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Learning Theory

• Theoretical characterizations of

– Difficulty of several types of ML problems

– Capabilities of several types of ML algorithms

• Questions:

– Under what conditions is successful ML possible 
and impossible?

– Under what conditions will a particular ML 
algorithm perform successfully?
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Learning Theory

• Theorems that characterize 
– classes of learning problems or 

– specific algorithms in terms of 
• computational complexity or 

• sample complexity, i.e. the number of training examples necessary or sufficient to 
learn hypotheses of a given accuracy.

• Complexity of a learning problem depends on:
– Size or expressiveness of the hypothesis space.

– Accuracy to which a target concept must be approximated.

– Probability with which the learner must produce a successful 
hypothesis.

– Manner in which training examples are presented, e.g. randomly or by 
query to an oracle.
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Types of Results

• We will not focus on specific learning algorithms but rather on 
broad classes of ML algorithms characterized by their 
hypothesis spaces, the presentation of training examples, etc.

• Sample Complexity: How many training examples are needed 
for a learner to construct (with high probability) a highly 
accurate concept?

• Computational Complexity: How much computational 
resources (time and space) are needed for a learner to 
construct (with high probability) a highly accurate concept?
– High sample complexity implies high computational complexity, since 

learner at least needs to read the input data.

• Mistake Bound: Learning incrementally, how many training 
examples will the learner misclassify before constructing a 
highly accurate concept. (not covered)
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Is Perfect Learning possible?

• Number of training examples needed to learn a 
hypothesis h for which error(h)=0

• Futile:

– There may be multiple hypotheses that are consistent with 
the training data and the learner cannot be certain to pick 
the one that equals the target concept

– Since training data is drawn randomly, there is always a 
chance that the training examples are misleading!
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PAC Learning

• Probably approximately correct (PAC)
– Developed by Leslie Valiant (who later won the Turing 

award)

• The only reasonable expectation of a learner is 
that with high probability it learns a close 
approximation to the target concept.

• In the PAC model, we specify two small 
parameters, ε and δ, and require that with 
probability at least (1  δ) a system learn a 
concept with error at most ε.
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Formal Definition of PAC
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PAC Learnability

• PAC learnability seems to be concerned about 
computational resources required for learning

• In practice, we are only concerned about the number 
of training examples required

• The two are related
– The computational limitation also imposes a polynomial 

constraint on the training set size, since a learner can 
process at most polynomial data in polynomial time.

– The learner must visit each example at least once
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Sample Complexity

• Sample complexity is a useful notion

– How many training examples are required for a 
problem of given size?

• How to prove PAC learnability:
– First prove sample complexity of learning C using H is 

polynomial.
– Second prove that the learner can train on a polynomial-

sized data set in polynomial time.

• To be PAC-learnable, there must be a hypothesis in H
with arbitrarily small error for every concept in C, 
generally CH.
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Sample Complexity for Consistent 
Learners

• A learner L using a hypothesis space H and training 
data D is said to be a consistent learner if it always 
outputs a hypothesis with zero error on D whenever 
H contains such a hypothesis.

• By definition, a consistent learner must produce a 
hypothesis in the version space for H given D.

• Therefore, to bound the number of examples needed 
by a consistent learner, we just need to bound the 
number of examples needed to ensure that the 
version-space contains no hypotheses with 
unacceptably high error.
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ε-Exhausted Version Space
• The version space, VSH,D, is said to be ε-exhausted iff every 

hypothesis in it has true error less than or equal to ε.

• In other words, there are enough training examples to 
guarantee than any consistent hypothesis has error at most 
ε.

• One can never be sure that the version-space is ε-
exhausted, but one can bound the probability that it is not.

• Theorem 7.1 (Haussler, 1988): If the hypothesis space H is 
finite, and D is a sequence of m1 independent random 
examples for some target concept c, then for any 0 ε  1, 
the probability that the version space VSH,D is not ε-
exhausted is less than or equal to:|𝐻|𝑒−𝜀𝑚
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Proof
• Let Hbad={h1,…hk} be the subset of H with error > ε.  The VS is 

not ε-exhausted if any of these are consistent with all m
examples.

• A single hi Hbad is consistent with one example with 
probability:

• A single hi Hbad is consistent with all m independent random 
examples with probability:

• The probability that any hi Hbad is consistent with all m
examples is:
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Proof (cont.)

• Since the probability of a disjunction of events is at most the 
sum of the probabilities of the individual events:

• Since:   |Hbad|  |H|    and  (1–ε)m  e–εm, 0 ε  1, m ≥ 0
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Sample Complexity Analysis

• Let δ be an upper bound on the probability of not exhausting 
the version space. So:
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Sample Complexity Result

• Therefore, any consistent learner, given at least:

examples will produce a result that is PAC.

• Just need to determine the size of a hypothesis space to 
instantiate this result for learning specific classes of concepts.

• This gives a sufficient number of examples for PAC learning, 
but not a necessary number.  Several approximations like that 
used to bound the probability of a disjunction make this a 
gross over-estimate in practice.
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Sample Complexity of Conjunction Learning

• Consider conjunctions over n boolean features. There are 3n of these 
since each feature can appear positively, appear negatively, or not 
appear in a given conjunction.  Therefore |H|= 3n, so a sufficient 
number of examples to learn a PAC concept is:

• Concrete examples:

– δ=ε=0.05, n=10 gives 280 examples

– δ=0.01, ε=0.05, n=10 gives 312 examples

– δ=ε=0.01, n=10 gives 1,560 examples

– δ=ε=0.01, n=50 gives 5,954 examples
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Sample Complexity of Learning
Arbitrary Boolean Functions

• Consider any boolean function over n boolean features such as the 
hypothesis space of DNF or decision trees. There are 22^n of these, so 
a sufficient number of examples to learn a PAC concept is:

• Concrete examples:

– δ=ε=0.05, n=10 gives 14,256 examples

– δ=ε=0.05, n=20 gives 14,536,410 examples

– δ=ε=0.05, n=50 gives 1.561x1016 example
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Infinite Hypothesis Spaces

• The preceding analysis was restricted to finite hypothesis 
spaces. Moreover, the bounds were quite weak.

• Some infinite hypothesis spaces (such as those including real-
valued thresholds or parameters) are more expressive than 
others.
– Compare a rule allowing one threshold on a continuous feature 

(length<3cm) vs one allowing two thresholds (1cm<length<3cm).

• Need some measure of the expressiveness of infinite 
hypothesis spaces.

• The Vapnik-Chervonenkis (VC) dimension provides just such a 
measure, denoted VC(H).

• Analogous to ln|H|, there are bounds for sample complexity 
using VC(H).
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Shattering Instances
• A hypothesis space is said to shatter a set of instances iff for 

every partition of the instances into positive and negative, 
there is a hypothesis that produces that partition.

• For example, consider 2 instances described using a single real-
valued feature being shattered by intervals.
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Shattering Instances (cont)
• But 3 instances cannot be shattered by a single interval.
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• Since there are 2m partitions of m instances, in order for H 
to shatter instances: |H|  ≥ 2m.



VC Dimension
• An unbiased hypothesis space shatters the entire instance 

space.

• The larger the subset of X that can be shattered, the more 
expressive the hypothesis space is, i.e. the less biased.

• The Vapnik-Chervonenkis dimension, VC(H). of hypothesis 
space H defined over instance space X is the size of the largest 
finite subset of X shattered by H. If arbitrarily large finite 
subsets of X can be shattered then VC(H) = 

• If there exists at least one subset of X of size d that can be 
shattered then VC(H) ≥ d. If no subset of size d can be 
shattered, then VC(H) < d.

• For a single intervals on the real line, all sets of 2 instances can 
be shattered, but no set of 3 instances can, so VC(H) = 2.

• Since |H| ≥ 2m, to shatter m instances, VC(H) ≤ log2|H|
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The VC dimension of hypothesis space H defined over instance space X
is the size of the largest finite subset of X shattered by H. If arbitrarily 
large finite subsets of X can be shattered then VC(H) = 



VC Dimension Example
• Consider axis-parallel rectangles in the real-plane, i.e. 

conjunctions of intervals on two real-valued features. 
Some 4 instances can be shattered.
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VC Dimension Example (cont)

• No five instances can be shattered since there can be at most 
4 distinct extreme points (min and max on each of the 2 
dimensions) and these 4 cannot be included without including 
any possible 5th point.

• Therefore VC(H) = 4
• Generalizes to axis-parallel hyper-rectangles (conjunctions of 

intervals in n dimensions): VC(H)=2n.
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Upper Bound on Sample Complexity with VC

• Using VC dimension as a measure of expressiveness, the 
following number of examples have been shown to be 
sufficient for PAC Learning (Blumer et al., 1989).

• Compared to the previous result using ln|H|, this bound has 
some extra constants and an extra log2(1/ε) factor. Since 
VC(H) ≤ log2|H|, this can provide a tighter upper bound on 
the number of examples needed for PAC learning.

41




























13
log)(8

2
log4

1
22 HVC



Conjunctive Learning 
with Continuous Features

• Consider learning axis-parallel hyper-rectangles, conjunctions 
on intervals on n continuous features.

– 1.2 ≤ length ≤ 10.5  2.4 ≤ weight ≤ 5.7

• Since VC(H)=2n sample complexity is

• Since the most-specific conjunctive algorithm can easily find 
the tightest interval along each dimension that covers all of 
the positive instances (fmin ≤ f ≤  fmax) and runs in linear time, 
O(|D|n), axis-parallel hyper-rectangles are PAC learnable.
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Sample Complexity Lower Bound with VC

• There is also a general lower bound on the minimum number 
of examples necessary for PAC learning (Ehrenfeucht, et al., 
1989):

Consider any concept class C such that VC(H)≥2 any learner L
and any 0<ε<1/8, 0<δ<1/100. Then there exists a distribution D
and target concept in C such that if L observes fewer than:

examples, then with probability at least δ,  L outputs a 
hypothesis having error greater than ε.

• Ignoring constant factors, this lower bound is the same as the 
upper bound except for the extra log2(1/ ε) factor in the upper 
bound.

43








 









 32

1)(
,

1
log

1
max 2

CVC



No Free Lunch Theorem

• If we are interested solely in the generalization 
performance, are there any reasons to prefer one 
classifier over the other?

• If we make no prior assumptions about the 
nature of the classification task, can we expect 
any classification method to be superior overall?

• Can we find an algorithm that is superior to 
random guessing?

• Answer  is  No
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Implications of No free Lunch theorem

• No context-independent or usage-independent reasons to 
prefer one classifier over the other

• If one algorithm seems to outperform another in a 
particular situation, it is a consequence of its (over??)fit to 
the particular domain
– Does not imply general superiority

• In practice what matters most is
– Prior knowledge
– Data distribution
– Amount of training data

• Try different approaches and compare
• Off-training-set error: The test-set should be such that it 

contains no examples that are in the training set
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No Free Lunch, Overfitting Avoidance 
and Occam’s Razro

• We saw how to avoid overfitting

– Regularization, pruning, inclusion of penalty, etc.

• Occam’s razor: one should not use classifiers 
that are more complicated than necessary

• No free lunch invalidates these techniques

– If there is no reason to prefer one over the other 
why are overfitting techniques and simpler 
models universally advocated
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So Why are these techniques successful?

• Classes of problems addressed so far have 
certain properties

• Evolution: we have a strong selection pressure 
to be computationally simple.

• Satisficing (Herb Simon): Creating an adequate 
though possibly non-optimal solution

– Underlying much of machine learning and human 
cognition
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COLT Conclusions
• The PAC framework provides a theoretical framework for 

analyzing the effectiveness of learning algorithms.
• The sample complexity for any consistent learner using 

some hypothesis space, H, can be determined from a 
measure of its expressiveness |H| or VC(H), quantifying 
bias and relating it to generalization.

• If sample complexity is tractable, then the computational 
complexity of finding a consistent hypothesis in H governs 
its PAC learnability.

• Constant factors are more important in sample complexity 
than in computational complexity, since our ability to 
gather data is generally not growing exponentially.

• Experimental results suggest that theoretical sample 
complexity bounds over-estimate the number of training 
instances needed in practice since they are worst-case 
upper bounds.
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What you should know?

• Given a machine learning algorithm figure out 
the size of the hypothesis space and the VC 
dimension

• The sample complexity equations

– Will be provided on the test but you should 
remember the notation and the background.
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