PROBABILISTIC
1 REASONING OVER TIME

In which we try to interpret the present, understand the y@&stl perhaps predict
the future, even when very little is crystal clear

Agents in uncertain environments must be able to keep trat¢keocurrent state of
the environment, just like the logical agents in Part lll.eTtask is made more difficult by
partial and noisy percepts and uncertainty about how thie@ment changes over time. At
best, the agent will be able to obtain only a probabilisteeasment of the current situation.
This chapter describes the representations and inferégogtiams that make this possible,
building on the ideas introduced in Chapter 14.

The basic approach is described in Section 15.1: a changimligl v'& modelled using
a random variable for each aspect of the world stdteach point in time The relations
among these variables describe how the state evolvesoB4&i2 defines the basic inference
tasks and describes the general structure of inferenceithigs for temporal models. Then
we describe three specific kinds of modetédden Markov models, Kalman filters, and
dynamic Bayesian networks(which include hidden Markov models and Kalman filters as
special cases). Finally, Section 15.6 explains how tenhjpoodability models form the core
of modern speech recognition systems. Learning plays aateale in the construction of all
these models, but detailed investigation of learning @gms is left until Part VI.

15.1 TIME AND UNCERTAINTY

We have developed our techniques for probabilistic reagpim the context oftatic worlds,
in which each random variable has a single fixed value. Famele when repairing a car,
we assume that whatever is broken remains broken duringrtuess of diagnosis; our job
is to infer the state of the car from observed evidence, waisb remains fixed.

Now consider a slightly different problem—treating a dib@atient. As in the case
of car repair, we have evidence such as recent insulin désas,intake, blood sugar mea-
surements, and other physical signs. The task is to assessutient state of the patient,
including actual blood sugar level and insulin level. Githis information, the doctor (or
patient) makes a decision about food intake and insulin.dosdike the case of car repair,
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TIME SLICE

here thedynamicaspects of the problem are essential. Blood sugar levelsp@asurements
thereof, can change rapidly over time, depending on reamt intake and insulin doses,
metabolic activity, time of day, and so on. To assess theentistate from the history of
evidence and to predict the outcomes of treatment actioasnust model these changes.
The same considerations arise in many other contexts,mguigim tracking the eco-

nomic activity of a nation, given approximate and partialtistics, to understanding a se-
quence of spoken words, given noisy and ambiguous acoustsunements. How can dy-
namic situations like these be modelled?

States and observations

The basic approach we will adopt is very similar to the idedeaulying situation calculus,
as described in Chapter 10: the process of change can bedvesva series of snapshots,
each of which describes the state of the world at a partidiia. Each snapshot dime
slice contains a set of random variables, some of which are oldser@gamd some of which
are not. For simplicity, we will assume that the same subisedriables is observable in each
time slice (although this is not strictly necessary in amgtthat follows). We will useX; to
denote the set of unobservable state variables atitimmel E; to denote the set of observable
evidence variables. The observation at tinieE; = e, for some set of values.

Consider the following oversimplified example. Suppose gmithe security guard at
some secret underground installation. You want to knowsifrdining today, but your only
access to the outside world occurs each morning when yothsadirector coming in with,
or without, an umbrella. For each daythe se€; thus contains a single evidence variable
(whether the umbrella appears), and theXsgtontains a single state variablg (whether
it is raining). Other problems may involve larger sets ofiafles. In the diabetes example,
we might have evidence variables such\ésasured BloodSugar;, PulseRate,, etc., with
state variables such &loodSugar;, StomachContents;, and so ort.

The interval between time slices also depends on the prolifendiabetes monitoring,
a suitable interval might be an hour rather than a day. Ircthépter, we will generally assume
a fixed, finite interval; this means that times can be labdiigdntegers. We will assume
that the state sequence starts &t0; for various uninteresting reasons, we will assume that
evidence starts arriving at= 1 rather thart = 0. Hence our umbrella world is represented by
state variable®?y, R;, R, ... and evidence variablds;, Us,,.... We will use the notation
a : b to denote the sequence of integers frano b, and the notatiorX,., to denote the
corresponding set of variables froky to X;,. For examplel/;.3 corresponds to the variables
Ui, Us, Us.

Stationary processes and the Markov assumption

Having decided on the set of state and evidence variables goren problem, the next step
is to specify the dependencies among the variables. We éolldds the procedure laid down
in Chapter 14, placing the variables in some order and asjurggtions about conditional

L' Notice thatBloodSugar; and M easuredBloodSugar, are not the same variable; this is how we deal with
noisy measurements of actual quantities.
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Figure15.1 (@) Bayesian network structure correspondingfiost-order Markov process
with state defined by the variabl¥s. (b) A second-order Markov process.

independence of predecessors given some set of parentob@ines choice is to order the
variables in their natural temporal order, since causellyspigecedes effect and we prefer to
add the variables in causal order.

We would quickly run into an obstacle, however: the set ofaldes is unbounded,
since itincludes the state and evidence variables for diragyslice. This actually creates two
problems: first, we might have to specify an unbounded nurobeonditional probability
tables—one for each variable in each slice; and second,agecinight involve an unbounded
number of parents.

The first problem is solved by assuming that changes in thédvatate are caused
by astationary process—that is, a process of change that is governed by laws thabto n
themselves change over time. (Don’t confssationarywith static in a static process, the
state itself does not change.) In the umbrella world, thka,donditional probability that
the umbrella appear)(U;|Parents(Uy)), is the same for all. Given the assumption of
stationarity, therefore, we need specify conditionalrthstions only for the variables within
a “representative” time slice.

The second problem, that of handling the potentially infiniumber of parents, is
solved by making what is calledMarkov assumption, that is, that the current state depends
on only afinite history of previous states. Processes satisfying thisngsson were first
studied in depth by the Russian statistician A. A. Markov arelcalledviarkov processes
or Markov chains. They come in various flavors; the simplest is thst-order Markov
process in which the current state depends only on the previous siad not on any earlier
states. Using our notation, the corresponding conditiovdgpendence assertion states that,
for all ¢,

P(X¢|Xo:t-1) = P(X¢[X¢-1) (15.1)

Hence, in a first-order Markov process, the laws describmg the state evolves over time
are contained entirely within the conditional distributi®(X;|X;_1), which we call theran-
sition model.? in The transition model for a second-order Markov processdsconditional
distribution P(X;|X;—2, X;—1). Figure 15.1 shows the Bayesian network structures corre-
sponding to first-order and second-order Markov processes.

In addition to restricting the parents of the state variablg we must also restrict the

2 The transition model is the probabilistic analogue of thelBan update circuits in Chapter 7 and the successor-
state axioms in Chapter 10.

(© 2002 by Russell and Norvig. DRAFT---DO NOT DI STRI BUTE



Section 15.1.

Time and Uncertainty 545

SENSOR MODEL

RANDOM WALK

Ri-1| P(Ry)
t 0.7
- f 0.3 - -
Rain, _; Rain Rain 44
Re | P(U)
t 0.9
\ | f 0.2 | ]

Umbrella; _; Umbrella; Umbrella; ,

Figure 15.2 Bayesian network structure and conditional distributiaiescribing the
umbrella world. The transition model i®(Rain:|Rain;—1) and the sensor model is
P(Umbrellat|Raing).

parents of the evidence variables Typically, we will assume that the evidence variables at
timet depend only on the current state:

P(E¢|Xo0:¢, Eo:t—1) = P(E4[Xy) (15.2)

The conditional distributioP(E;|X;) is called thesensor model(or sometimes thebser-
vation model), because it describes how the “sensors"—that is, the pe@eariables, are
affected by the actual state of the world. Notice the dicectf the dependence: the “arrow”
goes from state to sensor values because the state of thetamodeshe sensors to take on
particular values. In the umbrella world, for example, thgnicausesthe umbrella to ap-
pear. (The inference process, of course, goes in the otremtion; the distinction between
the direction of modelled dependencies and the directianfefence is one of the principal
advantages of Bayesian networks.)

In addition to the transition model and sensor model, we ased to specify a prior
probability P(X,) over the states at time 0. These three distributions, cosdbivith the the
conditional independence assertions in Equations (18dJ¥5.2), give us a specification of
the complete joint distribution over all the variables. Bay finitet, we have

t
P(Xo, X1,..-,X¢, Eq, ..o, Er) = P(Xo) H P(X;|Xi—1)P(E;|X;) (15.3)
i=1
The independence assumptions correspond to a very simmpt#use for the Bayesian net-
work describing the whole system. Figure 15.2 shows the arétatructure for the umbrella
example, including the conditional distributions for thensition and sensor models.

The structure in the figure assumes a first-order Markov gydeecause the probability
of rain is assumed to depend only on whether it rained theiguevday. Whether such an
assumption is reasonable depends on the domain itself. fEt@fider Markov assumption
says that the state variables contalinthe information needed to characterize the probability
distribution for the next time slice. Sometimes the assiongs exactly true—for example,
if a particle is executing aandom walk along thez—axis, changing its position by1 at
each time step, then using thecoordinate as the state gives a first-order Markov process.
Sometimes the assumption is only approximate, as in theatgsedicting rain just based on
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whether it rained the previous day. There are two possibésfikthe approximation proves
too inaccurate:

1. Increasing the order of the Markov process model. For el@nwe could make a
second-order model by addidnin; » as a parent oRain;, which might give slightly
more accurate predictions.

2. Increasing the set of state variables. For example, wkl @d T'emperature; and
Pressure; to help in predicting the weather.

Exercise 15.1 asks you to show that the first solution—irgingathe order—can always be
reformulated as an increase in the set of state variablepjrig the order fixed. Notice that
adding state variables may improve predictive power bui aisreases the predictioe-
guirementssince we also have to predict the new variables. Thus, wieakeng for a “self-
sufficient” set of variables, which really means that we himvanderstand the “physics” of
the process being modelled. The requirement for accuratielivtg of the process is obvi-
ously lessened if we can add new sensors (e.g., measureai¢atsperature and pressure)
that provide information directly about the new state Jalga.

Consider, for example, the problem of tracking a robot waindgandomly on the X-Y
plane. One might propose that the position and velocity angffecient set of state variables:
one can simply use Newton'’s laws to calculate the new posidad the velocity may change
unpredictably. If the robot is battery-powered, howevegntbattery exhaustion would tend to
have a systematic effect on the change in velocity. Becdisetturn depends on how much
power was used by all previous maneuvers, the Markov prpjktiolated. We can restore
the Markov property by including the charge lev@tttery, as one of the state variables that
compriseX;. This helps in predicting the motion of the robot, but in tuequires a model
for predicting Battery; given Battery;—; and the velocity. In some cases this can be done
reliably; accuracy would be improved lagding a new sensdhat measures the battery level.

15.2 INFERENCE IN TEMPORAL MODELS

Having set up the structure of a generic temporal model, wéaaulate the basic inference
tasks that must be solved. They are as follows:

FILTERING ¢ Filtering or monitoring: this is the task of computing thieelief state—the poste-
MONITORING rior distribution over the current state, given all eviderio date. That is, we wish to
BELIEF STATE computeP(X;|e;.;), assuming that evidence arrives in a continuous streammmiegi

at¢=1. In the umbrella example, this would mean computing the gibdldy of rain
today, given all the observations of the umbrella-carri@admso far. Filtering is what
a rational agent needs to do in order to keep track of the mustate so that rational
decisions can be made (see Chapter 17). It turns out thatreastidentical calculation
provides thdikelihood of the evidence sequence, i.€(e;.).

PREDICTION ¢ Prediction: This is the task of computing the posterior distributioriothefuture state,
given all evidence to date. That is, we wish to compR(t&, |e;.;) for somek > 0.
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In the umbrella example, this might mean computing the gribaof rain three days
from now, given all the observations of the umbrella-carmmde so far. Prediction is
useful for evaluating possible courses of action.

SMOOTHING ¢ Smoothingor hindsight: This is the task of computing the posterior distributioreoa
HINDSIGHT paststate, given all evidence up to the present. That is, we wislomputeP(Xy|e;.;)
for somek such thal) < k < ¢. In the umbrella example, this might mean computing
the probability that it rained last Wednesday, given alldhservations of the umbrella-
carrier made up to today. Hindsight provides a better estiméthe state than was
available at the time, because it incorporates more eviaenc

& Most likely explanation: Given a sequence of observations, we may wish to find the
most likely sequence of states that generated those olises/a That is, we wish to
computearg maxy,,, P(X1.t|€1.¢). For example, if the umbrella appears on each of the
first three days and is absent on the fourth, then the mody l&glanation is that it
rained on the first three days and did not rain on the fourttgoAlhms for this task
are useful in many applications, including speech recagnitwhere the aim is to find
the most likely sentence, given a series of sounds—and stcation of bit strings
transmitted over a noisy channel.

In addition to these tasks, methods are also needetkdoning the transition and sensor
models from observations. Just as with static BayesianorésyDBN learning can be done
as a by-product of inference. Inference provides an estiroltwhat transitions actually
occurred and of what states generated the sensor readimdjthese estimates can be used
to update the models. The updated models provide new essmad the process iterates
to convergence. The overall process is an instance dEMealgorithm (see Section 19.3).
One point to note is that learning requires the full smoahirference, rather than filtering,
because it provides better estimates of the states of tleegso Learning with filtering may
fail to converge correctly; consider, for example, the peobof learning to solve murders—
hindsight isalwaysrequired to infer what happened at the murder scene.

Algorithms for the four inference tasks listed in the prangdparagraph can be de-
scribed first at a generic level, independent of the pa#idkihd of model employed. Further
improvements specific to each family of models will be ddssdliin the corresponding sec-
tions.

Filtering and prediction

Let us begin with filtering. We will show that this can be doneai simple online fashion:
given the result of filtering up to timg one can easily compute the result for 1 given the
new evidence, ;. That s,

P(X¢y1l€1:041) = f(€41,P(X¢|€1:4))

RECURSIVE for some functionf. This process is often calle@cursive estimation We can view the
calculation as actually being composed of two parts: fifst, durrent state distribution is
projected forward fromt to ¢ + 1, then it is updated using the new eviderge;. This
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two-part process emerges quite simply:
P(X¢t1l€r:e+1) = P(X¢t1]€1:, €41) dividing up the evidence
= aP(e.1|Xt1,€1:)P(Xr1/€1:4) using Bayes' rule
= aP(e.1|Xi+1)P(Xer1]e1¢) by the Markov property of evidence
The second ternP (X1 |e1.+) represents a one-step prediction of the next state, andshe fi
term updates this with the new evidence; notice B{@t1|X;1) is obtainable directly from

the sensor model. Now we obtain the one-step predictionhianext state by conditioning
on the current stat¥;:
P(X¢r1leri1) = aP(41Xe1) Y P(Xeg1[Xs, €1:0) P(Xe|€1:1)
Xt
= aP(e41|X¢41) Z P(X¢t1]X:) P(X¢|€1::) using the Markov property (15.4)
Xt

Within the summation, the first factor is simply the trarmitimodel, and the second is the
current state distribution. Hence, we have the desiredrseeuformulation. We can think
of the filtered estimat®(X;|e;.;) as a “messagef;.; that is propagated forward along the
sequence, modified by each transition and updated by eacblemwation. The process is

f1.4+1 = a« FORWARD(f1.;, €141)

where FORWARD implements the update described in Equation (15.4).

When all the state variables are discrete, the time for epdate is constant (indepen-
dent oft), and the space required is also constant. (The constapeéndeof course, on the
size of the state space and the specific type of the tempom@inroquestion.)The time and
space requirements for updating must be constant if an agightimited memory is to keep
track of the current state distribution over an unboundegussce of observations.

Let us illustrate the filtering process for two steps in theibambrella example (see
Figure 15.2). We assume that our security guard has some lpgleef as to whether it
rained on day O, just before the observation sequence bdgtis suppose this iB(Ry) =
(0.5,0.5). Now we process the two observations as follows:

e Onday 1, the umbrella appears,$p=true. The prediction fromt=0tot=1is
P(Ry) = Y P(Ri|ro)P(ro)
= (37,0.3) x 0.5 4 (0.3,0.7) x 0.5 = (0.5,0.5)
and updating with the evidence foe=1 gives
P(Ri|u1) = aP(ui|R1)P(R1) = «(0.9,0.2)(0.5,0.5)
= «(0.45,0.1) ~ (0.818,0.182)
e Onday 2, the umbrella appears, 9= true. The prediction front=1tot=2Iis
P(Rylu1) = > P(Ra|r1)P(ri|us)
T1

= (0.7,0.3) x 0.818 + (0.3,0.7) x 0.182 ~ (0.627,0.373)
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MIXING TIME

and updating with the evidence foe= 2 gives
P(R2|U1, Ug) = OéP(’U,2|R2)P(R2|U1) = O[(O.g, 02> (0627, 0373>
= «(0.565,0.075) =~ (0.883,0.117)

Intuitively, the probability of rain increases from day lday 2 because rain persists. Exer-
cise 15.2(a) asks you to investigate this tendency further.

The task ofprediction can simply be seen as filtering without the addition of new
evidence. In fact, the filtering process already incorgsat one-step prediction, and it is
easy to derive the following recursive computation for jictdg the state at + k£ + 1 from
a prediction fort + k:

P(Xetkr1lers) = Y PXeshs1[Xean) P(Xepr[€1) (15.5)
Xtk
Naturally, this computation involves only the transitiomael and not the sensor model.

It is interesting to consider what happens as we try to ptddither and further into
the future. As Exercise 15.2(b) shows, the predicted Bigfion for rain converges to a
fixed point (0.5,0.5), after which it remains constant for all time. This is tstationary
distribution of the Markov process defined by the transition model (see @dge 522). A
great deal is known about the properties of such distringtiand about theixing time—
roughly, the time taken to reach the fixed point. In practieains, this dooms to failure any
attempt to predict thactual state for a number of steps that is more than a small fracfion o
the mixing time. The more uncertainty there is in the tramsimodel, the shorter will be the
mixing time and the more the future is obscured.

In addition to filtering and prediction, we can also use a Bmdwecursion to compute
the thelikelihood of the evidence sequence, i.B(e;.;). This is a useful quantity if we want
to compare different possible temporal models that mighe moduced the same evidence
sequence; for example, in Section 15.6, we compare differerds that might have produced
the same sound sequence. For this recursion, we use adiédlimessagé,., = P(X;,e;.;).

It is a simple exercise to show that

£y.;+1 = FORWARD(#1.,€41) -
Having computed; .;, we obtain the actual likelihood by summing out
Ly = Plen) =Y Liy(x) - (15.6)
Xt

Smoothing

As we said earliersmoothingis the process of computing the distribution over past state
given evidence up to the present, that?€X|e;.;) for 1 < k < ¢ (see Figure 15.3). This is
done most conveniently in two parts—the evidence up &md the evidence frorh + 1 to ¢:
P(Xklert) = P(Xgl€rk, € y1:)
= aP(Xgle;.x)P(er+1.4|Xk, €1.) using Bayes’ rule
= aP(Xglep.x)P(ex+1:4/Xk) using conditional independence

= of kbt (15.7)
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Figure 15.3 Smoothing computeB(X;|e;.;), the posterior distribution of the state at
some past timé given a complete sequence of observations ftcint.

where we have defined a “backward” messhge;.; = P(ex11.¢|Xx), analogous to the for-
ward messagé,... The forward messagi., can be computed by filtering forward from
1 to k, as given by Equation (15.4). It turns out that the backwaessagey ., can be
computed by a recursive process that rbaskwardsrom ¢:
P(ekt1:4/Xk) = D P(8kr1:¢/Xp, Xe41)P(Xk41|Xx)  conditioning onX
Xk+1
= Z P(ek11.¢|Xk+1)P(Xx+1|Xx) by conditional independence
Xk+1

= > P(&k1: G2t [Xpr1)P(Xe41|X)

Xk+1
= Y P61 Xk+1) P(€po:tlXe1) P(Xeg 1| X1) (15.8)
Xk 41
where the last step follows by conditional independence, of ande, ., given Xy ;. Of
the three factors in this summation, the first and third ataiobd directly from the model,
and the second is the “recursive call.” Using the messagsiont we have

By 1.0 = BACKWARD (D 2.4, €4 2:1)

where BACKWARD implements the update described in Equation (15.8). Asthiétorward
recursion, the time and space required for each update astar, independent of

Given this derivation, we can now see that the two terms inaign (15.7) can both
be computed by recursions through time, one running fonfrard 1 to . using the filtering
equation (15.4) and the other running backward feaimk + 1 using Equation (15.8). Note
that the backward phase is initialized wih, ;.; = P(e,41./|X;) =1, wherel is a vector of
1s. (Why?)

Let us now illustrate this algorithm for the umbrella exaelpy computing the smoothed
estimate for the probability of rain at=1, given umbrella observations on day 1 and day 2.
From Equation (15.7), this is given by

P(R1|U,1,UQ) = OéP(U2|R1)P(R1|U,1) (159)

The second term we already know to @18, .182), from the forward filtering process de-
scribed earlier. The first term can be computed by applyiedotickward recursion in Equa-
tion (15.8):

P(ug|R1) = ) P(ua|ra) P( |r2)P(ra|Ry)
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= (0.9x1x(0.7,0.3)) + (0.2 x 1 x (0.3,0.7)) = (0.69,0.41)
Plugging this into Equation (15.9), we find that the smootbstimate for rain on day 1 is
P(R1|u1,u2) = a(0.69,0.41) x (0.818,0.182) =~ (0.883,0.117)

Thus, the smoothed estimatehigher than the filtered estimate (0.818) in this case. This is
because the umbrella on day 2 makes it more likely to havedaam day 2; in turn, because
rain tends to persist, this makes it more likely to have rioe day 1.

Both the forward and backward recursions take a constanuaiaf time per step,
hence the time complexity of smoothing with respect to ewaee, ., is O(t). This is the
complexity for smoothing at a particular time stepf we want to smooth the whole sequence
to get the correct posterior estimate of what actually hapgeone obvious method is simply
to run the whole smoothing process once for each time step trtmothed. This results in
a time complexity ofO(#2). A better approach uses a very simple application of dynamic
programming to reduce this t(¢). A clue appears in the preceding analysis of the umbrella
example, where we were able to reuse the results of the fdrieering phase. The key to
the linear-time algorithm is teecord the result®f forward filtering over the whole sequence.
Then we run the backward recursion fragndown to 1, computing the smoothed estimate
at each step from the computed backward messdyge ., and the stored forward message
f1.x. The algorithm, aptly called therward—backward algorithm , is shown in Figure 15.4.

The alert reader will have spotted that the Bayesian netwoticture shown in Fig-
ure 15.3 is goolytree in the terminology of Chapter 14. This means that a straogieird
application of the clustering algorithm also yields a linBme algorithm that computes
smoothed estimates for the entire sequence. One can shothéhorward—backward al-
gorithm is in fact a special case of the polytree propagagigorithm used with clustering
methods.

The forward—backward algorithm forms the backbone of thematational methods
used in many applications that deal with sequences of ndisgrgations, ranging from
speech recognition to radar tracking of aircraft. As déwadj it has two practical draw-
backs. The first is that its space complexity can be too higlapplications where the state
space is large and the sequences are long. ItQ$g§) space wheréf| is the size of the
representation of the forward message. The space requitexae be reduced tO(|f| log t)
with a concomitant increase in the time complexity by a facfolog ¢, as shown in Exer-
cise 15.3. In some cases (see Section 15.3), a consta-glgaeithm can be used with no
time penalty.

The second drawback of the basic algorithm is that it need$ifroation to work in an
online setting where smoothed estimates must be computed foeetamie slices as new ob-
servations are continuously added to the end of the sequ&heanost common requirement
EnEOLAC S is for fixed-lag smoothing which requires computing the smoothed estinfat¥; ,|e;.;)

for fixedd. That is, smoothing is done for the time sli¢steps behind the current tinhgast
increases, the smoothing has to keep up. Obviously, we cetheuforward—backward algo-
rithm over thed-step “window” as each new observation is added, but thisxseeefficient.

In Section 15.3, we will see that fixed-lag smoothing canpime cases, be done in constant
time per update, independent of the tag

FORWARD-
BACKWARD
ALGORITHM
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function FORWARD-BACKWARD (ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for stelps. ., ¢
prior, the prior distribution on the initial stat®(X)
local variables fv, a vector of forward messages for stéps. ., ¢
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for stéps ., ¢

fv[0] < prior
fori= 1totdo
fv[i] < FORWARD(fv[i — 1], eVi])
for i = ¢ downto 1 do
sVji] <~ NORMALIZE (fv[i] x b)
b <~ BACKWARD (b, eV[i])
return sv

Figure 15.4 The forward—backward algorithm for computing posteriookbilities of
a sequence of states given a sequence of observations. Gk@ARD and BACKWARD
operators are defined by Equations (15.4) and (15.8) ragplyct

Finding the most likely sequence

Suppose thdtrue, true, false, true, true] is the umbrella sequence for the security guard’s
first five days on the job. What is the most likely weather segaehat explains this? Does
the absence of the umbrella on day 3 mean that it wasn’t girundid the director forget
to bring it? If it didn’t rain on day 3, perhaps (because weatiends to persist) it didn’t
rain on day 4 either, but the director brought the umbrel&t jn case. In all, there ar®’
possible weather sequences we could pick. Is there a waydtthienmost likely one, short of
enumerating all of them?

One approach we could try is the following linear-time pihaoe: use the smoothing
algorithm to find the posterior distribution for the weatla¢reach time step, then construct
the sequence using the most likely weather at each stepdiiegdp the posterior. Such an
approach should set off alarm bells in the reader’'s headusecthe posteriors computed by
smoothing are distributions oveimgletime steps, whereas to find the most likegguence
we must considejoint probabilities over all the time steps. The results may in fecquite
different (see Exercise 15.4).

Thereis a linear-time algorithm for finding the most likely sequenbat it requires a
little more thought. It relies on the same Markov properittyielded efficient algorithms for
filtering and smoothing. The easiest way to think about tiedlem is to view each sequence
as apath through a graph whose nodes are the possitdéesat each time step. Such a
graph is shown for the umbrella world in Figure 15.5(a). Namsider the task of finding
the most likely path through this graph, where the likelithasd any path is the product of
the transition probabilities along the path and the prdliegs of the given observations at
each state. Let’s focus in particular on paths that reaclstdite Rains = true. Because of
the Markov property, we can make the following simple obaton: the most likely path
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to the stateRains = true consists of the most likely path sbmestate at time 4 followed
by a transition toRains; = true; and the state at time 4 that will become part of the path to

Iﬁ Rains = true is whichever maximizes the likelihood of that path. In otterds, there is a
recursive relationship between most likely paths to eaatest ; and most likely paths to
each statex;. We can write this relationship as an equation connectingptbbabilities of
the paths:

){nax P(Xl, ey X Xt+1|e1;t+1)
1...X¢

= Ple1[Xis1) max (P(xt+1 X) max P(Xi,... X1, xt|eu)> (15.10)
Equation (15.10) isdenticalto the filtering equation (15.4) except that
1. the forward messade.; = P(X;|e;.;) is replaced by the message

My = max P(Xqy,...,X—1, X¢|€1:),
X1...X¢g—1

that is, the probabilities of the most likely path to eachestg and

2. the summation ovex; in Equation (15.4) is replaced by the maximization oxgm
Equation (15.10).

Thus, the algorithm for computing the most likely sequersceery similar to filtering: it
runs forward along the sequence, computingrthenessage at each time step using Equa-
tion (15.10). The progress of this computation is shown guFé 15.5(b). At the end, it will
have the probability for the most likely sequence reacl@aghof the final states. One can
thus easily select the most likely sequence overall (thie statlined in bold). In order to
identify the actual sequence, as opposed to just compusmyabability, the algorithm will
also need to keep pointers from each state back to the bésttista leads to it (shown in
bold); the sequence is identified by following the pointemskfrom the best final state.

VITERBI ALGORITHM The algorithm we have just described is called¥iterbi algorithm , after its inventor.
Like the filtering algorithm, its complexity is linear if) the length of the sequence. Un-
like filtering, however, its space requirement is also Imi@at. This is because the Viterbi
algorithm needs to keep the pointers that identify the bepisnce leading to each state.

15.3 HDDEN MARKOV MODELS

The preceding section developed algorithms for tempordiaduilistic reasoning using a very
general framework, independent of the specific form of thadition and sensor models. In
this and the following two sections, we discuss more corcnebdels and applications that
illustrate the power of the basic algorithms and in somesalew further improvements.
HIDDEN MARKOV We begin with thénridden Markov model or HMM . An HMM is a temporal probabilis-
tic model in which the state of the process is described fingle discreterandom variable.
The possible values of the variable are the possible sthths world. The umbrella example
described in the preceding section is therefore an HMM gsihhas just one state variable,
Rain,. Additional state variables can be added to a temporal melig staying within the
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Rain; Rain, Raing Rain, Raing
true true true true true
false false false false false
Umbrella, true true false true true
.8182 l 5155 = .0361 .0334 f=—m1 .0210
(b) <
.1818 .0491 1237 i 0173 i .0024
My LLET M3 My Mys

Figure 15.5 (a) Possible state sequences Iin; can be viewed as paths through &
graph of the possible states at each time step. (States@sm stsing square nodes to avoid
confusion with nodes in a Bayesian network.) (b) Operatibthe Viterbi algorithm for
the umbrella observation sequerteue, true, false, true, true]. For each time step we
have shown the values of the messamgeg which gives the probability of the best sequence
reaching each state at timeAlso, for each state, the bold arrow leading into it indésaits
best predecessor. Following the bold arrows back from thet likely state inm; .5 gives the
most likely sequence.

HMM framework, but only by combining all the state variablet a single “megavariable”
whose values are all possible tuples of values of the indalidtate variables. HMMs usually
have a single, discrete evidence variable as well, but éisigiction is less important. We will
see that the restricted structure of HMMs allows for a vemye and elegant matrix imple-
mentation of all the basic algorithmisSection 15.6 shows how HMMs are used for speech
recognition.

Simplified matrix algorithms

With a single, discrete state variahle, we can give concrete form to the representations
of the transition model, the sensor model, and the forwaddbmtkward messages. Let the
state variableX; have values denoted by integérs. . , S, whereS is the number of possible
states. The transition mode(X;|X;_ ;) becomes ai$ x S matrix T, where

TZ] = P(Xt :.7|Xt—1 :Z)

That is,T;; is the probability of a transition from statéo statej. For example, the transition
matrix for the umbrella world is

0.7 0.3
T =P(Xy|X¢1) = (0 30 7)

We also put the sensor model in matrix form. In this case, mx#he value of the evidence
variable E; is known to bee; (say), we need only use that part of the model specifying the

3 For this reason, the reader unfamiliar with basic operatiom vectors and matrices might wish to consult
Appendix A before continuing.
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probability thate; appears. For each time stepwe construct a diagonal matr@®; whose
diagonal entries are given by the valuBg¢e;| X; =4) and whose other entries are 0. For
example, on day 1 in the umbrella world, = true, so from the table in Figure 15.2 we have

0.9 0
Ol_( 0 0.2)

Now, if we use column vectors to represent the forward an#ward messages, the compu-
tations become simple matrix—vector operations. The faheguation (15.4) becomes

fliusr = aOp T iy (15.11)
and the backward equation (15.8) becomes
Bry1:6 = TOk1 10k 2. (15.12)

From these equations, we can see that the time complexityeoforward—backward algo-
rithm (Figure 15.4) applied to a sequence of length O(S?t), as each step requires mul-
tiplying an S-element vector by a§ x S matrix. The space requirement(¥St), because
the forward pass storéssectors of size5.

Besides providing an elegant description and implementat the filtering and smooth-
ing algorithms for HMMs, the matrix formulation also reveapportunities for improved
algorithms. The first is a simple variation on the forwardsKveard algorithm that allows
smoothing to be carried out usignstantspace, independent of the length of the sequence.
The idea is that smoothing for any particular time skceequires the simultaneous presence
of both the forward and backward messadeg, andby1.;, according to Equation (15.7).
The forward—backward algorithm achieves this by storirgfthcomputed on the forward
pass so that they are available during the backward pasghé@meay to achieve this is with
a single pass that propagates bb#ndb in the same direction. For example, the “forward”
messagé can be propagated backwards if we manipulate Equation Y15olwork in the
other direction:

fr.e = o (T1) 'O5 Fres
The modified smoothing algorithm works by first running thenskard forward pass to com-
putef;.; (forgetting all the intermediate results), then running backward pass for both
andf together, using them to compute the smoothed estimate htsteg. Since only one
copy of each message is needed, the storage requiremetinatant (independent 6fthe
length of the sequence). There is, of course, one signifiegttiction on this algorithm: it
requires that the transition matrix be invertible and thatdensor model have no zeroes—that
is, every observation is possible in every state.

A second area where the matrix formulation reveals an ingr@nt is ironlinesmooth-
ing with a fixed lag. The fact that smoothing can be done withstant space suggests that
there should exist an efficient recursive algorithm for malsmoothing—that is, one whose
time complexity is independent of the length of the lag. Lesuppose that the lagds—that
is, we are smoothing at time sli¢e- d where the current time is By Equation (15.7), we
need to compute

afyabi—ai1:
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for slicet — d. Then, when a new observation arrives, we need to compute

afl:t—d-i—l bt—d+2:t+1
for slicet —d + 1. How can this be done incrementally? First, we can comfyyte;; from
f1.4_q4 using the standard filtering process, Equation (15.4).

Computing the backward message incrementally is moreytribgcause there is no sim-
ple relationship between the old backward messageg, ;.; and the new backward message
D;—_gt2:4+1. INstead, we will examine the relationship between the @ldkivard message

b; 4.1 and the backward message at the front of the sequépcg;. To do this, we apply
Equation (15.12) times:

t
bt dr1:0 = [T TOi) birie =Bigi1al (15.13)
i=t—d+1

where the matrixB; 4. is the product of the sequence Dfand O matrices. B can be
thought of as a “transformation operator” that transformater backward message into an
earlier one. A similar equation holds for the new backwargdsagesfter the next observa-

tion arrives:
41
by dro:r1 = II TOi) brrart =B grael (15.14)
i=t d+2

Examining the product expressions in Equations (15.13Y4bd 4), we see that they have a
simple relationship: to get the second product, “divideg finst product by the first element
TO,; 411 and multiply by the new last elememO, ;. In matrix language, then, there is a
simple relationship between the old and rdéwnatrices:

B di2:1 = O 1 T "Bt at1:4TOs 41 (15.15)

This equation provides an incremental update forBhmatrix, which in turn (through Equa-
tion (15.14)) allows us to compute the new backward message, ».;1. The complete
algorithm, which requires storing and updatingndB, is shown in Figure 15.6.

15.4 KALMAN FILTERS

Imagine watching a small bird flying through dense jungleafgg¢ at dusk: you glimpse
brief, intermittent flashes of motion; you try hard to gues$sve the bird is and where it will
appear next so that you don't lose it. Or imagine you are a \Widlar operator peering
at a faint, wandering blip that appears once every ten sacondthe screen. Or, going
back further still, imagine you are Kepler trying to recouost the motions of the planets
from a collection of highly inaccurate angular observaditetken at irregular and imprecisely
measured time intervals. In all these cases, you are trgiegtimate the state (position and
velocity, for example) of a physical system from noisy ola@ons over time. The problem
can be formulated as inference in a temporal probability ehasthere the transition model
describes the physics of motion and the sensor model descifiite measurement process.
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KALMAN FILTERING

function FIXED-LAG-SMOOTHING(e;, hmmd) returns a probability distribution oveX; 4
inputs: e, the current evidence for time step
hmm a hidden Markov model witl§ x S transition matrixT
d, the length of the lag for smoothing
static: t, the current time, initially 1
f, a probability distribution, the forward messa@EX;|e; .+), initially PRIOR[hmnj
B, thed-step backward transformation matrix, initially the idgnmatrix
es_q:¢, double-ended list of evidence from- d to ¢, initially empty
local variables O;_4, O, diagonal matrices containing the sensor model informatio

adde; to the end ok;_ 4.
O, « diagonal matrix containing(e;| X;)
if £ > dthen
f < FORWARD(f, e;)
removee;_ 4 from the beginning oé;_ ;.
O,_q < diagonal matrix containing(e:—q| X¢—q)
B+ O, ', T"'BTO;
else B« BTO;
t—t+1
if t > d then return NORMALIZE(f x B1) else returnnull

Figure 15.6  An algorithm for smoothing with a fixed time lag dfsteps, implemented as
an online algorithm that outputs the new smoothed estimatmdhe observation for a new
time step.

This section describes the special representations aateimfe algorithms that have been
developed to solve these sorts of problems; the method wealestribe is calledalman
filtering after its inventor.

Clearly, we will need severabntinuousvariables to specify the state of the system. For
example, the bird’s flight might be specified by position, Y, Z) and velocity(X,Y, Z) at
each point in time. We will also need suitable conditionahgiges to represent the transi-
tion and sensor models; as in Chapter 14, we will lirsear Gaussiandistributions. This
means that the next stakg ; must be a linear function of the current statg plus some
Gaussian noise. This turns out to be quite reasonable itigga€onsider, for example, the
X—coordinate of the bird, ignoring the other coordinatesrfow. Let the interval between
observations bé\, and let us assume constant velocity; then the positiontapsl@iven by

Xt+A - Xt + AX

If we add Gaussian noise to account for variation in veloaitg so on, then we have a linear
Gaussian transition model:

P(Xt—l—A :$t+A|Xt :xt,Xt :xt) = N(wt + A.Z.'t,O')(.Z'H_A)

The Bayesian network structure for a system with posi¥grand velocityX, is shown in
Figure 15.7. Note that this is a very specific form of lineau&aan model; the general form
will be described later in this section, and covers a vastyaof applications beyond the sim-
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MULTIVARIATE
GAUSSIAN

ple motion examples of the first paragraph. The reader may wisonsult Appendix A for
some of the mathematical properties of Gaussian distabstifor our immediate purposes,
the most important is that multivariate Gaussian distribution ford variables is specified
by ad-element meap and ad x d covariance matrix:.

—_—

T~

& &

Figure 15.7  Bayesian network structure for a linear dynamical systeth wositionX;,
velocity X;, and position measurement.

v

Updating Gaussian distributions

We alluded in Chapter 14 to a key property of the linear Gas&imily of distributions: it
remains closed under the standard Bayesian network opesatHere, we make this claim
precise in the context of filtering in a temporal probabilitydel. The required properties
correspond to the two-step filtering calculation in Equaiip5.4):

1. If the current distributiorP(X;|e;.;) is Gaussian and the transition mo&@¢K,1|x;) is
linear Gaussian, then the one-step predicted distribugfiven by

PXerilerd) = | P(Xealx) Plxlen) dx (15.16)
Xt

is also a Gaussian distribution.

2. Ifthe predicted distributio (X1 |e;.¢) is Gaussian and the sensor moeled; 1 [X;1)
is linear Gaussian, then, after conditioning on the neweswid, the updated distribution

P(X¢y1l€1:441) = aP(€y1|Xi11)P(Xiy1l€120) (15.17)
is also a Gaussian distribution.

Thus, the BRWARD operator for Kalman filtering takes a Gaussian forward nogeség;,
specified by a meap, and covariance matriX;, and produces a new multivariate Gaussian
forward messagé, .., specified by a meap,,, and covariance matri¥; . So, if we
start with a Gaussian pridi.o = P(Xo) = N (pg, Xo), filtering with a linear Gaussian model
produces a Gaussian state distribution for all time.

This seems to be a nice, elegant result, but why is it so impti?t The reason is that,
except for a few special cases such as tiiltering with continuous or hybrid (discrete and
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continuous) networks generates state distributions wheygesentation grows without bound
over time. This is not easy to prove in general, but Exercise 15.5 shoat Wappens for a
simple example.

A simple, one-dimensional example

We have said that thedRwWARD operator for the Kalman filter maps a Gaussian into a new
Gaussian. This translates into computing a new mean andiaoga matrix from the previ-
ous mean and covariance matrix. Deriving the update rulbargeneral (multivariate) case
requires rather a lot of linear algebra, so will stick to apsmple, univariate case for now;
later we will give the results for the general case. Evenlierunivariate case, the calcula-
tions are somewhat tedious, but we feel they are worth sdmnguse the usefulness of the
Kalman filter is tied so intimately to the mathematical pndigs of Gaussian distributions.
RANDOM WALK The temporal model we will consider describesmadom walk of a single continuous
state variableX; with a noisy observatior¥;. An example might be the “consumer confi-
dence” index, which can be modelled as undergoing a rand@us$an-distributed change
each month and is measured by a random consumer survey sbainabduces Gaussian
sampling noise. The prior distribution is assumed to be answith variancer3:
1 [ o—pg)?
P(xy) = ae 2( 75 )
(For simplicity, we will use the same symbelfor all normalizing constants in this section.)
The transition model simply adds a Gaussian perturbatioooaftant variance? to the
current state:

_;(M)
P(ziq1]wy) = ae ? o3

and the sensor model assumes Gaussian noise with vatidance

,% ((%—;02)
P(z|zy) = ce 7z

Now, given the prioP(X,), we can compute the one-step predicted distribution usqm@E
tion (15.16):

o0 00 _;((‘fl*?o)z) _%((Io*go)z)
P(z1) = / P(z1]zo) P(z0) dzo = a/ e 2\ i Je 6 /) dxy
— 00

— 00

. l(vg(w1—ﬂﬁo)2+<7%($0—#0)2
(&

= a/ ’ 7074 )dmo
—0o0

This integral looks rather hairy. The key to progress is tiiceathat the exponent is the sum

of two expressions that aguadraticin xy, and hence is itself a quadraticig. A simple
SOURLETNGTHE — trick known ascompleting the squareallows the rewriting of anyr)quadratimﬁ +bxg +c

as the sum of a squared terrfiy — 5—”)2 and a residual term — Z_a that is independent of

a

xo. The residual term can be taken outside the integral, giveg

2

1.0 00 _
P(z1) = e 2( 4a)/ e 3 (0@0=30)%) dzo

—0o0
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Now the integral is just the integral of a Gaussian over ilséunge, which is simply 1. Thus,
we are left with just the residual term from the quadratic.

The second key step is to notice that the residual term has soduadratic incy; in
fact, after simplification, we obtain

_1 ((fl;ﬁtogz)
P(z) =ae *\ “otos
That s, the one-step predicted distribution is a Gaussitintthe same meagm, and a variance
equal to the sum of the original varianeg and the transition variance?. A momentary
exercise of intuition reveals that this is intuitively reaable.

To complete the update step, we need to condition on the \@ig®r at the first time
step, namely;. From Equation (15.17), this is given by

P(zi|z1) = aP(z|z1)P(z1)

_1fGime?) 1 lei=sg)®
= ae \ 7 Je P\ cgtei

Once again, we combine the exponents and complete the dhemeise 15.6), obtaining
(o3 +od)zitoZug
1 o'g+a'%+o'§
2 (03+o’%)0’%/(0’3+0’%+0’%)

P(z1|z1) = e (15.18)

Thus, after one update cycle, we have a new Gaussian digtridfor the state variable.
From the Gaussian formula in Equation (15.18), we can sdetlbanew mean and
standard deviation can be calculated from the old mean andatd deviation as follows:

)2

(z1

(07 +02)ze+1+02 e

/’Lt+1 - 0’2+0'2+0'2

t T z
2 _ (0f+03)a? (15.19)
1 T 7o+

Figure 15.8 shows one update cycle for particular valuelefransition and sensor models.

The preceding pair of equations plays exactly the same e general filtering
equation (15.4) or the HMM filtering equation (15.11). Besmawf the special nature of
Gaussian distributions, however, the equations have sotagesting additional properties.
First, we can interpret the calculation for the new mgan, as simply aveighted meaiof
the new observatiog,, ; and the old meap;. If the observation is unreliable, thed is large
and we pay more attention to the old mean; if the old mean isliable ¢ is large) or the
process is highly unpredictable is large), then we pay more attention to the observation.
Second, notice that the update for the variangg is independent of the observatiolVe
can therefore compute in advance what the sequence of ganatues will be. Third, the
sequence of variance values quickly converges to a fixee\thlat depends only am? and
o2, thereby substantially simplifying the subsequent calboihs (see Exercise 15.7).

The general case

The preceding derivation, painful as it was, illustrates kiey property of Gaussian distri-
butions that allows Kalman filtering to work: the fact tha¢ texponent is a quadratic form.
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KALMAN GAIN
MATRIX

045 T T T T T T T
04 r it -
0.35 F - s
C P(x1|z1=2.5
0.3 PiL] )
8 0.25 .
a 0.2 | .
0.15 .
0.1 .
0.05 .
0 s I I
-8 -6 6 8
X position
Figure 15.8 Stages in the Kalman filter update cycle for a random walk @ithior given
by po = 0.0 andoy = 1.0, transition noise given by, = 2.0, sensor noise given by, =1.0,
and a first observation, = 2.5. Notice how the predictio’(z, ) is flattened out, relative to
P(z), by the transition noise. Notice also that the mean of thégpios P(x, |z;) is slightly
to the left of the observation, because the mean is a weighted average of the prediction and
the observation.

This is true not just for the univariate case. The full matiate Gaussian distribution has the
form
—1

N £)(x) = e * (-7 )

Multiplying out the terms in the exponent, it is clear that #xponent is also a quadratic func-
tion of the random variables; in x. As in the univariate case, the filtering update preserves
the Gaussian nature of the state distribution.

Let us first define the general temporal model used with Kalfiftening. Both the tran-
sition model and the sensor model allow folireear transformation with additive Gaussian
noise. Thus, we have

P(Xe1|xe) = N(FXe, By ) (Xe41)
P(zi|x;) = N(Hx¢, 3.)(z)
whereF and X, are matrices describing the linear transition model anaktt@n noise co-
variance, andd andX, are the corresponding matrices for the sensor model. Nowptate
equations for the mean and covariance, in their full, haowyibleness, are as follows:

(15.20)

Ht-l—l = Fﬂt + Kt+1 (Zt+1 B HFI"’t) 15.21
i1 = (I =K (FEFT +3,) (15.21)

whereK, ;= (FZ,F" + Z,)HT(H(FZ,FT + 2,) + X,)~! is called theKalman gain
matrix . Believe it or not, these equations make some intuitiveeseRer example, consider
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the update for the mean state estimateThe termFy, is the predictedstate att + 1, so
HF p, is thepredictedobservation. Therefore the terzp,; — HF u, represents the error in
the predicted observation. This is multiplied Ky, ; to correct the predicted state; therefore
K41 is a measure diiow seriously to take the new observatrefative to the prediction. As
in Equation (15.19), we also have the property that the magaipdate is independent of the
observations. The sequence of valuesdgrandK; can therefore be computed offline, and
the actual calculations required during online tracking guite modest.

To illustrate these equations at work, we have applied tleethe problem of tracking
an object moving on th&(—Y" plane. The state variables aXe= (X, Y, X, Y)T soF, X,

H, andX, are4 x 4 matrices. Figure 15.9(a) shows the true trajectory, a serienoisy
observations, and the trajectory estimated by Kalman ifiggeralong with the covariances
indicated by the one-standard-deviation contours. Therifily process does a reasonably
good job of tracking the actual motion, and, as expectedvdhiance quickly reaches a fixed
point.

As one might expect, one can also derive equationsiimoothingas well as filtering
with linear Gaussian models. The smoothing results are slimWwigure 15.9(b). Notice how
the variance in the position estimate is sharply reducecgmxat the ends of the trajectory
(why?); and that the estimated trajectory is much smoother.

2D filtering 2D smoothing

—8—  true —8—  true
* observed * observed
1r % filtered L x smoothed

rasd

(@) (b)

Figure 15.9 (a) Results of Kalman filtering for an object moving on the-Y plane,
showing the true trajectory (left-to-right), a series ofsyoobservations, and the trajectory
estimated by Kalman filtering. (b) The results of Kalman sthow for the same observation
sequence.

Applicability of Kalman filtering

The Kalman filter and its elaborations are used in a vast afrapplications. The “classical’
application is in radar tracking of aircraft and missileglded applications include acoustic
tracking of submarines and ground vehicles and visual iingokf vehicles and people. In a
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EXTENDED KALMAN
FILTER

slightly more esoteric vein, Kalman filters are used to retwct particle trajectories from
bubble chamber photographs and ocean currents from tatliiface measurements. The
range of application is much larger than just the trackingofion: any system characterized
by continuous state variables and noisy measurements avillSiich systems include pulp
mills, chemical plants, nuclear reactors, plant ecosystemd national economies.

The fact that Kalman filtering can be applied to a system da¢snean that the re-
sults will be valid or useful. The assumptions made—lineausian transition and sensor
models—are very strong. Thextended Kalman filter or EKF attempts to overcome non-
linearities in the system being modelled. A system is ne@imf the transition model cannot
be described as a matrix multiplication of the state veesin Equation (15.20). The EKF
works by modelling the system &xcally linear inx; in the region o, = u,, the mean of the
current state distribution. This works well for smooth, lBhaved systems, and allows the
tracker to maintain and update a Gaussian state distribthiat is a reasonable approximation
to the true posterior.

What does it mean for a system to be “unsmooth” or “poorly ketle? Technically,
this means that there is significant nonlinearity in systesponse within the region that
is “close” (according to the covarianc,) to the current meap,. To understand this in
nontechnical terms, consider the example of trying to tradkird as it flies through the
jungle. The bird appears to be heading at high speed strigighttree-trunk. The Kalman
filter, whether regular or extended, can only make a Gaugsetiction of the location of the
bird, and the mean of this Gaussian will be centered on timktias shown in Figure 15.10(a).
A reasonable model of the bird, on the other hand, would ptexiasive action to one side
or the other, resulting in the prediction shown in FigurelDgb). Such a model is highly
nonlinear because the bird’s decision varies sharply d#pgron its precise location relative
to the trunk.

(@) (b)

Figure 15.10 A bird flying toward a tree (top views). (a) A Kalman filter wigkedict the
location of the bird using a single Gaussian centered on lis¢éaole. (b) A more realistic
model allows for the bird’s evasive action, predicting tiatill fly to one side or the other.
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In order to handle such examples, we clearly heed a more ssipedlanguage for rep-
resenting the behavior of the system being modelled. Witiencontrol theory community,
where problems such as evasive maneuvering by aircraé ttaéssame kinds of difficulties,

BMICHINGKALMAN - the standard solution is trsvitching Kalman filter . In this approach, multiple Kalman fil-
ters run in parallel, each using a different model of theesyst-for example, one for straight
flight, one for sharp left turns, one for sharp right turns. Aighted sum of predictions is
used, where the weight depends on how well each filter fitstheiot data. We will see in
the next section that this is simply a special case of thergédgnamic Bayesian network
model, obtained in this case by adding a discrete “maneustaté variable to the network
shown in Figure 15.7. Switching Kalman filters are discudseither in Exercise 15.5.

15.5 DvNAMIC BAYESIAN NETWORKS

RAMCSAESAN - A dynamic Bayesian networkor DBN is a Bayesian network that represents a temporal
probability model of the kind described in Section 15.1. Vegéhalready seen examples of
DBNs: the umbrella network in Figure 15.2 and the Kalmanrfiftetwork in Figure 15.7.
In general, each slice of a DBN can have any number of staiabkas X, and evidence
variablesk;. For simplicity, we will assume that the variables and thieiks are exactly
replicated from slice to slice, and that the DBN represerfissaorder Markov process, so
that each variable can have parents only in its own sliceeimimediately preceding slice.

It should be clear that every hidden Markov model can be ssmted as a DBN with
a single state variable and a single evidence variable. dlis the case that every discrete-
variable DBN can be represented as an HMM: as explained itdBel5.3, we can combine
all the state variables in the DBN into a single state vaeiabhose values are all possible
tuples of values of the individual state variables. Now ggvHMM is a DBN and every DBN

I@: can be translated into an HMM, what'’s the difference? Thiexifice is that)y decomposing
the state of a complex system into its constituent variabihesDBN is able to take advantage
of sparsenesi the temporal probability model. Suppose, for example, that a DBN has
20 Boolean state variables, each of which has three paretitg ipreceding slice. Then the
DBN transition model hag0 x 22 = 160 probabilities, whereas the corresponding HMM has
220 states and therefo2!?, or roughly a trillion, probabilities in the transition mixt This
bad for at least two reasons: first, the HMM itself requirescmmore space; second, the
huge transition matrix makes HMM inference much more expensnd third, the problem
of learning such a huge number of parameters makes the puid kigdel unsuitable for
large problems. The relationship between DBNs and HMMs igjinty analogous to the
relationship between ordinary Bayesian networks and diblitated joint distributions.

We have already explained that every Kalman filter model candpresented in a
DBN with continuous variables and linear Gaussian conaitiaistributions (Figure 15.7).
It should be clear from the discussion at the end of the piegeskction thahotevery DBN
can be represented by a Kalman filter model. In a Kalman fthiercurrent state distribution
is always a single multivariate Gaussian distribution—tiBaa single “bump” in a particular
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Figure 15.11 (a) Specification of the prior, transition model, and sensodel for the
umbrella DBN. All subsequent slices are assumed to be copiie 1. (b) A simple DBN
for robot motion in the X-Y plane.
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location. DBNSs, on the other hand, can handle arbitraryitigions. For many real-world
applications, this flexibility is essential. Consider, xample, the current location of my
keys. They might be in my pocket, on the bedside table, onitbbdn counter, or dangling
from the front door. A single Gaussian bump that includedrake places would have to
allocate significant probability to the keys being in midaithe front hall. Aspects of the
real world such as purposive agents, obstacles, and pockeiduce “nonlinearities” and
“discontinuities” that necessitate complex combinatiohdiscrete and continuous variables
in order to get reasonable models.

Constructing DBNs

To construct a DBN, one must specify three kinds of infororatithe prior distribution over
the state variable®)(Xy); the transition moddP(X;;|X;); and the sensor modBYE;|X;).

To specify the transition and sensor models, one must akscifgghe topology of the con-
nections between successive slices and between the stiégidance variables. Because the
transition and sensor models are assumed to be stationay-thie same for atl—it is most
convenient simply to specify them for the first slice. Forrapée, the complete DBN speci-
fication for the umbrella world is given by the three-nodenmk shown in Figure 15.11(a).
From this specification, the complete (semi-infinite) DBM ¢Be constructed as needed by
copying the first slice.

Let us now consider a more interesting example: monitoribgtsery-powered robot
moving in the X-Y plane, as introduced in Section 15.1. Fivg¢ need state variables,
which will include bothX, = (X;,Y;) for position andX; = (X;,Y;) for velocity. We will
assume some method of measuring position—perhaps a fixet@amonboard GPS (Global
Positioning System)—yielding measuremenis The position at the next time step depends
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on the current position and velocity, as in the standard lKalffiiter model. The velocity at
the next step depends on the current velocity and the st#te diattery. We ad@attery; to
represent the actual battery charge level, which has asfgate previous battery level and
the velocity, and we ad@ M eter;, which measures the battery charge level. This gives us
the basic model shown in Figure 15.11(b).

It is worth looking in more depth at the nature of the sensodehdor B M eter;. Let
us suppose, for simplicity, that botBattery; and B M eter; can take on discrete values 0
through 5—rather like the battery meter on a typical laptomputer. If the meter is always
accurate, then the CPH(B M eter;|Battery;) should have probabilities of 1.0 “along the
diagonal” and probabilities of 0.0 elsewhere. In realityjse always creeps into measure-
ments. For continuous measurements, a Gaussian distnbutih a small variance might be
used instead.For our discrete variables, we can approximate a Gaussiag aslistribution
in which the probability of error drops off in the appropéaway, so that the probability of

CASSIANERROR g |arge error is very small. We will use the tex@aussian error modelto cover both the
continuous and discrete versions.

Anyone with hands-on experience of robotics, computerjz@tess control, or other
forms of automatic sensing will readily testify to the faaat small amounts of measurement
noise are often the least of one’s problems. Real serabrsWhen a sensor fails, it does
not necessarily send a signal saying, “Oh, by the way, the Kat about to send you is a
load of nonsense.” Instead, it simply sends the nonsense. sifilplest kind of failure is

TransienTraLure — called atransient failure, where the sensor occasionally decides to send some nengeans
example, the battery level sensor might have a habit of egralzero when someone bumps
the robot, even if the battery is fully charged.

Let's see what happens when a transient failure occurs wilaassian error model
that doesn’t accommodate such failures. Suppose, for dearti@at the robot is sitting
quietly and observes twenty consecutive battery readifd@s dhen the battery meter has
a temporary seizure and the next readingBi&/ eters; =0. What will the simple Gaus-
sian error model lead us to believe abddttery-;? According to Bayes’ rule, the an-
swer depends on both the sensor madeB M etery; =0|Batterys;) and the prediction
P(Batterys1|BMeter;.29). |If the probability of a large sensor error is significantgss
likely than the probability of a transition tBatterys; =0, even if the latter is very unlikely,
then the posterior distribution will assign high probailio the battery being empty. A sec-
ond reading of zero at= 22 will make this conclusion almost certain. If the transieaitufre
then disappears and the reading returns to 5 fren23 onwards, the estimate for the battery
level will quickly return to 5, as if by magic. This course ofeats is illustrated in the up-
per curve of Figure 15.12(a), which shows the expected \a@lluguttery; over time using a
discrete Gaussian error model.

Despite the recovery, there is a time=22) when the robot is convinced its battery
is empty; presumably, then, it should send out a mayday kmmé& shut down. Alas, its
oversimplified sensor model has led it astray. How can thifixeel? Consider a familiar

4 Strictly speaking, a Gaussian distribution is problembécause it assigns nonzero probability to large nega-
tive charge levels. Thieeta distribution is sometimes a better choice for a variable whose rangetiictes.

(© 2002 by Russell and Norvig. DRAFT---DO NOT DI STRI BUTE



Section 15.5. Dynamic Bayesian Networks 567

example from everyday human driving: on sharp curves opdigs, one’s “fuel tank empty”

warning light sometimes turns on. Rather than looking ferémergency phone, one simply

recalls that the fuel gauge sometimes gives a very large wiren the fuel is sloshing around
I@: in the tank. The moral of the story is the followinigx order for the system to handle sensor

failure properly, the sensor model must include the pobsitaf failure.

The simplest kind of failure model for a sensor allows a d@ergobability that the
sensor will return some completely incorrect value, relgasiof the true state of the world.
For example, if the battery meter fails by returning 0, welmgpy that

P(BMeter; =0|Battery; =5) = 0.03

which is presumably much larger than the probability assigioy the simple Gaussian error

TISENTRALURE - model. Let's call this thdransient failure model. How does it help when we are faced
with a reading of 0? Provided that tipeedictedprobability of an empty battery, according
to the readings so far, is much less than 0.03, then the bpkiration of the observation
BMetery; =0 is that the sensor has temporarily failed. Intuitively, wan dhink of the
belief about the battery level as having a certain amountraftia” that helps to overcome
temporary blips in the meter reading. The upper curve in feidib.12(b) shows that the
transient failure model can handle transient failures eutta catastrophic change in beliefs.

So much for temporary blips. What about a persistent seadlard? Sadly, failures of
this kind are all too common. If the sensor returns 20 readofd followed by 20 readings
of 0, then the transient sensor failure model describeddrptieceding paragraph will result
in the robot gradually coming to believe that its batteryngpty, when in fact it may be that
the meter has failed. The lower curve in Figure 15.12(b) shtive belief “trajectory” for
this case. Byt =25—five readings of 0—the robot is convinced that its battergrigpty.
Obviously, we would prefer the robot to believe that its &attmeter is broken—if indeed
this is the more likely event.

P SeTEN e Unsurprisingly, to handle persistent failure we will nequeasistent failure modelthat
describes how the sensor behaves under normal conditiehaftan failure. To do this, we
need to augment the hidden state of the system with an adaiti@riable, say3 M Broken,
that describes the status of the battery meter. The persestef failure must be modelled by

PersiSTENCEARC  @N arc linkingB M Brokeng to BM Broken,. This persistence archas a CPT that gives a
small probability of failure in any given time step, say ALOBut specifies that the sensor stays
broken once it breaks. When the sensor is OK, the sensor rfadBIM eter is identical to
the transient failure model; when the sensor is brokeny# 8\ eter is always 0, regardless
of the actual battery charge.

The persistent failure model for the battery sensor is shimwaigure 15.13(a). Its
performance on the two data sequences (temporary blip aséieat failure) is shown in
Figure 15.13(b). There are several things to notice abasetlturves. First, in the case
of the temporary blip, the probability that the sensor iskkrorises significantly after the
second 0 reading, but immediately drops back to zero oncesabserved. Second, in the
case of persistent failure, the probability that the seisbroken rises quickly to almost 1
and stays there. Finally, once the sensor is known to be brdke robot can only assume
that its battery discharges at the “normal” rate, as showthéygradually descending level of
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Figure 15.12 (a) Upper curve: trajectory of the expected valueBafttery; for an ob-
servation sequence consisting of all 5s except for Os=a21 andt¢ =22, using a simple
Gaussian error model. Lower curve: trajectory when the Masen remains at 0 from
t =21 onwards. (b) The same experiment run using the transidatéainodel. Notice that
the transient failure is handled well but the persistentfairesults in excessive pessimism.
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Figure 15.13 (a) A DBN fragment showing the sensor status variable reguior mod-
elling persistent failure of the battery sensor. (b) Uppewes: trajectories of the expected
value of Battery, for the “transient failure” and “permanent failure” obsations sequences.
Lower curves: probability trajectories f@t M Broken given the two observation sequences

E(Battery|...). A more refined model would include the influence of the rabattivities
on the battery level, which we have so far ignored.

So far, we have only scratched the surface of the problempoésenting complex pro-
cesses. The variety of transition models is huge, encornmgagspics as disparate as mod-
elling of the human endocrine system and modelling multyeleicles driving on a freeway.
Sensor modelling is also a vast subfield in itself, but evdrlsypphenomena, such as sensor
drift, sudden decalibration, and the effects of exogenouslitions (such as weather) on sen-
sor readings, can be handled by explicit representatidnimdtynamic Bayesian networks.
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Exact inference in DBNs

Having sketched some ideas for representing complex pesess DBNs, we now turn to
the question of inference. In a sense, this question haadgirbeen answered: dynamic
Bayesian networkare Bayesian networks, and we already have algorithms forenigz in
Bayesian networks. Given a sequence of observations, anearsstruct the full Bayesian
network representation of a DBN by replicating slices uthté network is large enough to

UNROLLING accommodate the observations, as in Figure 15.14. Thidleslemrolling . (Technically, the
DBN is equivalent to the semi-infinite network obtained byaliing for ever. Slices added
beyond the last observation have no effect on inferencdsimilhe observation period and
can be omitted.) Once the DBN is unrolled, one can use anyeoinflierence algorithms—
variable elimination, join-tree methods, and so on—désctin Chapter 14.

Figure 15.14 Unrolling a dynamic Bayesian network: slices are replidateaccommo-
date the observation sequence (shaded nodes). Furthes kliwe no effect on inferences
within the observation period.

Unfortunately, a naive application of unrolling would na particularly efficient. If we
want to perform filtering or smoothing with a long sequencelufervation®, ;, the unrolled
network would require)(¢) space and thus grows without bound as more observations are
added. Moreover, if we simply run the inference algorithrevaeach time an observation is
added, the inference time per update will also increase(as

Looking back to Section 15.2, we see that constant time aadesper filtering update
can be achieved if the computation can be done in a recursbledn. Essentially, the filter-
ing update in Equation (15.4) works lsymming outhe state variables of the previous time
step to get the distribution for the new time step. Summinigvauables is exactly what the
variable elimination (Figure 14.10) algorithm does, and it turns out that runniagable
elimination with the variables in temporal order exactlymigs the operation of the recursive
filtering update in Equation (15.4). The modified algoritheegs at most two slices in mem-
ory at any one time: starting with slice 0, we add slice 1, them out slice 0, then add slice
2, then sum out slice 1, and so on. In this way, we can achiewst&ot space and time per
filtering update. (The same performance can be achieved kingsuitable modifications to
the join tree algorithm.) Exercise 15.10 asks you to velifg fact for the umbrella network.

So much for the good news; now for the bad news. It turns ouittttea“‘constant” for
the per-update time and space complexity is, in almost aksaexponential in the number
of state variables. What happens is that as the variablengtion proceeds, the factors grow
to include all the state variables (or, more precisely,ralke state variables that have parents
in the previous time slice). The maximum factor sizeli&"t!) and the update cost is
O(dn+2)_
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This is much less than the cost of HMM updating, which)(sF”), but it is still infeasi-
ble for large numbers of variables. This grim fact is somewvitaad to accept. What it means
@ is thateven though we can use DBNsépresenvery complex temporal processes with many
sparsely connected variables, we canressorefficiently and exactly about those processes.
The DBN model itself, which represents the prior joint dizition over all the variables, is
factorable into its constituent CPTs, but the posteriantjdistribution conditioned on an ob-
servation sequence—that is, the forward message—is digneoafactorable. So far, no-one
has found a way around this problem, despite the fact thayrimaportant areas of science
and engineering would benefit enormously from its solutidius, we must fall back on
approximate methods.

Approximate inference in DBNs

Chapter 14 described two approximation algorithms: Ih@hd weighting (Figure 14.14)
and Markov chain Monte Carlo (MCMC, Figure 14.15). Of the tibee former is most easily
adapted to the DBN context. We will see, however, that séwenarovements are required
over the standard likelihood weighting algorithm beforeacgical method emerges.

Recall that likelihood weighting works by sampling the n@dence nodes of the net-
work in topological order, weighting each sample by theliii@d it accords to the observed
evidence variables. As with the exact algorithms, we coplolyalikelihood weighting di-
rectly to an unrolled DBN, but this would suffer from the sapmeblems in terms of increas-
ing time and space requirements per update as the obsargatipence grows. The problem
is that the standard algorithm runs each sample in turn @limdy through the network. In-
stead, we can simply run aN samples together through the DBN one slice at a time. The
modified algorithm fits the general pattern of filtering algons, with the set ofV samples

I@: as the forward message. The first key innovation, then, isséothe samples themselves as
an approximate representation of the current state distidn. This meets the requirement
of a “constant” time per update, although the constant dépem the number of samples
required to maintain a reasonable approximation to thepgasterior distribution. There is
also no need to unroll the DBN, because we need only the dwsliea and the next slice in
memory.

In our discussion of likelihood weighting in Chapter 14, warped out that the algo-
rithm’s accuracy suffers if the evidence variables are “dstneam” of the variables being
sampled, because in that case the samples are generatedtwitly influence from the evi-
dence. Looking at the typical structure of a DBN—say, the reité DBN in Figure 15.14—
we see that indeed the early state variables will be sampitttbwt the benefit of the later
evidence. In fact, looking more carefully, we see thaheof the state variables hamy
evidence variables among its ancestors! Hence, althowgiveight of each sample will de-
pend on the evidence, the actual set of samples generatdokwdmpletely independent
the evidence. For example, even if the boss brings in the eilabevery day, the sampling
process may still hallucinate endless days of sunshine .t Yhisameans in practice is that the
fraction of samples that remain reasonably close to thexbstuies of events drops exponen-
tially with ¢, the length of the observation sequence; in other words giotain a given level
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PARTICLE FILTERING

of accuracy, we need to increase the number of samples exgihewith ¢. Figure 15.15(a)
shows some experimental results for likelihood weightipglied to the umbrella network.
Clearly we need a better solution.
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Figure 15.15 (a) Performance of likelihood weighting on the umbrella DB%owing
the root-mean-squared error in the probability of rain aarecfion of time step, averaged
over 100 observation sequences generated from the moelél {ts) Performance of particle
filtering on the same observation sequences.[[real data pydvided]]

The second key innovation is focus the set of samples on the high-probability regions
of the state spaceThis can be done by throwing away samples that have very loghiye
according to the observations, while multiplying thoset thave high weight. In this way,
the population of samples will stay reasonably close tatyedlf we think of samples as a
resource for modelling the posterior distribution, themékes sense to use more samples in
regions of the state space where the posterior is higher.

A family of algorithms calledparticle filtering is designed to do just this. Particle
filtering works as follows. First, a population 8f samples is created by sampling from the
prior distribution at time OP(X,). Then the update cycle is repeated for each time step:

e Each sample is propagated forward by sampling the next stdie x,,, given the
current valuex; for the sample, using the transition mo@R¢X;; |x;).

e Each sample is weighted by the likelihood it assigns to tieawddence P (e 1|X¢+1)-

e The population igesampledto generate a new population 6f samples. Each new
sample is selected from the current population; the prdibathat a particular sample
is selected is proportional to its weight. The new samplesiaweighted.

The algorithm is shown in detail in Figure 15.16, and its agien for the umbrella DBN is

illustrated in Figure 15.17.
We can show that this algorithm is consistent—gives theeodrprobabilities asVv

tends to infinity—by considering what happens during oneatgdycle. We will assume the
sample population starts with a correct representatiomefdrward messagk.; at timet:
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function PARTICLEFILTERING(eN,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN with slice 0 variableX and slice 1 variableX; andE;
static: S a vector of samples of siZ¢
local variables W, a vector of weights of sizM

if e is emptythen /* initialization phase */

fori=1toNdo
gi] «+ sample fronP(Xy)
else do [* update cycle */
fori=1toNdo

gi] < sample fromP(X;|Xo = S[i])
W]  P(efX, = Sli])
S+ WEIGHTEDSAMPLEWITHREPLACEMENT(N,SW)
return S

Figure 15.16 The particle filtering algorithm implemented as a recursiyelate op-
eration with state (the set of samples). Each of the sampdtegs involves sam-
pling the relevant slice variables in topological order,amas in RIOR-SAMPLE. The
WEIGHTED-SAMPLE-WITH-REPLACEMENT Operation can be implemented to rurQgN')
expected time.

Rain, Rain,, Rain .1 Rain 1

tl’ue o000 00 eeoo @
o000 00 oo 0 )
) ) o0 0000
false o e o0 0000
(a) Propagate (b) Weight (c) Resample

Figure 15.17 The particle filtering update cycle for the umbrella DBN with= 10, show-
ing the sample populations of each state. (a) At th@samples indicatBain and 2 indicate
—Rain. Each is propagated forward by sampling the next state ubmg¢ransition model.
Attimet + 1, 7 samples indicat®ain and 3 indicate-Rain. (b) ~Umbrella is observed at
t + 1. Each sample is weighted by its likelihood for the obseoratas indicated by the size
of the circles. (c) A new set of 10 samples is generated byhethrandom selection from
the current set, resulting in 4 samples that indidad¢n and 6 that indicate:Rain.

writing N (x¢|e;.;) for the number of samples occupying stateafter observations;.; have
been processed, we therefore have

N(x¢|ert)/N = P(X|er.) (15.22)

for large N. Now we propagate each sample forward by sampling the shaiiles at + 1
given the values for the sample tatThe number of samples reaching state; from each
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X is the transition probability times the populationxgf hence the total number of samples
reachingx, i Is

N(Xty1l€1:) = ZP(Xt+1|Xt)N(Xt|elzt)
Xt

Now we weight each sample by its likelihood for the evidencé-a 1. A sample in state
X¢+1 receives weighP (e, 1|x;+1). The total weight of the samples xp,., after seeingg;
is therefore

W (X¢q1l€1:641) = P(€41[Xe11) N (Xeq1]€1:0)
Now for the resampling step. Since each sample is replicatédprobability proportional

to its weight, the number of samples in state; after resampling is proportional to the total
weight inx,; before resampling:

N (X¢y1|€r41)/N = aW (Xgq1|€1:041)
aP (€41 [Xi+1) N (Xet1€1:¢)
= aP(e1[Xit1) Y P(Xes1]Xe) N (X |€1)
Xt
= aNP(et+1|Xt+1)ZP(Xt+1|Xt)P(Xt|q;t) by Equation (1522)
Xt
= o' P(&1%e41) Y P(Xes1[Xe) P(xe[err)
Xt

= P(X;y1/€1441) by Equation (15.4)

Therefore the sample population after one update cyclectyrrepresents the forward mes-
sage attime + 1.

Particle filtering isconsistent therefore, but is iefficien®? In practice, it seems the
answer is yes—particle filtering seems to maintain a goodopation to the true posterior
using a constant number of samples. There are, as yet, neticab guarantees; particle
filtering is currently an area of intensive study. Many vatiaand improvements have been
proposed and the et of applications is growing rapidly. Beeat is a sampling algorithm,
particle filtering can be used easily with hybrid and corumsi DBNs, allowing it to be
applied to areas such as tracking complex motion pattermgl@o (Isard and Blake, 1996)
and predicting the stock market (de Freigasl., 1999).

15.6 SPEECH RECOGNITION

In this section, we look at one of the most important applcet of temporal probability

SN models—speech recognition The task is to identify the sequence of words uttered by a
speaker, given the acoustic signal. Speech is the dominadéality for communication be-
tween humans, and reliable speech recognition by machioeddvibe immensely useful.
Still more useful would bepeech understanding-the identification of theneaningof the
utterance. For this, we must wait until Chapter 22.
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ACOUSTIC MODEL

HOMOPHONES

LANGUAGE MODEL

BIGRAM MODEL

PHONOLOGY
PHONES

PRONUNCIATION

SIGNAL PROCESSING

Speech provides our first contact with the raw, unwasheddnafrlreal sensor data.
These data areoisy, quite literally; there can be background noise as well tifaets intro-
duced by the digitization process; there is variation inwag that words are pronounced,
even by the same speaker; different words can sound the sawhep on. For these reasons,
speech recognition has come to be viewed as a problem oflphsba inference.

At the most general level, we can define the probabilistierifice problem as follows.
Let Words be a random variable ranging over all possible sequenceafsithat might
be uttered, and letignal be the observed acoustic signal sequence. Then the mdsgt like
interpretation of the utterance is the valueldbrds that maximizesP (words|signal). As
is often the case, applying Bayes’ rule is helpful:

P(words|signal) = aP(signal|lwords)P(words)

P(signal|words) is theacoustic model It describes the sounds of words—for example, that
“ceiling” begins with a soft “c” and sounds very similar togaing”. (Words that sound the
same are calleHomophones) P(words) is known as théanguage model It specifies the
prior probability of each utterance—for example, that thigeiling” is a much more likely
word sequence than “high sealing.”

The language models used in speech recognition systemsaatywery simple. The
bigram model that we describe later in this section gives the probakdlityach word follow-
ing each other word. The acoustic model is much more compleits heart is an important
discovery made in the field ghonology(the study of how language sounds), namely, that all
human languages use a limited repertoire of about 40 or S@dsowalledphones Roughly
speaking, a phone is the sound that corresponds to a singkd @o consonant, but there are
some complications: combinations of letters such as “thf ‘ag” produce single phones,
and some letters produce different phones in differentecast(for example, the “a” imat
andrate. Figure 15.18 lists all the phones in English with an exangpleach.

The existence of phones makes it possible to divide the &causdel into two parts.
The first part deals witlpronunciation and specifies, for each word, a probability distribu-
tion over possible phone sequences. For example, “ceilmgtonounced [s iy | ih ng], or
sometimes [s iy | ix ng], or sometimes even [s iy | en]. The preoare not directly observable,
so0, roughly speaking, speech is represented as a hidderowlardel whose state variable
X specifies which phone is being uttered at tilne

The second part of the acoustic model deals with the way thengs are realized as
acoustic signals—that is, the evidence variablefor the hidden Markov model gives the
observed features of the acoustic signal at tifrend the acoustic model specifiB$E; | X;),
where X; is the current phone. This model must allow for variationgitch, speed, and
volume, and relies on techniques frazignal processingto provide signal descriptions that
are reasonably robust against these kinds of variations.

The remainder of the section describes the models and tigwifrom the bottom
up, beginning with acoustic signals and phones, then iddali words, and finally entire
sentences. We conclude with a description of how all thesdeisare trained and how well
the resulting systems work.
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Vowels Consonants B-N Consonants P-Z
Phone Example Phone Example Phone Example
[iy] bea [b] bet [p] pet
[ih] bit [ch] Chet 1] rat
[eh] bet [d] debt [s] set
[e] ket [f] fat [sh] shoe
[ah] but [9] get [t] ten
[a0] bought [hh] hat [th] thick
[ow] boat [hv] high [dh] that
[uh] book [ih] jet [dX] butter
[ey] bait K] kick V] vet
[er] Bert i let [w] wet
[ay] buy [el] bottle [wh] which
[oy] boy [m] met vl yet
[axr] diner [em] botbm [z] Z00
[aw] down [n] net [zh] measure
[ax] about [en] butbn
[ix] roses [ng] sing
[ag] ot [eng] Waslington [] (silence)
Figure 15.18 The DARPA phonetic alphabet, &RPAbet, listing all the phones used in
American English. There are several alternative notafioreduding an International Pho-
netic Alphabet (IPA), which contains the phones in all kndamguages.
Speech sounds
Sound waves are periodic changes in pressure that proptgateyh the air. Sound can
be measured by a microphone whose diaphragm is displaceldebgréssure changes and
generates a continuously varying current. An analog-gitali converter measures the size
of the current—which corresponds to the amplitude of thendamave—at discrete intervals
SAMPLING RATE determined by theampling rate. For speech, a sampling rate between 8 and 16 kHz (i.e., 8 to
16,000 times per second) is typical. The precision of eaciisomement is determined by the
QUANTIZATION guantization factor; speech recognizers typically keep 8 to 12 bits. That mdaatsat low-

FRAMES

FEATURES

end system, sampling at 8 kHz with 8-bit quantization, waelguire nearly half a megabyte
per minute of speech. It would be impractical to construct manipulateP (signal|phone)
distributions with so much signal information; therefowes need to develop more concise
descriptions of the signal.

First, we observe that although the sound frequencies iactpmay be several kHz,
the changesn the content of the signal occur much less often, perhaps atore than 100
Hz. Therefore, speech systems summarize the propertibe sfgnal over extended intervals
calledframes. A frame length of about 10 msecs (i.e., 80 samples at 8 kH#h)ast enough
to ensure that few short-duration phenomena will be smudgétly the summarization pro-
cess. Within each frame, we represent what is happening avitector offeatures For
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VECTOR
QUANTIZATION

MIXTURE OF
GAUSSIANS

example, we might want to characterize the amount of energaeh of several frequency
ranges. Other important features include overall energyfimame, and the difference from
the previous frame. Picking out features from a speech kigri&e listening to an orches-
tra and saying “here the French horns are playing loudly badriolins are playing softly.”
Figure 15.19 shows the sequence of transformations fromativesound to a sequence of
frames. Note that the frames overlap; this prevents us fosmd information if an important
acoustic event just happens to fall on a frame boundary.

Analog acoustic signal: /\ ,\/\ /\/\,\/\ A/M

Samped, quantized ||.|| |.‘||.|..I|HI‘|‘|I.

, 10 15 38 | | 22 63 24 L 1o 12 73 |
I 1 I 1 I 1

| 52 47 82 | 89 94 11
I 1 I 1

Frames with features:

Figure 15.19 Translating the acoustic signal into a sequence of framash &rame is
described by the values of three acoustic features.

In our example, we have shown frames with just three featiReal systems may have
tens or even hundreds of features. If thererafeatures and each has, say, 256 possible val-
ues, then a frame is described by a pointidimensional space and there ams™ possible
frames. Fom > 2 it would be impractical to represent the distributi® f eatures|phone)
as an explicit table, so we need further compression. Therena possible approaches:

e The method ofvector quantization or VQ divides then-dimensional space into, say,
256 regions labelled C1 through C256. Each frame can therepesented with
a single label rather than a vector efnumbers. Thus, the tabulated distribution
P(VQ label|phone) has 256 probabilities specified for each phone. Vector guant
zation is no longer popular in large-scale systems.

e Instead of discretizing the feature space, we can use a pteered continuous distri-
bution to describe’( features|phone). For example, we could use a Gaussian distri-
bution with a different mean and covariance matrix for ealsbre. This works well
if the acoustic realizations of each phone are clustered simgle region of feature
space. In practice, the sounds can be spread over sevei@gegnd amixture of
Gaussiansmust be used. A mixture is a weighted sunmkahdividual distributions, so
P(features|phone) hask weights,k mean vectors of size, andk covariance matrices
of sizen?—that is,O(kn?) parameters for each phone.

Of course, some information is lost in going from the full sple signal to a VQ label or a
set of mixture parameters. The art of signal processingrietoosing features and regions
(or Gaussians) so that the lossusfefulinformation is minimized. A given speech sound
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can be pronounced so many ways: loud or soft, fast or slow-pighed or low, against
a background of silence or noise, and by any of millions ofedént speakers each with
different accents and vocal tracts. Signal processingapeliminate the variations while
keeping the commonalities that define the sound.

There are two more refinements we need to make to the simplelmadhave de-
scribed so far. The first deals with the temporal structurg@laines. In normal speech,
most phones have a duration of 50-100 milliseconds, or Sdfidés. The probability model
P(features|phone) is the same for all these frames, whereas most phones hawelalgal

stopconsonants  Of internal structure. For example, [t] is one of sevestalb consonantsn which the flow of
air is cut off for a short period before a sharp release. Eramgithe acoustic signal, we find
that [t] has a silent beginning, a small explosion in the ri@dednd (usually) a hissing at the

mreesTaepHoNe — end. This internal structure of phones can be captured bihthe-state phonemodel; each
phone has Onset, Mid, and End states, and each state hasitsstribution over features.

The second refinement deals with the context in which the @liwnttered. The sound
of a given phone can change depending on the surroundingephdfor example, the [t] in
“tar” has a short hiss at the end, prior to the voiced [aa rlemehs the [t] in “star” does not.
Both of these [t] sounds are produced by closing the tongamsigthe roof of the mouth just
behind the teeth, whereas the [t] in “eighth” is often praetlivith the tongue pressed against
the front teeth because it is followed immediately by a [ijrsd. These contextual effects

TRIPHONE are partially captured by theiphone model, in which the acoustic model for each phone is
allowed to depend on the preceding and succeeding phones, the [t] in “star” is written
[t(s,aa)], i.e., [t] with left-context [s] and right-contie[aa].

The combined effect of the three-state and triphone modétsincrease the number of
possible states of the temporal process frophones in the original phone alphabet< 50
for the ARPAbet) td3n3. Experience shows that the improved accuracy more thaetsffise
extra expense in terms of inference and learning.

Words

We can think of each word as specifying a distinct probapbtiistribution P(X.;|word),
where X; specifies the phone state in tite frame. Typically, we separate this distribution
into two parts. The@ronunciation model gives a distribution over phone sequences (ignoring
metric time and frames), while thEhone modeldescribes how a phone maps into a sequence
of frames.

Consider the word “tomato.” It is well-known that you say {t a1 ey t ow] and | say [t
ow m aat ow], so the pronunciation model has to account féeci The top of Figure 15.20
shows a transition model that provides for this variatioher®e are only two possible paths
through the model, one corresponding to the phone sequeoneer ey t ow] and the other
to [t ow m aa t ow]. The probability of a path is the product of fhrobabilities on the arcs
that make up the path:

P([towmeytow]|*tomato”) = P([towmaatow]|“tomato”) = 0.5

5 In this sense, the “phone model” of speech should be thoulgas @ useful approximation rather than an
immutable law.
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(a) Word model with dialect variation:

Figure 15.20 Two pronunciation models of the word “tomato.” Each modethewn as

a transition diagram with states as circles and arrows sigaliowed transitions with their
associated probabilities. (a) A model allowing for dialdifferences. The 0.5 numbers are
estimates based on the two authors’ preferred pronunogmt{d) A model with a coarticula-
tion effect on the first vowel, allowing either the [ow] or tfah] phone.

COARTICULATION The second source of phonetic variatiocagrticulation. Remember that speech sounds are
produced by moving the tongue and jaw and forcing air throtinghvocal tract. When the
speaker is talking slowly and deliberately, there is timglaxe the tongue in just the right
spot before producing a phone. But when the speaker is tatkinckly (or sometimes even
at a normal pace), the movements slur together. For examhgl¢t] phone is produced with
the tongue at the top of the mouth, whereas the [ow] has tlgutonear the bottom. When
spoken quickly, the tongue often goes to an intermediaté@giposand we get [t ah] rather
than [t ow]. The bottom half of Figure 15.20 gives a more caogded pronunciation model
for “tomato” that takes this coarticulation effect into acot. In this model there are four
distinct paths and we have

P([towmeytow]|“tomato”) = P([towmaatow]|“tomato”) = 0.1
P([tahmeytow]|“tomato”) = P([tahmaatow]|“tomato”) = 0.4

Similar models can be constructed for every word we want talide to recognize.

The model for a three-state phone is shown as a state toandiigram in Figure 15.21.
The model is for a particular phone, [m], but all phones wal’é models with similar topol-
ogy. For each phone state, we show the associated acoustal agsuming that the signal is
represented by a VQ label. For example, the model assett® (g = C1| X; = [M] opnset) =
0.5. Notice the self-loops in the figure; for example, the{f]state persists with probability
0.9. This means that the [}y State has an expected duration of 10 frames. In this way,
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ISOLATED WORDS

CONTINUOUS
SPEECH

Phone HMM for [m]:

Output probabilities for the phone HMM:

Onset: Mid: End:

C1l:05 C3:0.2 C4:0.1
C2:0.2 C4:0.7 C6:05
C3:0.3 C5:0.1 C7:04

Figure 15.21 An HMM for the three-state phone [m]. Each state has sevearssiple
outputs, each with its own probability. The VQ labéls throughC~; are arbitrary.

we can specify the relative durations of phones; of coutseptobabilistic model allows for
variations, such as arise with fast and slow speech.

We can construct similar models for each phone, possiblemigipng on the triphone
context. Each word model, when combined with the phone nspdg@les a complete spec-
ification of an HMM. The model specifies the transition prabads between phone states
from frame to frame, as well as the acoustic feature proibiaisifor each phone state.

If we want to recognize@solated words—that is, words spoken without any surround-
ing context and with clear boundaries—then we need to finavitrel that maximizes

P(word|ey.t) = aP(ey.t|word)P(word)

The prior probabilityP (word) can be obtained from actual text data, as described later. Th
quantity P(ey..|word) is the likelihood of the sequence of acoustic features adogrto

the word model. Section 15.2 covered the computation of $ikehhoods; in particular,
Equation (15.6) gives a simple recursive computation whems is linear int and in the
number of states of the Markov chain. To find the most likelyrdyave can perform this
calculation for each possible word model, multiply by théoprand select the best word
accordingly.

Sentences

To have a conversation with a human, a machine needs to becatdeognizecontinuous
speechrather than just isolated words. One might think that camtirs speech is nothing
more than a sequence of words, to each of which we can appiygbathm from the previous
section. This approach fails for two reasons. First, we @naady seen (page 552) that the
sequence of most likely words is not the most likely sequericeords. For example, in the
movie Take the Money and Rua bank teller interprets Woody Allen’s sloppily writtenltio
up note as saying “I have a gub.” A good language model wouidest “| have a gun” as a
much more likely sequence, even though the last word looke tik@ “gub” than “gun”. The
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SEGMENTATION

BIGRAM

Word Unigram Previous words
count of in is on to from model| agent
the 33508 3833] 2479 832 944| 1365 597 28 24
on 2573 1 0 33 2 1 0 0 6
of 15474 0 0 29 1 0 0 88 7
to 11527 0 4 450 21 4 16 9 82
is 10566 3 6 1 4 2 1 47 127
model 752 8 1 0 1 14 0 6 4
agent 2100 10 3 3 2 3 0 0 36
idea 241 0 0 0 0 0 0 0 0
Figure 15.22 A partial table of unigram and bigram counts for the wordshis tbook.
There are 513,893 total words; “the” is the most common a&@R, The bigram “of the” is
the most common at 15,474. That is, one out of every 15 wortlké and one out of every
33 word pairs is “of the.” Some counts are higher than expe@sey. 4 for “on is”) because
the bigram counts ignore punctuation—one sentence mighivith “on” and the next begin
with “is.”

second issue we must face with continuous speesegmentation the problem of deciding
where one word ends and the next begins. Anyone who has triedrn a foreign language
will appreciate this problem: at first all the words seem totagether. Gradually, one learns
to pick out words from the jumble of sounds. In this case, firgiressions are correct; a
spectrographic analysis shows that in fluent speech, thésweallydo run together with no
silence between them. We learn to identify word boundaréspite the lack of silence.

Let us begin with the language model, whose job in speeclgréiton is to specify
the probability of each possible sequence of words. Usiagtitationw; - - - w,, to denote a
string ofn words andw; to denote théth word of the string, we can write an expression for
the probability of a string using the chain rule as follos:

P(wy - wy) = P(wy) P(wa|wy) P(ws|wyws) -+« P(wy|wy -+ wy—1)
= ?:1 P(wi|w1"'wi—1)

Most of these terms are quite complex and difficult to estinztcompute. Fortunately, we
can approximate this formula with something simpler anlil stipture a large part of the
language model. One simple, popular, and effective appr@thebigram model. This
model approximate®(w;|w; - - - w;_1) with P(w;|w;_1). In other words, it makes a first-
order Markov assumption for word sequences.

A big advantage of the bigram model is that it is easy to tragrhodel by counting
the number of times each word pair occurs in a representedirpgus of strings and using the
counts to estimate the probabilities. For example, if “gegrs 10,000 times in the training

6 Strictly speaking, the probability of a word sequence depestrongly on theontextof the utterance; for
example, “I have a gun” is much more common on notes passetdalateller than it is in, say, the Wall Street
Journal. Few speech recognizers handle context, othethémaining a special-purpose language model for a
particular task.

(© 2002 by Russell and Norvig. DRAFT---DO NOT DI STRI BUTE



Section 15.6. Speech recognition 581

corpus and it is followed by “gun” 37 times, thdh(gun;|a;_,) = 37/10,000, where by

P we mean the estimated probability. After such training oneiles expect “I have” and “a
gun” to have relatively high estimated probabilities, weHhil has” and “an gun” would have
low probabilities. Figure 15.22 shows some bigram counts/elé from the words in this
chapter.

TRIGRAM It is possible to go to &igram model that provides values f@t(w;|w;_1w;—2). This
is a more powerful language model, capable of determiniag“tte a banana” is more likely
than “ate a bandana.” For trigram models, and to a lessentefde bigram and unigram
models, thre is a problem with counts of zero. We wouldn’t itarsay that a combination
of words that didn’'t happen to appear in the training corpugriprobable. The process
of smoothing gives a small non-zero probability to such combinationsis liscussed on
page 817.

Bigram or trigram models are not as sophisticated as someeajrammar models we
will see in Chapters 22 and 23, but they account for localexiréensitive effects better, and
manage to capture some local syntax. For example, the faicthté word pairs “l has” and
“man have” get low scores is reflective of subject-verb agw@. The problem is that these
relationships can only be detected locally: “the man hawt$ @ low score, but “the man
over there have” is not penalized.

Now we consider how to combine the language model with thelwaydels, so that we
can handle word sequences properly. We’'ll assume a bigraguége model for simplicity.
With such a model, we can combine all the word models (whiehcamprised in turn of
pronunciation models and phone models) into one large HMMehoA state in a single-
word HMM is a frame labelled by the current phone and phonte ¢tar example, [Mpnset);

a state in a continuous-speech HMM is also labelled with adwas in [m]mato  |f each
word has an average of three-state phones in its pronunciation model, and thexéiar
words, then the continuous-speech HMM [83& p states. Transitions can occur between
phone states within a given phone; between phones in a gieed, wnd between the final
state of one word and the initial state of another. The ttims between words occur with
probabilities specified by the bigram model.

Once we have constructed the combined HMM, we can use it igznthe continuous
speech signal. In particular, the Viterbi algorithm emigodin Equation (15.10) can be used
to find the most likely state sequence. From this state segueme can extract a word
sequence simply by reading the word labels from the statdmis,Tthe Viterbi algorithm
solves the word segmentation problem by using dynamic progring to consider (in effect)
all possible word sequences and word boundaries simuligheo

Notice that we didn’t say “we can extratite most likelyword sequence.” The most
likely word sequence is not necessarily the one that canthie most likely state sequence.
This is because the probability of a word sequence is the $ymobabilities over all possible
state sequences consistent with that word sequence. Ciogpao word sequences, say “a
back” and “aback,” it might be that case that there are terradtive state sequences for “a
back,” each with probability 0.03, but just one state seqador “aback,” with probability
0.20. Viterbi chooses “aback,” but “a back” is actually mokely.

In practice, this difficulty is not life-threatening, butig serious enough that other
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A* DECODER

approaches have been tried. The most common ig\theecoder, which makes ingenious
use of A search (see Chapter 4) to find the most likely word sequenice.idea is to view
each word sequence as a path through a graph whose nodebeltedlavith words. The
successors of a node are all the words that can come nextttieugraph for all sentences of
lengthn or less has: layers, each of width at mo$Y’, whereW is the number of possible
words. With a bigram model, the cogtw,,ws) of an arc between nodes lahe] to ws is
given by— log P(ws|wy); in this way, the total path cost of a sequenge - - w,, is
n n

> —log P(wiw;—1) = —log [] P(wilwi—1).

i=1 i=1
With this definition of path cost, finding the shortest patkxactly equivalent to finding the
most likely word sequence. For the process to be efficientalse need a good heuristic
h(w;) to estimate the cost of completing the word sequence. Obljiothis has something
to do with how much of the speech signal is not yet covered éybrds on the current path.
As yet, no especially interesting heuristics have beensdeMior this problem.

Building a speech recognizer

The quality of a speech recognition system depends on tHeygofall its components—the
language model, the word pronunciation models, the phorgelspand the signal processing
algorithms used to extract spectral features from the dicosgnal. We have discussed
how the language model may be constructed, and we leave thiésdgf signal processing
to other textbooks. That leaves the pronunciation and pnoodels. Thestructure of the
pronunciation models—such as the tomato models in Figu2045is usually developed by
hand. Large pronunciation dictionaries are now availabteEnglish and other languages,
although their accuracy varies greatly. The structure efttinee-state phone models is the
same for all phones, as shown in Figure 15.21. That leavgw tiebilities themselves. How
are these to be obtained, given that the models may requigréds of thousands or millions
of parameters?

The only plausible method is to learn the models from actoe¢sh data, of which there
is certainly no shortage. The next question is how to do tAmiag. We give the answer in
full in Chapter 19, but we can give the main ideas here. Censkte bigram language model;
we explained how to learn it by looking at frequencies of wpadrs in actual text. Can
we do the same for, say, phone transition probabilities @ gronunciation model? The
answer is yes, but only if someone goes to the trouble of atingtevery occurrence of each
word with the right phone sequence. This is a difficult andreprone task, but has been
carried out for some standard data sets containing seveuas fof speech. If we know the
phone sequences, we can estimate transition probabfliti¢se pronunciation models from
frequencies of phone pairs. Similarly, if we are given themghstate for each frame—an
even more excruciating manual labelling task—then we cimate transition probabilities
for the phone models. Given the phone state and the acoaeatiarés in each frame, we can
also estimate the acoustic model, either directly fromuesgries (for VQ models) or using
statistical fitting methods (for mixture-of-Gaussian misgeee Chapter 19).

The cost and rarity of hand-labelled data, and the fact timawvailable hand-labelled
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data sets may not represent the kinds of speakers and acoastitions found in a new
recognition context, could doom this approach to failurgortunately, theexpectation—
maximizationor EM algorithm learns HMM transition and sensor models withthe need
for labelled data. Estimates derived from hand-labelled data can be usedtialire the
models; after that, EM takes over and trains the models fotakk at hand. The idea is sim-
ple: given an HMM and an observation sequence, we can usetbeatising algorithms from
Sections 15.2 and 15.3 to compute the probability of eadle staeach time step, and, by
a simple extension, the probability of each state—stategpbaionsecutive time steps. These
probabilities can be viewed asicertain labelsin place of the definite labels provided by
hand. From the uncertain labels, we can estimate new ti@msihd sensor probabilities, and
the EM procedure repeats. The method is guaranteed to s&ctbka fit between model and
data on each iteration, and generally converges to a mutér Iset of parameter values than
those provided by the initial, hand-labelled estimates.

State-of-the-art speech systems use enormous data setsagsiye computational re-
sources to train their models. For isolated word recogmitioder good acoustic conditions
(no background noise or reverberation) with a vocabulara ééw thousand words and a
single speaker, accuracy can be over 99%. For unrestrictetihaoous speech with a va-
riety of speakers, 60-80% accuracy is common, even with goodstic conditions. With
background noise and telephone transmission, accuracpatsyfurther. Although fielded
systems have improved continuously for decades, ther#! iosim for many new ideas.

15.7 SIMMARY

This chapter has addressed the general problem of repregamid reasoning about proba-
bilistic temporal processes. The main points are as follows

e The changing state of the world is handled using a set of rmndwiables to represent
the state at each point in time.

e Representations can be designed to satisiyMhbekov property , so that the future is
independent of the past given the present. Combined withgeemption that the pro-
cess isstationary—i..e, the dynamics do not change over time—this greatlypkfias
the representation.

e A temporal probability model can be thought of as contairaricgansition model de-
scribing the evolution and sensor modeldescribing the observation process.

e The principal inference tasks in temporal models fétering, prediction, smooth-
ing, and computing thenost likely explanation. Each of these can be achieved using
simple, recursive algorithms whose runtime is linear inlémgth of the sequence.

e Three families of temporal models were studied in more depmttden Markov mod-
els Kalman filters, anddynamic Bayesian networks(which include the other two as
special cases).

e Speech recognitionandtracking are two important applications for temporal proba-
bility models.
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e Unless special assumptions are made, as in Kalman filtesst @erence with many
state variables appears to be intractable. In practicepdhigcle filtering algorithm
seems to be an effective approximation algorithm.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

DATA ASSOCIATION

Many of the basic ideas for estimating the state of dynansgsiems came from the mathe-
matician C. F. Gauss (1809). Gauss developed a deterroil@ast-squares algorithm for the
problem of estimating orbits from astronomical observatio The Russian mathematician
A. A. Markov (1913) developed what was later called Markov assumption in his anal-
ysis of stochastic processes; he estimated a first-ordekdMahain on letters from the text
of Eugene OneginSignificant classified work on filtering was done during \Woiar 11 by
Wiener (1942) for continuous-time processes and by Kolmmg@1941) for discrete-time
processes. Although this work led to important technolalgaevelopments over the next
twenty years, its use of a frequency-domain representatiade many calculations quite
cumbersome. Direct state-space modelling of the stochpsitess turned out to be simpler,
as shown by Swerling (1959) and Kalman (Kalman, 1960). Ttierlpaper introduced what
is now known as the Kalman filter for forward inference in Bnesystems with Gaussian
noise. Important results on smoothing were derived by Ratieth (1965), and the impres-
sively namedRauch-Tung-Striebel smootheris still a standard technique today. Many early
results are gathered in Gelb (1974). Bar-Shalom and ForirE®88) give a more modern
treatment with a Bayesian flavor, as well as many referenzebet vast literature on the
subject.

In many applications of Kalman filtering, one must deal ndyanth uncertain sens-
ing and dynamics but also with uncertaitentity—that is, if there are multiple objects being
monitored, the system must determine which observatiome generated by which objects
before it can update each of the state estimates. This isthdéem ofdata association(Bar-
Shalom and Fortmann, 1988; Bar-Shalom, 1992). Withbservations and tracks (a fairly
benign case), there ané possible assignments of observations to tracks; a propbapilis-
tic treatment must take all of them into account, and thislwashown to be NP-hard (Cox,
1993; Cox and Hingorani, 1994). Polynomial-time approxioramethods based on MCMC
appear to work well in practice (Paswaal, 1999). It is interesting to note that the data
association problem is an instance of probabilistic infeesin afirst-orderlanguage—unlike
most probabilistic inference problems, which are purelyppsitional, data association in-
volvesobjectsas well as thédentity relation It is therefore intimately connected to the first-
order probabilistic languages that were mentioned in Ghrapt. Recent work has shown
that reasoning about identity in general, and data assaciet particular, can be carried out
within the first-order probabilistic framework (Pasula dtakssell, 2001).

The hidden Markov model and associated algorithms for@mfee and learning, includ-
ing the forward—backward algorithm, were developed by Baumth Petrie (1966). Similar
ideas also appeared independently in the Kalman filterimgneonity (Rauchet al., 1965).
The forward—backward algorithm was one of the main precargbthe general formulation
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of the EM algorithm (; see also Chapter 19 Dempsteal., 1977). Constant-space smooth-
ing appears in Bindeet al. (1997), as does the divide-and-conquer algorithm develape
Exercise 15.3.

Dynamic belief networks (DBNs) can be viewed as a sparsedamgaf a Markov
process, and were first used in Al by Dean and Kanazawa (1988tfolson (1992), and
Kjaerulff (1992). The last work includes a generic extendimthe HIGIN belief net system
to provide the necessary facilities for dynamic belief ratwgeneration and compilation.
Dynamic Bayesian networks have become popular for modedinariety of complex mo-
tion processes in computer vision (Huagigal,, 1994; Intille and Bobick, 1999). The link
between HMMs and DBNs, and between the forward—backwawtitign and Bayesian net-
work propagation, was made explicitly by Smyhal. (1997). A further unification with
Kalman filters (as well as several other statistical modatg)ears in Roweis and Ghahra-
mani (1999).

The particle filtering algorithm described in Section 1535 la particularly interesting
history. The first sampling algorithms for filtering were d&ped in the control theory com-
munity by Handschin and Mayne (1969), and the resampling idat is the core of particle
filtering appeared in a Russian control journal (Zaritgkial,, 1975). It was later reinvented
in statistics asequential importance-sampling resamplingor SIR (Rubin, 1988; Liu and
Chen, 1998), in control theory as particle filtering (Gordaral, 1993; Gordon, 1994), in
Al as survival of the fittest (Kanazaweet al., 1995), and in computer vision asndensa-
tion (Isard and Blake, 1996). The paper by Kanazatval. (1995) includes an improvement
calledevidence reversalwhereby the state at time+ 1 is sampled conditional on both the
state at time and the evidence at time+ 1. This allows the evidence to influence sample
generation directly, and was proved (independently) byd2o(.997) to reduce the approxi-
mation error.

Alternative methods for approximate filtering include trezayed MCMC algorithm (Marthi
et al, 2002) and the factored approximation method of Bogeal. (1999). Both of these
methods have the important property that the approximatioar does not diverge over
time. Variational techniques (see Chapter 14) have also teeeloped for temporal models.
Ghahramani and Jordan (1997) discuss an approximationtaigofor thefactorial HMM ,

a DBN in which two or more independently evolving Markov aigare linked by a shared
observation stream. Jordanal. (1998) cover a number of other applications.

The prehistory of speech recognition began in the 1920s Ré#tHio Rex, a voice-
activated toy dog. Rex jumped in response to sound freqeemear 500 Hz, which cor-
responds to the [eh] vowel in “Rex!” Somewhat more seriougibegan after World War II.
At AT&T Bell Labs, a system was build for recognizing isoldigigits (Daviset al., 1952) us-
ing simple pattern matching of acoustic features. Phomsitian probabilities were first used
in a system built at University College, London by Fry (1988 Denes (1959). Starting in
1971, the Defense Advanced Research Projects Agency (DABRPAe United States De-
partment of Defense funded four competing five-year prejeztdevelop high-performance
speech recognition systems. The winner, and the only systeneet the goal of 90% accu-
racy with a 1000-word vocabulary, was the kY system at CMU (Lowerre, 1976; Lowerre
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and Reddy, 1980).The final version of ARPY was derived from a system callecRRGON
built by CMU graduate student James Baker (1975), which waditst to use HMMs for
speech. Almost simultaneously, Jelinek (1976) at IBM hatkligped another HMM-based
system. From that point onwards, probabilistic methodsenegal, and HMMs in particu-
lar, came to dominate speech recognition research andogeneht. Recent years have been
characterized by incremental progress, larger data sdtsnadels, and more rigorous com-
petitions on more realistic speech tasks. Some researbbheesexplored the possibility of
using DBNs instead of HMMs for speech, with the aim of using gheater expressive power
of DBNSs to capture more of the complex hidden state of the dpepparatus (Zweig and
Russell, 1998; Richardsaet al, 2000).

Several good textbooks on speech recognition are avail®akiner and Juang, 1993;
Jelinek, 1997; Gold and Morgan, 2000; Huaetgal., 2001). Waibel and Lee (1990) collect
important papers in the area, including some tutorial ofid® presentation in this chapter
drew on the survey by Kay, Gawron, and Norvig (1994), and ertéitbook by Jurafsky and
Martin (2000). Speech recognition research is publish&dlamputer Speech and Language
Speech Communicatignand the IEEETransactions on Acoustics, Speech, and Signal Pro-
cessing and at the DARPA Workshops on Speech and Natural Languaipe$%ing and the
Eurospeech, ICSLP, and ASRU conferences.

EXERCISES

15.1 Show that any second-order Markov process can be rewritenfiast-order Markov
process with an augmented set of state variables. Can taysibe dongarsimoniously—
that is, without increasing the number of parameters netsgecify the transition model?

15.2 In this exercise we examine what happens to the probabiliti¢he umbrella world in
the limit of long time sequences.

a. Suppose we observe an unending sequence of days on whichmibrella appears.
Show that, as the days go by, the probability of rain on theaniirday increases mono-
tonically towards a fixed point. Calculate this fixed point.

b. Now considerforecastingfurther and further into the future, given just the first two
umbrella observations. First, compute the probabiftyR, ;|U1,Us) for k=1...20
and plot the results. You should see that the probabilityemes towards a fixed point.
Calculate the exact value of this fixed point.

15.3 This exercise develops a space-efficient variant of the dotwbackward algorithm

7 The second-ranked system in the competitioBARSAY-11 (Ermanet al, 1980), had a great deal of influence
on other branches of Al research because of its use dilfekboard architecture. It was a rule-based expert
system with a number of more or less independent, moduiawledge sourcesvhich communicated via a
commonblackboard from which they could write and read. Blackboard systemstadoundation of modern
user interface architectures.
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described in Figure 15.4. We wish to comp®eX|e;.;) for k=1, ..., t. This will be done
with a divide-and-conquer approach.

a. Suppose, for simplicity, thatis odd, and let the halfway point Be= (¢ + 1)/2. Show
thatP(Xy|e;.;) can be computed fot=1,. .., h given just the initial forward message
f1.0, the backward messa@pg . 1.;, and the evidence, ;.

b. Show a similar result for the second half of the sequence.

c. Given the results of (a) and (b), a recursive, divide-amgeier algorithm can be con-
structed by first running forward along the sequence andlthekwards from the end,
storing just the required messages at the middle and the driem the algorithm is
called on each half. Write out the algorithm in detail.

d. Compute the time and space complexity of the algorithm ametion of¢, the length
of the sequence. How does this change if we divide into mae to pieces?

15.4 Onpage 552, we outlined a flawed procedure for finding the hkeby state sequence,
given an observation sequence. The procedure involvesi§ritie most likely state at each
time step, using smoothing, and returning the sequence asedof these states. Show that,
for some temporal probability models and observation secges this procedure returns an
impossible state sequence (i.e., the posterior probabilithe sequence is zero).

- DSe

—_—

»H &

Figure 15.23 A Bayesian network representation of a switching Kalmarerfilt The
switching variableS; is a discrete state variable whose value determines theitican
model for the continuous state variabls. For any discrete statge the transition model
P(X¢4+1|X¢, St =1) is a linear Gaussian model, just as in a regular Kalman filtee transi-
tion model for the discrete state(S;.+1|S), can be thought of as a matrix just as in a hidden
Markov model.

15.5 Often we wish to monitor a continuous-state system whoseawehswitches unpre-
dictably among a set df distinct “modes.” For example, an aircraft trying to evadaiasile
may execute a series of distinct maneuvers that the missijeattempt to track. A Bayesian
network representation of suctsaitching Kalman filter model is shown in Figure 15.23.

a. Suppose that the discrete st&lehask possible values and that the prior continuous
state estimat®(X) is a multivariate Gaussian distribution. Show that the jotéxh
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P(X1) is amixture of Gaussians—that is, a weighted sum of Gaussians such that the
weights sum to 1.

b. Show that if the current continuous state estinfag;|e;.;) is a mixture ofm Gaus-
sians, then the updated state estinf{t€; 1 |e;..+1) will be a mixture ofkm Gaussians
in the general case.

¢. What aspect of the temporal process do the weights in thesgaumixture represent?

Together, the results in (a) and (b) show that the represemtaf the posterior grows without
limit even for switching Kalman filters, which are the simgti@ybrid dynamic models.

15.6 Complete the missing step in the derivation of Equation1@8).the first update step
for the one-dimensional Kalman filter.

15.7 Let us examine the behavior of the variance update in Equéiis.19).

a. Plot the value of? as a function of, given various values far2 ando?.

b. Show that the update has a fixed paifitsuch thab? — o2 ast — oo, and calculate
it.

c. Give a qualitative explanation for what happensras— 0 and asr? — 0.

15.8 Show how to represent an HMM as a recursive relational piitiséd model, as sug-
gested in Section 14.6.

15.9 In this exercise, we analyze in more detail the persistehiréamodel for the battery
sensor in Figure 15.13(a).

a. Figure 15.13(b) stops at=32. Describe qualitatively what should happentas oo
if the sensor continues to read 0.

b. Suppose that the external temperature affects the bagesryor, in such a way that
transient failures become more likely as temperature asge. Show how to augment
the DBN structure in Figure 15.13(a) and explain any reguateanges to the CPTs.

c. Given the new network structure, can battery readings bd big the robot to infer the
current temperature?

15.10 Consider applying the variable elimination algorithm te timbrella DBN unrolled

for three slices, where the query B R3|U;, Uz, Us). Show that the complexity of the
algorithm—the size of the largest factor—is the same whethe rain variables are elim-
inated in forward or backward order.

15.11 The model of “tomato” in Figure 15.20 allows for a coartidida on the first vowel
by giving two possible phones. An alternative approach igs® a triphone model in which
the [ow(t,m)] phone automatically includes the change iwelosound. Draw a complete
triphone model for “tomato,” including the dialect variati
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