No

48



Implications of No free Lunch theorem

• No context-independent or usage-independent reasons to 
prefer one classifier over the other

• If one algorithm seems to outperform another in a 
particular situation, it is a consequence of its (over??)fit to 
the particular domain
– Does not imply general superiority

• In practice what matters most is
– Prior knowledge
– Data distribution
– Amount of training data

• Try different approaches and compare
• Off-training-set error: The test-set should be such that it 

contains no examples that are in the training set

49



No Free Lunch, Overfitting Avoidance 
and Occam’s Razro

• We saw how to avoid overfitting

– Regularization, pruning, inclusion of penalty, etc.

• Occam’s razor: one should not use classifiers 
that are more complicated than necessary

• No free lunch invalidates these techniques

– If there is no reason to prefer one over the other 
why are overfitting techniques and simpler 
models universally advocated

50



So Why are these techniques successful?

• Classes of problems addressed so far have 
certain properties

• Evolution: we have a strong selection pressure 
to be computationally simple.

• Satisficing (Herb Simon): Creating an adequate 
though possibly non-optimal solution

– Underlying much of machine learning and human 
cognition

51



COLT Conclusions
• The PAC framework provides a theoretical framework for 

analyzing the effectiveness of learning algorithms.
• The sample complexity for any consistent learner using 

some hypothesis space, H, can be determined from a 
measure of its expressiveness |H| or VC(H), quantifying 
bias and relating it to generalization.

• If sample complexity is tractable, then the computational 
complexity of finding a consistent hypothesis in H governs 
its PAC learnability.

• Constant factors are more important in sample complexity 
than in computational complexity, since our ability to 
gather data is generally not growing exponentially.

• Experimental results suggest that theoretical sample 
complexity bounds over-estimate the number of training 
instances needed in practice since they are worst-case 
upper bounds.

52



What you should know?

• Given a machine learning algorithm figure out 
the size of the hypothesis space and the VC 
dimension

• The sample complexity equations

– Will be provided on the test but you should 
remember the notation and the background.

53


