
15
PROBABILISTIC
REASONING OVER TIME

In which we try to interpret the present, understand the past, and perhaps predict
the future, even when very little is crystal clear

Agents in uncertain environments must be able to keep track of the current state of
the environment, just like the logical agents in Part III. The task is made more difficult by
partial and noisy percepts and uncertainty about how the environment changes over time. At
best, the agent will be able to obtain only a probabilistic assessment of the current situation.
This chapter describes the representations and inference algorithms that make this possible,
building on the ideas introduced in Chapter 14.

The basic approach is described in Section 15.1: a changing world is modelled using
a random variable for each aspect of the world stateat each point in time. The relations
among these variables describe how the state evolves. Section 15.2 defines the basic inference
tasks and describes the general structure of inference algorithms for temporal models. Then
we describe three specific kinds of models:hidden Markov models, Kalman filters , and
dynamic Bayesian networks(which include hidden Markov models and Kalman filters as
special cases). Finally, Section 15.6 explains how temporal probability models form the core
of modern speech recognition systems. Learning plays a central role in the construction of all
these models, but detailed investigation of learning algorithms is left until Part VI.

15.1 TIME AND UNCERTAINTY

We have developed our techniques for probabilistic reasoning in the context ofstatic worlds,
in which each random variable has a single fixed value. For example, when repairing a car,
we assume that whatever is broken remains broken during the process of diagnosis; our job
is to infer the state of the car from observed evidence, whichalso remains fixed.

Now consider a slightly different problem—treating a diabetic patient. As in the case
of car repair, we have evidence such as recent insulin doses,food intake, blood sugar mea-
surements, and other physical signs. The task is to assess the current state of the patient,
including actual blood sugar level and insulin level. Giventhis information, the doctor (or
patient) makes a decision about food intake and insulin dose. Unlike the case of car repair,
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Section 15.1. Time and Uncertainty 543

here thedynamicaspects of the problem are essential. Blood sugar levels, and measurements
thereof, can change rapidly over time, depending on recent food intake and insulin doses,
metabolic activity, time of day, and so on. To assess the current state from the history of
evidence and to predict the outcomes of treatment actions, we must model these changes.

The same considerations arise in many other contexts, ranging from tracking the eco-
nomic activity of a nation, given approximate and partial statistics, to understanding a se-
quence of spoken words, given noisy and ambiguous acoustic measurements. How can dy-
namic situations like these be modelled?

States and observations

The basic approach we will adopt is very similar to the idea underlying situation calculus,
as described in Chapter 10: the process of change can be viewed as a series of snapshots,
each of which describes the state of the world at a particulartime. Each snapshot ortime
slice contains a set of random variables, some of which are observable and some of whichTIME SLICE

are not. For simplicity, we will assume that the same subset of variables is observable in each
time slice (although this is not strictly necessary in anything that follows). We will useXt to
denote the set of unobservable state variables at timet andEt to denote the set of observable
evidence variables. The observation at timet is Et =et for some set of valueset.

Consider the following oversimplified example. Suppose youare the security guard at
some secret underground installation. You want to know if it’s raining today, but your only
access to the outside world occurs each morning when you see the director coming in with,
or without, an umbrella. For each dayt, the setEt thus contains a single evidence variableUt
(whether the umbrella appears), and the setXt contains a single state variableRt (whether
it is raining). Other problems may involve larger sets of variables. In the diabetes example,
we might have evidence variables such asMeasuredBloodSugart, PulseRatet, etc., with
state variables such asBloodSugart, StomahContentst, and so on.1

The interval between time slices also depends on the problem. For diabetes monitoring,
a suitable interval might be an hour rather than a day. In thischapter, we will generally assume
a fixed, finite interval; this means that times can be labelledby integers. We will assume
that the state sequence starts att=0; for various uninteresting reasons, we will assume that
evidence starts arriving att=1 rather thant=0. Hence our umbrella world is represented by
state variablesR0; R1; R2; : : : and evidence variablesU1; U2; : : :. We will use the notationa : b to denote the sequence of integers froma to b, and the notationXa:b to denote the
corresponding set of variables fromXa to Xb. For example,U1:3 corresponds to the variablesU1, U2, U3.
Stationary processes and the Markov assumption

Having decided on the set of state and evidence variables fora given problem, the next step
is to specify the dependencies among the variables. We couldfollow the procedure laid down
in Chapter 14, placing the variables in some order and askingquestions about conditional1 Notice thatBloodSugart andMeasuredBloodSugart are not the same variable; this is how we deal with
noisy measurements of actual quantities.
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544 Chapter 15. Probabilistic Reasoning over Time
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Figure 15.1 (a) Bayesian network structure corresponding to afirst-order Markov process
with state defined by the variablesXt. (b) A second-order Markov process.

independence of predecessors given some set of parents. Oneobvious choice is to order the
variables in their natural temporal order, since cause usually precedes effect and we prefer to
add the variables in causal order.

We would quickly run into an obstacle, however: the set of variables is unbounded,
since it includes the state and evidence variables for everytime slice. This actually creates two
problems: first, we might have to specify an unbounded numberof conditional probability
tables—one for each variable in each slice; and second, eachone might involve an unbounded
number of parents.

The first problem is solved by assuming that changes in the world state are caused
by a stationary process—that is, a process of change that is governed by laws that do notSTATIONARY

PROCESS

themselves change over time. (Don’t confusestationarywith static: in a static process, the
state itself does not change.) In the umbrella world, then, the conditional probability that
the umbrella appears,P(UtjParents(Ut)), is the same for allt. Given the assumption of
stationarity, therefore, we need specify conditional distributions only for the variables within
a “representative” time slice.

The second problem, that of handling the potentially infinite number of parents, is
solved by making what is called aMarkov assumption, that is, that the current state dependsMARKOV

ASSUMPTION

on only afinite history of previous states. Processes satisfying this assumption were first
studied in depth by the Russian statistician A. A. Markov andare calledMarkov processesMARKOV

PROCESSES

or Markov chains. They come in various flavors; the simplest is thefirst-order MarkovMARKOV CHAINS

process, in which the current state depends only on the previous state and not on any earlierFIRSTORDER
MARKOV PROCESS

states. Using our notation, the corresponding conditionalindependence assertion states that,
for all t,

P(XtjX0:t�1) = P(XtjXt�1) (15.1)

Hence, in a first-order Markov process, the laws describing how the state evolves over time
are contained entirely within the conditional distribution P(XtjXt�1), which we call thetran-
sition model.2 in The transition model for a second-order Markov process isthe conditionalTRANSITION MODEL

distribution P(XtjXt�2;Xt�1). Figure 15.1 shows the Bayesian network structures corre-
sponding to first-order and second-order Markov processes.

In addition to restricting the parents of the state variables Xt, we must also restrict the2 The transition model is the probabilistic analogue of the Boolean update circuits in Chapter 7 and the successor-
state axioms in Chapter 10.
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Figure 15.2 Bayesian network structure and conditional distributionsdescribing the
umbrella world. The transition model isP (RaintjRaint�1) and the sensor model isP (UmbrellatjRaint).

parents of the evidence variablesEt. Typically, we will assume that the evidence variables at
time t depend only on the current state:

P(EtjX0:t;E0:t�1) = P(EtjXt) (15.2)

The conditional distributionP(EtjXt) is called thesensor model(or sometimes theobser-SENSOR MODEL

vation model), because it describes how the “sensors”—that is, the evidence variables, are
affected by the actual state of the world. Notice the direction of the dependence: the “arrow”
goes from state to sensor values because the state of the world causesthe sensors to take on
particular values. In the umbrella world, for example, the rain causesthe umbrella to ap-
pear. (The inference process, of course, goes in the other direction; the distinction between
the direction of modelled dependencies and the direction ofinference is one of the principal
advantages of Bayesian networks.)

In addition to the transition model and sensor model, we alsoneed to specify a prior
probabilityP(X0) over the states at time 0. These three distributions, combined with the the
conditional independence assertions in Equations (15.1) and (15.2), give us a specification of
the complete joint distribution over all the variables. Forany finitet, we have

P(X0;X1; : : : ;Xt;E1; : : : ;Et) = P(X0) tYi=1 P(XijXi�1)P(EijXi) (15.3)

The independence assumptions correspond to a very simple structure for the Bayesian net-
work describing the whole system. Figure 15.2 shows the network structure for the umbrella
example, including the conditional distributions for the transition and sensor models.

The structure in the figure assumes a first-order Markov process, because the probability
of rain is assumed to depend only on whether it rained the previous day. Whether such an
assumption is reasonable depends on the domain itself. The first-order Markov assumption
says that the state variables containall the information needed to characterize the probability
distribution for the next time slice. Sometimes the assumption is exactly true—for example,
if a particle is executing arandom walk along thex–axis, changing its position by�1 atRANDOM WALK

each time step, then using thex–coordinate as the state gives a first-order Markov process.
Sometimes the assumption is only approximate, as in the caseof predicting rain just based on
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546 Chapter 15. Probabilistic Reasoning over Time

whether it rained the previous day. There are two possible fixes if the approximation proves
too inaccurate:

1. Increasing the order of the Markov process model. For example, we could make a
second-order model by addingRaint�2 as a parent ofRaint, which might give slightly
more accurate predictions.

2. Increasing the set of state variables. For example, we could addTemperaturet andPressuret to help in predicting the weather.

Exercise 15.1 asks you to show that the first solution—increasing the order—can always be
reformulated as an increase in the set of state variables, keeping the order fixed. Notice that
adding state variables may improve predictive power but also increases the predictionre-
quirements, since we also have to predict the new variables. Thus, we arelooking for a “self-
sufficient” set of variables, which really means that we haveto understand the “physics” of
the process being modelled. The requirement for accurate modelling of the process is obvi-
ously lessened if we can add new sensors (e.g., measurementsof temperature and pressure)
that provide information directly about the new state variables.

Consider, for example, the problem of tracking a robot wandering randomly on the X–Y
plane. One might propose that the position and velocity are asufficient set of state variables:
one can simply use Newton’s laws to calculate the new position, and the velocity may change
unpredictably. If the robot is battery-powered, however, then battery exhaustion would tend to
have a systematic effect on the change in velocity. Because this in turn depends on how much
power was used by all previous maneuvers, the Markov property is violated. We can restore
the Markov property by including the charge levelBatteryt as one of the state variables that
compriseXt. This helps in predicting the motion of the robot, but in turnrequires a model
for predictingBatteryt givenBatteryt�1 and the velocity. In some cases this can be done
reliably; accuracy would be improved byadding a new sensorthat measures the battery level.

15.2 INFERENCE IN TEMPORAL MODELS

Having set up the structure of a generic temporal model, we can formulate the basic inference
tasks that must be solved. They are as follows:} Filtering or monitoring : this is the task of computing thebelief state—the poste-FILTERING

MONITORING

BELIEF STATE

rior distribution over the current state, given all evidence to date. That is, we wish to
computeP(Xtje1:t), assuming that evidence arrives in a continuous stream beginning
at t=1. In the umbrella example, this would mean computing the probability of rain
today, given all the observations of the umbrella-carrier made so far. Filtering is what
a rational agent needs to do in order to keep track of the current state so that rational
decisions can be made (see Chapter 17). It turns out that an almost identical calculation
provides thelikelihood of the evidence sequence, i.e.,P (e1:t).} Prediction: This is the task of computing the posterior distribution over thefuturestate,PREDICTION

given all evidence to date. That is, we wish to computeP(Xt+kje1:t) for somek > 0.
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Section 15.2. Inference in temporal models 547

In the umbrella example, this might mean computing the probability of rain three days
from now, given all the observations of the umbrella-carrier made so far. Prediction is
useful for evaluating possible courses of action.} Smoothingor hindsight: This is the task of computing the posterior distribution over aSMOOTHING

HINDSIGHT paststate, given all evidence up to the present. That is, we wish to computeP(Xkje1:t)
for somek such that0 � k < t. In the umbrella example, this might mean computing
the probability that it rained last Wednesday, given all theobservations of the umbrella-
carrier made up to today. Hindsight provides a better estimate of the state than was
available at the time, because it incorporates more evidence.} Most likely explanation: Given a sequence of observations, we may wish to find the
most likely sequence of states that generated those observations. That is, we wish to
computeargmaxx1:t P (x1:tje1:t). For example, if the umbrella appears on each of the
first three days and is absent on the fourth, then the most likely explanation is that it
rained on the first three days and did not rain on the fourth. Algorithms for this task
are useful in many applications, including speech recognition—where the aim is to find
the most likely sentence, given a series of sounds—and reconstruction of bit strings
transmitted over a noisy channel.

In addition to these tasks, methods are also needed forlearning the transition and sensor
models from observations. Just as with static Bayesian networks, DBN learning can be done
as a by-product of inference. Inference provides an estimate of what transitions actually
occurred and of what states generated the sensor readings, and these estimates can be used
to update the models. The updated models provide new estimates, and the process iterates
to convergence. The overall process is an instance of theEM algorithm (see Section 19.3).
One point to note is that learning requires the full smoothing inference, rather than filtering,
because it provides better estimates of the states of the process. Learning with filtering may
fail to converge correctly; consider, for example, the problem of learning to solve murders—
hindsight isalwaysrequired to infer what happened at the murder scene.

Algorithms for the four inference tasks listed in the preceding paragraph can be de-
scribed first at a generic level, independent of the particular kind of model employed. Further
improvements specific to each family of models will be described in the corresponding sec-
tions.

Filtering and prediction

Let us begin with filtering. We will show that this can be done in a simple online fashion:
given the result of filtering up to timet, one can easily compute the result fort+ 1 given the
new evidenceet+1. That is,

P(Xt+1je1:t+1) = f(et+1;P(Xtje1:t))
for some functionf . This process is often calledrecursive estimation. We can view theRECURSIVE

ESTIMATION

calculation as actually being composed of two parts: first, the current state distribution is
projected forward fromt to t + 1, then it is updated using the new evidenceet+1. This
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548 Chapter 15. Probabilistic Reasoning over Time

two-part process emerges quite simply:

P(Xt+1je1:t+1) = P(Xt+1je1:t;et+1) dividing up the evidence= �P(et+1jXt+1;e1:t)P(Xt+1je1:t) using Bayes’ rule= �P(et+1jXt+1)P(Xt+1je1:t) by the Markov property of evidence

The second term,P(Xt+1je1:t) represents a one-step prediction of the next state, and the first
term updates this with the new evidence; notice thatP(et+1jXt+1) is obtainable directly from
the sensor model. Now we obtain the one-step prediction for the next state by conditioning
on the current stateXt:

P(Xt+1je1:t+1) = �P(et+1jXt+1)X
xt P(Xt+1jxt;e1:t)P (xtje1:t)= �P(et+1jXt+1)X

xt P(Xt+1jxt)P (xtje1:t) using the Markov property (15.4)

Within the summation, the first factor is simply the transition model, and the second is the
current state distribution. Hence, we have the desired recursive formulation. We can think
of the filtered estimateP(Xtje1:t) as a “message”f1:t that is propagated forward along the
sequence, modified by each transition and updated by each newobservation. The process is

f1:t+1 = � FORWARD(f1:t;et+1)
where FORWARD implements the update described in Equation (15.4).

When all the state variables are discrete, the time for each update is constant (indepen-
dent oft), and the space required is also constant. (The constants depend, of course, on the
size of the state space and the specific type of the temporal model in question.)The time and
space requirements for updating must be constant if an agentwith limited memory is to keep
track of the current state distribution over an unbounded sequence of observations.

Let us illustrate the filtering process for two steps in the basic umbrella example (see
Figure 15.2). We assume that our security guard has some prior belief as to whether it
rained on day 0, just before the observation sequence begins. Let’s suppose this isP(R0) =h0:5; 0:5i. Now we process the two observations as follows:� On day 1, the umbrella appears, soU1= true. The prediction fromt=0 to t=1 is

P(R1) = Xr0 P(R1jr0)P (r0)= h0:7; 0:3i� 0:5 + h0:3; 0:7i� 0:5 = h0:5; 0:5i
and updating with the evidence fort=1 gives

P(R1ju1) = �P(u1jR1)P(R1) = �h0:9; 0:2ih0:5; 0:5i= �h0:45; 0:1i � h0:818; 0:182i� On day 2, the umbrella appears, soU2= true. The prediction fromt=1 to t=2 is

P(R2ju1) = Xr1 P(R2jr1)P (r1ju1)= h0:7; 0:3i� 0:818 + h0:3; 0:7i� 0:182 � h0:627; 0:373i
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Section 15.2. Inference in temporal models 549

and updating with the evidence fort=2 gives

P(R2ju1; u2) = �P(u2jR2)P(R2ju1) = �h0:9; 0:2ih0:627; 0:373i= �h0:565; 0:075i � h0:883; 0:117i
Intuitively, the probability of rain increases from day 1 today 2 because rain persists. Exer-
cise 15.2(a) asks you to investigate this tendency further.

The task ofprediction can simply be seen as filtering without the addition of new
evidence. In fact, the filtering process already incorporates a one-step prediction, and it is
easy to derive the following recursive computation for predicting the state att+ k + 1 from
a prediction fort+ k:

P(Xt+k+1je1:t) = X
xt+k P(Xt+k+1jxt+k)P (xt+kje1:t) (15.5)

Naturally, this computation involves only the transition model and not the sensor model.
It is interesting to consider what happens as we try to predict further and further into

the future. As Exercise 15.2(b) shows, the predicted distribution for rain converges to a
fixed point h0:5; 0:5i, after which it remains constant for all time. This is thestationary
distribution of the Markov process defined by the transition model (see also page 522). A
great deal is known about the properties of such distributions and about themixing time—MIXING TIME

roughly, the time taken to reach the fixed point. In practicalterms, this dooms to failure any
attempt to predict theactualstate for a number of steps that is more than a small fraction of
the mixing time. The more uncertainty there is in the transition model, the shorter will be the
mixing time and the more the future is obscured.

In addition to filtering and prediction, we can also use a forward recursion to compute
the thelikelihood of the evidence sequence, i.e.,P (e1:t). This is a useful quantity if we want
to compare different possible temporal models that might have produced the same evidence
sequence; for example, in Section 15.6, we compare different words that might have produced
the same sound sequence. For this recursion, we use a likelihood messagè1:t =P(Xt;e1:t).
It is a simple exercise to show that`1:t+1 = FORWARD(`1:t;et+1) :
Having computed̀ 1:t, we obtain the actual likelihood by summing outXt:L1:t = P (e1:t) =X

xt `1:t(xt) : (15.6)

Smoothing

As we said earlier,smoothing is the process of computing the distribution over past states
given evidence up to the present, that is,P(Xkje1:t) for 1 � k < t (see Figure 15.3). This is
done most conveniently in two parts—the evidence up tok and the evidence fromk + 1 to t:

P(Xkje1:t) = P(Xkje1:k;ek+1:t)= �P(Xkje1:k)P(ek+1:tjXk;e1:k) using Bayes’ rule= �P(Xkje1:k)P(ek+1:tjXk) using conditional independence= �f1:kbk+1:t (15.7)
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Figure 15.3 Smoothing computesP(Xkje1:t), the posterior distribution of the state at
some past timek given a complete sequence of observations from1 to t.

where we have defined a “backward” messagebk+1:t=P(ek+1:tjXk), analogous to the for-
ward messagef1:k. The forward messagef1:k can be computed by filtering forward from
1 to k, as given by Equation (15.4). It turns out that the backward messagebk+1:t can be
computed by a recursive process that runsbackwardsfrom t:

P(ek+1:tjXk) = X
xk+1 P(ek+1:tjXk; xk+1)P(xk+1jXk) conditioning onXk+1= X
xk+1 P (ek+1:tjxk+1)P(xk+1jXk) by conditional independence= X
xk+1 P (ek+1;ek+2:tjxk+1)P(xk+1jXk)= X
xk+1 P (ek+1jxk+1)P (ek+2:tjxk+1)P(xk+1jXk) (15.8)

where the last step follows by conditional independence ofek+1 andek+2:t givenXk+1. Of
the three factors in this summation, the first and third are obtained directly from the model,
and the second is the “recursive call.” Using the message notation, we have

bk+1:t = BACKWARD(bk+2:t;ek+2:t)
where BACKWARD implements the update described in Equation (15.8). As withthe forward
recursion, the time and space required for each update are constant, independent oft.

Given this derivation, we can now see that the two terms in Equation (15.7) can both
be computed by recursions through time, one running forwardfrom 1 to k using the filtering
equation (15.4) and the other running backward fromt to k + 1 using Equation (15.8). Note
that the backward phase is initialized withbt+1:t =P(et+1:tjXt)=1, where1 is a vector of
1s. (Why?)

Let us now illustrate this algorithm for the umbrella example by computing the smoothed
estimate for the probability of rain att=1, given umbrella observations on day 1 and day 2.
From Equation (15.7), this is given by

P(R1ju1; u2) = �P(u2jR1)P(R1ju1) (15.9)

The second term we already know to beh:818; :182i, from the forward filtering process de-
scribed earlier. The first term can be computed by applying the backward recursion in Equa-
tion (15.8):

P(u2jR1) = Xr2 P (u2jr2)P ( jr2)P(r2jR1)
c 2002 by Russell and Norvig. DRAFT---DO NOT DISTRIBUTE



Section 15.2. Inference in temporal models 551= (0:9� 1�h0:7; 0:3i) + (0:2� 1� h0:3; 0:7i) = h0:69; 0:41i
Plugging this into Equation (15.9), we find that the smoothedestimate for rain on day 1 is

P(R1ju1; u2) = �h0:69; 0:41i� h0:818; 0:182i � h0:883; 0:117i
Thus, the smoothed estimate ishigher than the filtered estimate (0.818) in this case. This is
because the umbrella on day 2 makes it more likely to have rained on day 2; in turn, because
rain tends to persist, this makes it more likely to have rained on day 1.

Both the forward and backward recursions take a constant amount of time per step,
hence the time complexity of smoothing with respect to evidence e1:t is O(t). This is the
complexity for smoothing at a particular time stepk. If we want to smooth the whole sequence
to get the correct posterior estimate of what actually happened, one obvious method is simply
to run the whole smoothing process once for each time step to be smoothed. This results in
a time complexity ofO(t2). A better approach uses a very simple application of dynamic
programming to reduce this toO(t). A clue appears in the preceding analysis of the umbrella
example, where we were able to reuse the results of the forward filtering phase. The key to
the linear-time algorithm is torecord the resultsof forward filtering over the whole sequence.
Then we run the backward recursion fromt down to 1, computing the smoothed estimate
at each stepk from the computed backward messagebk+1:t and the stored forward message
f1:k. The algorithm, aptly called theforward–backward algorithm , is shown in Figure 15.4.

FORWARD–
BACKWARD
ALGORITHM

The alert reader will have spotted that the Bayesian networkstructure shown in Fig-
ure 15.3 is apolytree in the terminology of Chapter 14. This means that a straightforward
application of the clustering algorithm also yields a linear-time algorithm that computes
smoothed estimates for the entire sequence. One can show that the forward–backward al-
gorithm is in fact a special case of the polytree propagationalgorithm used with clustering
methods.

The forward–backward algorithm forms the backbone of the computational methods
used in many applications that deal with sequences of noisy observations, ranging from
speech recognition to radar tracking of aircraft. As described, it has two practical draw-
backs. The first is that its space complexity can be too high for applications where the state
space is large and the sequences are long. It usesO(jfjt) space wherejfj is the size of the
representation of the forward message. The space requirement can be reduced toO(jfj log t)
with a concomitant increase in the time complexity by a factor of log t, as shown in Exer-
cise 15.3. In some cases (see Section 15.3), a constant-space algorithm can be used with no
time penalty.

The second drawback of the basic algorithm is that it needs modification to work in an
onlinesetting where smoothed estimates must be computed for earlier time slices as new ob-
servations are continuously added to the end of the sequence. The most common requirement
is for fixed-lag smoothing, which requires computing the smoothed estimateP(Xt�dje1:t)FIXEDLAG

SMOOTHING

for fixedd. That is, smoothing is done for the time sliced steps behind the current timet; ast
increases, the smoothing has to keep up. Obviously, we can run the forward–backward algo-
rithm over thed-step “window” as each new observation is added, but this seems inefficient.
In Section 15.3, we will see that fixed-lag smoothing can, in some cases, be done in constant
time per update, independent of the lagd.
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function FORWARD-BACKWARD (ev,prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps1; : : : ; t

prior, the prior distribution on the initial state,P(X0)
local variables: fv, a vector of forward messages for steps0; : : : ; t

b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps1; : : : ; t

fv[0℄ prior
for i= 1 to t do

fv[i℄ FORWARD(fv[i� 1℄; ev[i℄)
for i= t downto 1 do

sv[i℄ NORMALIZE(fv[i℄�b)
b BACKWARD(b; ev[i℄)

return sv

Figure 15.4 The forward–backward algorithm for computing posterior probabilities of
a sequence of states given a sequence of observations. The FORWARD and BACKWARD

operators are defined by Equations (15.4) and (15.8) respectively.

Finding the most likely sequence

Suppose that[true; true; false; true; true℄ is the umbrella sequence for the security guard’s
first five days on the job. What is the most likely weather sequence that explains this? Does
the absence of the umbrella on day 3 mean that it wasn’t raining, or did the director forget
to bring it? If it didn’t rain on day 3, perhaps (because weather tends to persist) it didn’t
rain on day 4 either, but the director brought the umbrella just in case. In all, there are25
possible weather sequences we could pick. Is there a way to find the most likely one, short of
enumerating all of them?

One approach we could try is the following linear-time procedure: use the smoothing
algorithm to find the posterior distribution for the weatherat each time step, then construct
the sequence using the most likely weather at each step according to the posterior. Such an
approach should set off alarm bells in the reader’s head, because the posteriors computed by
smoothing are distributions oversingletime steps, whereas to find the most likelysequence
we must considerjoint probabilities over all the time steps. The results may in fact be quite
different (see Exercise 15.4).

Thereis a linear-time algorithm for finding the most likely sequence, but it requires a
little more thought. It relies on the same Markov property that yielded efficient algorithms for
filtering and smoothing. The easiest way to think about the problem is to view each sequence
as apath through a graph whose nodes are the possiblestatesat each time step. Such a
graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding
the most likely path through this graph, where the likelihood of any path is the product of
the transition probabilities along the path and the probabilities of the given observations at
each state. Let’s focus in particular on paths that reach thestateRain5= true. Because of
the Markov property, we can make the following simple observation: the most likely path

c 2002 by Russell and Norvig. DRAFT---DO NOT DISTRIBUTE



Section 15.3. Hidden Markov Models 553

to the stateRain5= true consists of the most likely path tosomestate at time 4 followed
by a transition toRain5= true; and the state at time 4 that will become part of the path toRain5= true is whichever maximizes the likelihood of that path. In otherwords,there is a
recursive relationship between most likely paths to each state xt+1 and most likely paths to
each statext. We can write this relationship as an equation connecting theprobabilities of
the paths:max

x1:::xt P(x1; : : : ; xt;Xt+1je1:t+1)= P(et+1jXt+1)max
xt �

P(Xt+1jxt) max
x1:::xt�1 P (x1; : : : ; xt�1; xtje1:t)� (15.10)

Equation (15.10) isidentical to the filtering equation (15.4) except that

1. the forward messagef1:t =P(Xtje1:t) is replaced by the message

m1:t = max
x1:::xt�1 P(x1; : : : ; xt�1;Xtje1:t);

that is, the probabilities of the most likely path to each state xt; and

2. the summation overxt in Equation (15.4) is replaced by the maximization overxt in
Equation (15.10).

Thus, the algorithm for computing the most likely sequence is very similar to filtering: it
runs forward along the sequence, computing them message at each time step using Equa-
tion (15.10). The progress of this computation is shown in Figure 15.5(b). At the end, it will
have the probability for the most likely sequence reachingeachof the final states. One can
thus easily select the most likely sequence overall (the state outlined in bold). In order to
identify the actual sequence, as opposed to just computing its probability, the algorithm will
also need to keep pointers from each state back to the best state that leads to it (shown in
bold); the sequence is identified by following the pointers back from the best final state.

The algorithm we have just described is called theViterbi algorithm , after its inventor.VITERBI ALGORITHM

Like the filtering algorithm, its complexity is linear int, the length of the sequence. Un-
like filtering, however, its space requirement is also linear in t. This is because the Viterbi
algorithm needs to keep the pointers that identify the best sequence leading to each state.

15.3 HIDDEN MARKOV MODELS

The preceding section developed algorithms for temporal probabilistic reasoning using a very
general framework, independent of the specific form of the transition and sensor models. In
this and the following two sections, we discuss more concrete models and applications that
illustrate the power of the basic algorithms and in some cases allow further improvements.

We begin with thehidden Markov model or HMM . An HMM is a temporal probabilis-HIDDEN MARKOV
MODEL

tic model in which the state of the process is described by asingle, discreterandom variable.
The possible values of the variable are the possible states of the world. The umbrella example
described in the preceding section is therefore an HMM, since it has just one state variable,Raint. Additional state variables can be added to a temporal modelwhile staying within the
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Figure 15.5 (a) Possible state sequences forRaint can be viewed as paths through a
graph of the possible states at each time step. (States are shown using square nodes to avoid
confusion with nodes in a Bayesian network.) (b) Operation of the Viterbi algorithm for
the umbrella observation sequence[true; true; false; true; true℄. For each time stept, we
have shown the values of the messagem1:t which gives the probability of the best sequence
reaching each state at timet. Also, for each state, the bold arrow leading into it indicates its
best predecessor. Following the bold arrows back from the most likely state inm1:5 gives the
most likely sequence.

HMM framework, but only by combining all the state variablesinto a single “megavariable”
whose values are all possible tuples of values of the individual state variables. HMMs usually
have a single, discrete evidence variable as well, but this restriction is less important. We will
see that the restricted structure of HMMs allows for a very simple and elegant matrix imple-
mentation of all the basic algorithms.3 Section 15.6 shows how HMMs are used for speech
recognition.

Simplified matrix algorithms

With a single, discrete state variableXt, we can give concrete form to the representations
of the transition model, the sensor model, and the forward and backward messages. Let the
state variableXt have values denoted by integers1; : : : ; S, whereS is the number of possible
states. The transition modelP(XtjXt�1) becomes anS�S matrix T, where

Tij = P (Xt = jjXt�1 = i)
That is,Tij is the probability of a transition from statei to statej. For example, the transition
matrix for the umbrella world is

T = P(XtjXt�1) =  0:7 0:30:3 0:7 !
We also put the sensor model in matrix form. In this case, because the value of the evidence
variableEt is known to beet (say), we need only use that part of the model specifying the3 For this reason, the reader unfamiliar with basic operations on vectors and matrices might wish to consult
Appendix A before continuing.
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probability thatet appears. For each time stept, we construct a diagonal matrixOt whose
diagonal entries are given by the valuesP (etjXt = i) and whose other entries are 0. For
example, on day 1 in the umbrella world,U1= true, so from the table in Figure 15.2 we have

O1 =  0:9 00 0:2 !
Now, if we use column vectors to represent the forward and backward messages, the compu-
tations become simple matrix–vector operations. The forward equation (15.4) becomes

f1:t+1 = �Ot+1T>f1:t (15.11)

and the backward equation (15.8) becomes

bk+1:t = TOk+1bk+2:t (15.12)

From these equations, we can see that the time complexity of the forward–backward algo-
rithm (Figure 15.4) applied to a sequence of lengtht is O(S2t), as each step requires mul-
tiplying anS-element vector by anS�S matrix. The space requirement isO(St), because
the forward pass storest vectors of sizeS.

Besides providing an elegant description and implementation of the filtering and smooth-
ing algorithms for HMMs, the matrix formulation also reveals opportunities for improved
algorithms. The first is a simple variation on the forward–backward algorithm that allows
smoothing to be carried out usingconstantspace, independent of the length of the sequence.
The idea is that smoothing for any particular time slicek requires the simultaneous presence
of both the forward and backward messages,f1:k andbk+1:t, according to Equation (15.7).
The forward–backward algorithm achieves this by storing the fs computed on the forward
pass so that they are available during the backward pass. Another way to achieve this is with
a single pass that propagates bothf andb in the same direction. For example, the “forward”
messagef can be propagated backwards if we manipulate Equation (15.11) to work in the
other direction:

f1:t = �0(T>)�1O�1t+1f1:t+1
The modified smoothing algorithm works by first running the standard forward pass to com-
pute ft:t (forgetting all the intermediate results), then running the backward pass for bothb
and f together, using them to compute the smoothed estimate at each step. Since only one
copy of each message is needed, the storage requirements areconstant (independent oft, the
length of the sequence). There is, of course, one significantrestriction on this algorithm: it
requires that the transition matrix be invertible and that the sensor model have no zeroes—that
is, every observation is possible in every state.

A second area where the matrix formulation reveals an improvement is inonlinesmooth-
ing with a fixed lag. The fact that smoothing can be done with constant space suggests that
there should exist an efficient recursive algorithm for online smoothing—that is, one whose
time complexity is independent of the length of the lag. Let us suppose that the lag isd—that
is, we are smoothing at time slicet � d where the current time ist. By Equation (15.7), we
need to compute�f1:t�dbt�d+1:t
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for slicet� d. Then, when a new observation arrives, we need to compute�f1:t�d+1bt�d+2:t+1
for slicet�d+1. How can this be done incrementally? First, we can computef1:t�d+1 from
f1:t�d using the standard filtering process, Equation (15.4).

Computing the backward message incrementally is more tricky, because there is no sim-
ple relationship between the old backward messagebt�d+1:t and the new backward message
bt�d+2:t+1. Instead, we will examine the relationship between the old backward message
bt�d+1:t and the backward message at the front of the sequence,bt+1:t. To do this, we apply
Equation (15.12)d times:

bt�d+1:t = 0� tYi= t�d+1 TOi1Abt+1:t = Bt�d+1:t1 (15.13)

where the matrixBt�d+1:t is the product of the sequence ofT andO matrices. B can be
thought of as a “transformation operator” that transforms alater backward message into an
earlier one. A similar equation holds for the new backward messagesafter the next observa-
tion arrives:

bt�d+2:t+1 = 0� t+1Yi= t�d+2 TOi1Abt+2:t+1 = Bt�d+2:t+11 (15.14)

Examining the product expressions in Equations (15.13) and(15.14), we see that they have a
simple relationship: to get the second product, “divide” the first product by the first element
TOt�d+1 and multiply by the new last elementTOt+1. In matrix language, then, there is a
simple relationship between the old and newB matrices:

Bt�d+2:t+1 = O�1t�d+1T�1Bt�d+1:tTOt+1 (15.15)

This equation provides an incremental update for theB matrix, which in turn (through Equa-
tion (15.14)) allows us to compute the new backward messagebt�d+2:t+1. The complete
algorithm, which requires storing and updatingf andB, is shown in Figure 15.6.

15.4 KALMAN FILTERS

Imagine watching a small bird flying through dense jungle foliage at dusk: you glimpse
brief, intermittent flashes of motion; you try hard to guess where the bird is and where it will
appear next so that you don’t lose it. Or imagine you are a WWIIradar operator peering
at a faint, wandering blip that appears once every ten seconds on the screen. Or, going
back further still, imagine you are Kepler trying to reconstruct the motions of the planets
from a collection of highly inaccurate angular observations taken at irregular and imprecisely
measured time intervals. In all these cases, you are trying to estimate the state (position and
velocity, for example) of a physical system from noisy observations over time. The problem
can be formulated as inference in a temporal probability model, where the transition model
describes the physics of motion and the sensor model describes the measurement process.
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function FIXED-LAG-SMOOTHING(et,hmm,d) returns a probability distribution overXt�d
inputs: et, the current evidence for time stept

hmm, a hidden Markov model withS� S transition matrixT
d, the length of the lag for smoothing

static: t, the current time, initially 1
f, a probability distribution, the forward messageP(Xtje1:t), initially PRIOR[hmm℄
B, thed-step backward transformation matrix, initially the identity matrixet�d:t, double-ended list of evidence fromt� d to t, initially empty

local variables: Ot�d;Ot, diagonal matrices containing the sensor model information

addet to the end ofet�d:t
Ot diagonal matrix containingP(etjXt)
if t > d then

f FORWARD(f; et)
removeet�d�1 from the beginning ofet�d:t
Ot�d diagonal matrix containingP(et�djXt�d)
B O�1t�dT�1BTOt

else B BTOt
t t + 1
if t > d then return NORMALIZE(f � B1) else returnnull

Figure 15.6 An algorithm for smoothing with a fixed time lag ofd steps, implemented as
an online algorithm that outputs the new smoothed estimate given the observation for a new
time step.

This section describes the special representations and inference algorithms that have been
developed to solve these sorts of problems; the method we will describe is calledKalman
filtering after its inventor.KALMAN FILTERING

Clearly, we will need severalcontinuousvariables to specify the state of the system. For
example, the bird’s flight might be specified by position(X;Y;Z) and velocity( _X; _Y ; _Z) at
each point in time. We will also need suitable conditional densities to represent the transi-
tion and sensor models; as in Chapter 14, we will uselinear Gaussiandistributions. This
means that the next stateXt+1 must be a linear function of the current stateXt, plus some
Gaussian noise. This turns out to be quite reasonable in practice. Consider, for example, theX–coordinate of the bird, ignoring the other coordinates fornow. Let the interval between
observations be�, and let us assume constant velocity; then the position update is given byXt+� = Xt +� _X
If we add Gaussian noise to account for variation in velocityand so on, then we have a linear
Gaussian transition model:P (Xt+�=xt+�jXt =xt; _Xt = _xt) = N(xt +� _xt; �)(xt+�)
The Bayesian network structure for a system with positionXt and velocity _Xt is shown in
Figure 15.7. Note that this is a very specific form of linear Gaussian model; the general form
will be described later in this section, and covers a vast array of applications beyond the sim-
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ple motion examples of the first paragraph. The reader may wish to consult Appendix A for
some of the mathematical properties of Gaussian distributions; for our immediate purposes,
the most important is that amultivariate Gaussian distribution ford variables is specifiedMULTIVARIATE

GAUSSIAN

by ad-element mean� and ad� d covariance matrix�.

tZ t+1Z

tX t+1X

tX t+1X

Figure 15.7 Bayesian network structure for a linear dynamical system with positionXt,
velocity _Xt, and position measurementZt.

Updating Gaussian distributions

We alluded in Chapter 14 to a key property of the linear Gaussian family of distributions: it
remains closed under the standard Bayesian network operations. Here, we make this claim
precise in the context of filtering in a temporal probabilitymodel. The required properties
correspond to the two-step filtering calculation in Equation (15.4):

1. If the current distributionP(Xtje1:t) is Gaussian and the transition modelP(Xt+1jxt) is
linear Gaussian, then the one-step predicted distributiongiven by

P(Xt+1je1:t) = Z
xt P(Xt+1jxt)P (xtje1:t) dxt (15.16)

is also a Gaussian distribution.

2. If the predicted distributionP(Xt+1je1:t) is Gaussian and the sensor modelP(et+1jXt+1)
is linear Gaussian, then, after conditioning on the new evidence, the updated distribution

P(Xt+1je1:t+1) = �P(et+1jXt+1)P(Xt+1je1:t) (15.17)

is also a Gaussian distribution.

Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward message f1:t,
specified by a mean�t and covariance matrix�t, and produces a new multivariate Gaussian
forward messagef1:t+1, specified by a mean�t+1 and covariance matrix�t+1. So, if we
start with a Gaussian priorf1:0=P(X0)=N(�0;�0), filtering with a linear Gaussian model
produces a Gaussian state distribution for all time.

This seems to be a nice, elegant result, but why is it so important? The reason is that,
except for a few special cases such as this,filtering with continuous or hybrid (discrete and
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continuous) networks generates state distributions whoserepresentation grows without bound
over time.This is not easy to prove in general, but Exercise 15.5 shows what happens for a
simple example.

A simple, one-dimensional example

We have said that the FORWARD operator for the Kalman filter maps a Gaussian into a new
Gaussian. This translates into computing a new mean and covariance matrix from the previ-
ous mean and covariance matrix. Deriving the update rule in the general (multivariate) case
requires rather a lot of linear algebra, so will stick to a very simple, univariate case for now;
later we will give the results for the general case. Even for the univariate case, the calcula-
tions are somewhat tedious, but we feel they are worth seeingbecause the usefulness of the
Kalman filter is tied so intimately to the mathematical properties of Gaussian distributions.

The temporal model we will consider describes arandom walk of a single continuousRANDOM WALK

state variableXt with a noisy observationZt. An example might be the “consumer confi-
dence” index, which can be modelled as undergoing a random, Gaussian-distributed change
each month and is measured by a random consumer survey that also introduces Gaussian
sampling noise. The prior distribution is assumed to be Gaussian with variance�20:P (x0) = �e� 12� (x0��0)2�20 �
(For simplicity, we will use the same symbol� for all normalizing constants in this section.)
The transition model simply adds a Gaussian perturbation ofconstant variance�2x to the
current state:P (xt+1jxt) = �e� 12� (xt+1�xt)2�2x �
and the sensor model assumes Gaussian noise with variance�2z :P (ztjxt) = �e� 12� (zt�xt)2�2z �
Now, given the priorP (X0), we can compute the one-step predicted distribution using Equa-
tion (15.16):P (x1) = Z 1�1 P (x1jx0)P (x0) dx0 = � Z 1�1 e� 12� (x1�x0)2�2x �e� 12� (x0��0)2�20 � dx0= � Z 1�1 e� 12��20(x1�x0)2+�2x(x0��0)2�20�2x � dx0
This integral looks rather hairy. The key to progress is to notice that the exponent is the sum
of two expressions that arequadratic in x0, and hence is itself a quadratic inx0. A simple
trick known ascompleting the squareallows the rewriting of any quadraticax20 + bx0 + COMPLETING THE

SQUARE

as the sum of a squared terma(x0 � �b2a )2 and a residual term � b24a that is independent ofx0. The residual term can be taken outside the integral, givingusP (x1) = �e� 12�� b24a� Z 1�1 e� 12(a(x0��b2a )2) dx0
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Now the integral is just the integral of a Gaussian over its full range, which is simply 1. Thus,
we are left with just the residual term from the quadratic.

The second key step is to notice that the residual term has to be a quadratic inx1; in
fact, after simplification, we obtainP (x1) = �e� 12� (x1��0)2�20+�2x �
That is, the one-step predicted distribution is a Gaussian with the same mean�0 and a variance
equal to the sum of the original variance�20 and the transition variance�2x. A momentary
exercise of intuition reveals that this is intuitively reasonable.

To complete the update step, we need to condition on the observation at the first time
step, namelyz1. From Equation (15.17), this is given byP (x1jz1) = �P (z1jx1)P (x1)= �e� 12� (z1�x1)2�2z �e� 12� (x1��0)2�20+�2x �
Once again, we combine the exponents and complete the square(Exercise 15.6), obtainingP (x1jz1) = �e� 120B� (x1� (�20+�2x)z1+�2z�0�20+�2x+�2z )2(�20+�2x)�2z=(�20+�2x+�2z)1CA

(15.18)

Thus, after one update cycle, we have a new Gaussian distribution for the state variable.
From the Gaussian formula in Equation (15.18), we can see that the new mean and

standard deviation can be calculated from the old mean and standard deviation as follows:�t+1 = (�2t+�2x)zt+1+�2z�t�2t+�2x+�2z�2t+1 = (�2t+�2x)�2z�2t+�2x+�2z (15.19)

Figure 15.8 shows one update cycle for particular values of the transition and sensor models.
The preceding pair of equations plays exactly the same role as the general filtering

equation (15.4) or the HMM filtering equation (15.11). Because of the special nature of
Gaussian distributions, however, the equations have some interesting additional properties.
First, we can interpret the calculation for the new mean�t+1 as simply aweighted meanof
the new observationzt+1 and the old mean�t. If the observation is unreliable, then�2z is large
and we pay more attention to the old mean; if the old mean is unreliable (�2t is large) or the
process is highly unpredictable (�2x is large), then we pay more attention to the observation.
Second, notice that the update for the variance�2t+1 is independent of the observation. We
can therefore compute in advance what the sequence of variance values will be. Third, the
sequence of variance values quickly converges to a fixed value that depends only on�2x and�2z , thereby substantially simplifying the subsequent calculations (see Exercise 15.7).

The general case

The preceding derivation, painful as it was, illustrates the key property of Gaussian distri-
butions that allows Kalman filtering to work: the fact that the exponent is a quadratic form.
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Figure 15.8 Stages in the Kalman filter update cycle for a random walk witha prior given
by�0 =0:0 and�0 =1:0, transition noise given by�x=2:0, sensor noise given by�z =1:0,
and a first observationz1=2:5. Notice how the predictionP (x1) is flattened out, relative toP (x0), by the transition noise. Notice also that the mean of the posteriorP (x1jz1) is slightly
to the left of the observationz1 because the mean is a weighted average of the prediction and
the observation.

This is true not just for the univariate case. The full multivariate Gaussian distribution has the
form N(�;�)(x) = �e� 12�(x��)>��1(x��)�
Multiplying out the terms in the exponent, it is clear that the exponent is also a quadratic func-
tion of the random variablesxi in x. As in the univariate case, the filtering update preserves
the Gaussian nature of the state distribution.

Let us first define the general temporal model used with Kalmanfiltering. Both the tran-
sition model and the sensor model allow for alinear transformation with additive Gaussian
noise. Thus, we haveP (xt+1jxt) = N(Fxt;�x)(xt+1)P (ztjxt) = N(Hxt;�z)(zt) (15.20)

whereF and�x are matrices describing the linear transition model and transition noise co-
variance, andH and�z are the corresponding matrices for the sensor model. Now theupdate
equations for the mean and covariance, in their full, hairy horribleness, are as follows:�t+1 = F�t + K t+1(zt+1 � HF�t)�t+1 = (I � K t+1)(F�tF> +�x) (15.21)

whereK t+1=(F�tF> + �x)H>(H(F�tF> + �x) + �z)�1 is called theKalman gain
matrix . Believe it or not, these equations make some intuitive sense. For example, considerKALMAN GAIN

MATRIX
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the update for the mean state estimate�. The termF�t is thepredictedstate att + 1, so
HF�t is thepredictedobservation. Therefore the termzt+1 � HF�t represents the error in
the predicted observation. This is multiplied byK t+1 to correct the predicted state; therefore
K t+1 is a measure ofhow seriously to take the new observationrelative to the prediction. As
in Equation (15.19), we also have the property that the variance update is independent of the
observations. The sequence of values for�t andK t can therefore be computed offline, and
the actual calculations required during online tracking are quite modest.

To illustrate these equations at work, we have applied them to the problem of tracking
an object moving on theX–Y plane. The state variables areX = (X;Y; _X; _Y )> soF, �x,
H, and�z are4� 4 matrices. Figure 15.9(a) shows the true trajectory, a series of noisy
observations, and the trajectory estimated by Kalman filtering, along with the covariances
indicated by the one-standard-deviation contours. The filtering process does a reasonably
good job of tracking the actual motion, and, as expected, thevariance quickly reaches a fixed
point.

As one might expect, one can also derive equations forsmoothingas well as filtering
with linear Gaussian models. The smoothing results are shown in Figure 15.9(b). Notice how
the variance in the position estimate is sharply reduced, except at the ends of the trajectory
(why?); and that the estimated trajectory is much smoother.
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Figure 15.9 (a) Results of Kalman filtering for an object moving on theX–Y plane,
showing the true trajectory (left-to-right), a series of noisy observations, and the trajectory
estimated by Kalman filtering. (b) The results of Kalman smoothing for the same observation
sequence.

Applicability of Kalman filtering

The Kalman filter and its elaborations are used in a vast arrayof applications. The “classical”
application is in radar tracking of aircraft and missiles. Related applications include acoustic
tracking of submarines and ground vehicles and visual tracking of vehicles and people. In a
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slightly more esoteric vein, Kalman filters are used to reconstruct particle trajectories from
bubble chamber photographs and ocean currents from satellite surface measurements. The
range of application is much larger than just the tracking ofmotion: any system characterized
by continuous state variables and noisy measurements will do. Such systems include pulp
mills, chemical plants, nuclear reactors, plant ecosystems, and national economies.

The fact that Kalman filtering can be applied to a system does not mean that the re-
sults will be valid or useful. The assumptions made—linear Gaussian transition and sensor
models—are very strong. Theextended Kalman filter or EKF attempts to overcome non-EXTENDED KALMAN

FILTER

linearities in the system being modelled. A system is nonlinear if the transition model cannot
be described as a matrix multiplication of the state vector,as in Equation (15.20). The EKF
works by modelling the system aslocally linear inxt in the region ofxt =�t, the mean of the
current state distribution. This works well for smooth, well-behaved systems, and allows the
tracker to maintain and update a Gaussian state distribution that is a reasonable approximation
to the true posterior.

What does it mean for a system to be “unsmooth” or “poorly behaved”? Technically,
this means that there is significant nonlinearity in system response within the region that
is “close” (according to the covariance�t) to the current mean�t. To understand this in
nontechnical terms, consider the example of trying to tracka bird as it flies through the
jungle. The bird appears to be heading at high speed straightfor a tree-trunk. The Kalman
filter, whether regular or extended, can only make a Gaussianprediction of the location of the
bird, and the mean of this Gaussian will be centered on the trunk, as shown in Figure 15.10(a).
A reasonable model of the bird, on the other hand, would predict evasive action to one side
or the other, resulting in the prediction shown in Figure 15.10(b). Such a model is highly
nonlinear because the bird’s decision varies sharply depending on its precise location relative
to the trunk.

(a) (b)

Figure 15.10 A bird flying toward a tree (top views). (a) A Kalman filter willpredict the
location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic
model allows for the bird’s evasive action, predicting thatit will fly to one side or the other.
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In order to handle such examples, we clearly need a more expressive language for rep-
resenting the behavior of the system being modelled. Withinthe control theory community,
where problems such as evasive maneuvering by aircraft raise the same kinds of difficulties,
the standard solution is theswitching Kalman filter . In this approach, multiple Kalman fil-SWITCHING KALMAN

FILTER

ters run in parallel, each using a different model of the system—for example, one for straight
flight, one for sharp left turns, one for sharp right turns. A weighted sum of predictions is
used, where the weight depends on how well each filter fits the current data. We will see in
the next section that this is simply a special case of the general dynamic Bayesian network
model, obtained in this case by adding a discrete “maneuver”state variable to the network
shown in Figure 15.7. Switching Kalman filters are discussedfurther in Exercise 15.5.

15.5 DYNAMIC BAYESIAN NETWORKS

A dynamic Bayesian networkor DBN is a Bayesian network that represents a temporalDYNAMIC BAYESIAN
NETWORK

probability model of the kind described in Section 15.1. We have already seen examples of
DBNs: the umbrella network in Figure 15.2 and the Kalman filter network in Figure 15.7.
In general, each slice of a DBN can have any number of state variablesXt and evidence
variablesEt. For simplicity, we will assume that the variables and theirlinks are exactly
replicated from slice to slice, and that the DBN represents afirst-order Markov process, so
that each variable can have parents only in its own slice or the immediately preceding slice.

It should be clear that every hidden Markov model can be represented as a DBN with
a single state variable and a single evidence variable. It isalso the case that every discrete-
variable DBN can be represented as an HMM: as explained in Section 15.3, we can combine
all the state variables in the DBN into a single state variable whose values are all possible
tuples of values of the individual state variables. Now if every HMM is a DBN and every DBN
can be translated into an HMM, what’s the difference? The difference is that,by decomposing
the state of a complex system into its constituent variables, the DBN is able to take advantage
of sparsenessin the temporal probability model. Suppose, for example, that a DBN has
20 Boolean state variables, each of which has three parents in the preceding slice. Then the
DBN transition model has20� 23=160 probabilities, whereas the corresponding HMM has220 states and therefore240, or roughly a trillion, probabilities in the transition matrix. This
bad for at least two reasons: first, the HMM itself requires much more space; second, the
huge transition matrix makes HMM inference much more expensive; and third, the problem
of learning such a huge number of parameters makes the pure HMM model unsuitable for
large problems. The relationship between DBNs and HMMs is roughly analogous to the
relationship between ordinary Bayesian networks and full tabulated joint distributions.

We have already explained that every Kalman filter model can be represented in a
DBN with continuous variables and linear Gaussian conditional distributions (Figure 15.7).
It should be clear from the discussion at the end of the preceding section thatnot every DBN
can be represented by a Kalman filter model. In a Kalman filter,the current state distribution
is always a single multivariate Gaussian distribution—that is, a single “bump” in a particular
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Figure 15.11 (a) Specification of the prior, transition model, and sensormodel for the
umbrella DBN. All subsequent slices are assumed to be copiesof slice 1. (b) A simple DBN
for robot motion in the X–Y plane.

location. DBNs, on the other hand, can handle arbitrary distributions. For many real-world
applications, this flexibility is essential. Consider, forexample, the current location of my
keys. They might be in my pocket, on the bedside table, on the kitchen counter, or dangling
from the front door. A single Gaussian bump that included allthese places would have to
allocate significant probability to the keys being in mid-air in the front hall. Aspects of the
real world such as purposive agents, obstacles, and pocketsintroduce “nonlinearities” and
“discontinuities” that necessitate complex combinationsof discrete and continuous variables
in order to get reasonable models.

Constructing DBNs

To construct a DBN, one must specify three kinds of information: the prior distribution over
the state variables,P(X0); the transition modelP(Xt+1jXt); and the sensor modelP(EtjXt).
To specify the transition and sensor models, one must also specify the topology of the con-
nections between successive slices and between the state and evidence variables. Because the
transition and sensor models are assumed to be stationary—i.e., the same for allt—it is most
convenient simply to specify them for the first slice. For example, the complete DBN speci-
fication for the umbrella world is given by the three-node network shown in Figure 15.11(a).
From this specification, the complete (semi-infinite) DBN can be constructed as needed by
copying the first slice.

Let us now consider a more interesting example: monitoring abattery-powered robot
moving in the X–Y plane, as introduced in Section 15.1. First, we need state variables,
which will include bothXt =(Xt; Yt) for position and _Xt=( _Xt; _Yt) for velocity. We will
assume some method of measuring position—perhaps a fixed camera or onboard GPS (Global
Positioning System)—yielding measurementsZt. The position at the next time step depends
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on the current position and velocity, as in the standard Kalman filter model. The velocity at
the next step depends on the current velocity and the state ofthe battery. We addBatteryt to
represent the actual battery charge level, which has as parents the previous battery level and
the velocity, and we addBMetert, which measures the battery charge level. This gives us
the basic model shown in Figure 15.11(b).

It is worth looking in more depth at the nature of the sensor model forBMetert. Let
us suppose, for simplicity, that bothBatteryt andBMetert can take on discrete values 0
through 5—rather like the battery meter on a typical laptop computer. If the meter is always
accurate, then the CPTP(BMetertjBatteryt) should have probabilities of 1.0 “along the
diagonal” and probabilities of 0.0 elsewhere. In reality, noise always creeps into measure-
ments. For continuous measurements, a Gaussian distribution with a small variance might be
used instead.4 For our discrete variables, we can approximate a Gaussian using a distribution
in which the probability of error drops off in the appropriate way, so that the probability of
a large error is very small. We will use the termGaussian error model to cover both theGAUSSIAN ERROR

MODEL

continuous and discrete versions.
Anyone with hands-on experience of robotics, computerizedprocess control, or other

forms of automatic sensing will readily testify to the fact that small amounts of measurement
noise are often the least of one’s problems. Real sensorsfail. When a sensor fails, it does
not necessarily send a signal saying, “Oh, by the way, the data I’m about to send you is a
load of nonsense.” Instead, it simply sends the nonsense. The simplest kind of failure is
called atransient failure , where the sensor occasionally decides to send some nonsense. ForTRANSIENT FAILURE

example, the battery level sensor might have a habit of sending a zero when someone bumps
the robot, even if the battery is fully charged.

Let’s see what happens when a transient failure occurs with aGaussian error model
that doesn’t accommodate such failures. Suppose, for example, that the robot is sitting
quietly and observes twenty consecutive battery readings of 5. Then the battery meter has
a temporary seizure and the next reading isBMeter21=0. What will the simple Gaus-
sian error model lead us to believe aboutBattery21? According to Bayes’ rule, the an-
swer depends on both the sensor modelP(BMeter21 =0jBattery21) and the prediction
P(Battery21jBMeter1:20). If the probability of a large sensor error is significantly less
likely than the probability of a transition toBattery21=0, even if the latter is very unlikely,
then the posterior distribution will assign high probability to the battery being empty. A sec-
ond reading of zero att=22 will make this conclusion almost certain. If the transient failure
then disappears and the reading returns to 5 fromt=23 onwards, the estimate for the battery
level will quickly return to 5, as if by magic. This course of events is illustrated in the up-
per curve of Figure 15.12(a), which shows the expected valueof Batteryt over time using a
discrete Gaussian error model.

Despite the recovery, there is a time (t=22) when the robot is convinced its battery
is empty; presumably, then, it should send out a mayday signal and shut down. Alas, its
oversimplified sensor model has led it astray. How can this befixed? Consider a familiar4 Strictly speaking, a Gaussian distribution is problematicbecause it assigns nonzero probability to large nega-
tive charge levels. Thebeta distribution is sometimes a better choice for a variable whose range is restricted.
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example from everyday human driving: on sharp curves or steep hills, one’s “fuel tank empty”
warning light sometimes turns on. Rather than looking for the emergency phone, one simply
recalls that the fuel gauge sometimes gives a very large error when the fuel is sloshing around
in the tank. The moral of the story is the following:in order for the system to handle sensor
failure properly, the sensor model must include the possibility of failure.

The simplest kind of failure model for a sensor allows a certain probability that the
sensor will return some completely incorrect value, regardless of the true state of the world.
For example, if the battery meter fails by returning 0, we might say thatP (BMetert =0jBatteryt =5)= 0:03
which is presumably much larger than the probability assigned by the simple Gaussian error
model. Let’s call this thetransient failure model. How does it help when we are facedTRANSIENT FAILURE

MODEL

with a reading of 0? Provided that thepredictedprobability of an empty battery, according
to the readings so far, is much less than 0.03, then the best explanation of the observationBMeter21=0 is that the sensor has temporarily failed. Intuitively, we can think of the
belief about the battery level as having a certain amount of “inertia” that helps to overcome
temporary blips in the meter reading. The upper curve in Figure 15.12(b) shows that the
transient failure model can handle transient failures without a catastrophic change in beliefs.

So much for temporary blips. What about a persistent sensor failure? Sadly, failures of
this kind are all too common. If the sensor returns 20 readings of 5 followed by 20 readings
of 0, then the transient sensor failure model described in the preceding paragraph will result
in the robot gradually coming to believe that its battery is empty, when in fact it may be that
the meter has failed. The lower curve in Figure 15.12(b) shows the belief “trajectory” for
this case. Byt=25—five readings of 0—the robot is convinced that its battery isempty.
Obviously, we would prefer the robot to believe that its battery meter is broken—if indeed
this is the more likely event.

Unsurprisingly, to handle persistent failure we will need apersistent failure modelthatPERSISTENT
FAILURE MODEL

describes how the sensor behaves under normal conditions and after failure. To do this, we
need to augment the hidden state of the system with an additional variable, sayBMBroken,
that describes the status of the battery meter. The persistence of failure must be modelled by
an arc linkingBMBroken0 to BMBroken1. This persistence archas a CPT that gives aPERSISTENCE ARC

small probability of failure in any given time step, say 0.001, but specifies that the sensor stays
broken once it breaks. When the sensor is OK, the sensor modelfor BMeter is identical to
the transient failure model; when the sensor is broken, it saysBMeter is always 0, regardless
of the actual battery charge.

The persistent failure model for the battery sensor is shownin Figure 15.13(a). Its
performance on the two data sequences (temporary blip and persistent failure) is shown in
Figure 15.13(b). There are several things to notice about these curves. First, in the case
of the temporary blip, the probability that the sensor is broken rises significantly after the
second 0 reading, but immediately drops back to zero once a 5 is observed. Second, in the
case of persistent failure, the probability that the sensoris broken rises quickly to almost 1
and stays there. Finally, once the sensor is known to be broken, the robot can only assume
that its battery discharges at the “normal” rate, as shown bythe gradually descending level of
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Figure 15.12 (a) Upper curve: trajectory of the expected value ofBatteryt for an ob-
servation sequence consisting of all 5s except for 0s att=21 and t=22, using a simple
Gaussian error model. Lower curve: trajectory when the observation remains at 0 fromt=21 onwards. (b) The same experiment run using the transient failure model. Notice that
the transient failure is handled well but the persistent failure results in excessive pessimism.
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Figure 15.13 (a) A DBN fragment showing the sensor status variable required for mod-
elling persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected
value ofBatteryt for the “transient failure” and “permanent failure” observations sequences.
Lower curves: probability trajectories forBMBroken given the two observation sequences.E(Batterytj. . .). A more refined model would include the influence of the robot’s activities

on the battery level, which we have so far ignored.
So far, we have only scratched the surface of the problem of representing complex pro-

cesses. The variety of transition models is huge, encompassing topics as disparate as mod-
elling of the human endocrine system and modelling multiplevehicles driving on a freeway.
Sensor modelling is also a vast subfield in itself, but even subtle phenomena, such as sensor
drift, sudden decalibration, and the effects of exogenous conditions (such as weather) on sen-
sor readings, can be handled by explicit representation within dynamic Bayesian networks.
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Exact inference in DBNs

Having sketched some ideas for representing complex processes as DBNs, we now turn to
the question of inference. In a sense, this question has already been answered: dynamic
Bayesian networksare Bayesian networks, and we already have algorithms for inference in
Bayesian networks. Given a sequence of observations, one can construct the full Bayesian
network representation of a DBN by replicating slices untilthe network is large enough to
accommodate the observations, as in Figure 15.14. This is called unrolling . (Technically, theUNROLLING

DBN is equivalent to the semi-infinite network obtained by unrolling for ever. Slices added
beyond the last observation have no effect on inferences within the observation period and
can be omitted.) Once the DBN is unrolled, one can use any of the inference algorithms—
variable elimination, join-tree methods, and so on—described in Chapter 14.
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Figure 15.14 Unrolling a dynamic Bayesian network: slices are replicated to accommo-
date the observation sequence (shaded nodes). Further slices have no effect on inferences
within the observation period.

Unfortunately, a naive application of unrolling would not be particularly efficient. If we
want to perform filtering or smoothing with a long sequence ofobservationse1:t, the unrolled
network would requireO(t) space and thus grows without bound as more observations are
added. Moreover, if we simply run the inference algorithm anew each time an observation is
added, the inference time per update will also increase asO(t).

Looking back to Section 15.2, we see that constant time and space per filtering update
can be achieved if the computation can be done in a recursive fashion. Essentially, the filter-
ing update in Equation (15.4) works bysumming outthe state variables of the previous time
step to get the distribution for the new time step. Summing out variables is exactly what the
variable elimination (Figure 14.10) algorithm does, and it turns out that runningvariable
elimination with the variables in temporal order exactly mimics the operation of the recursive
filtering update in Equation (15.4). The modified algorithm keeps at most two slices in mem-
ory at any one time: starting with slice 0, we add slice 1, thensum out slice 0, then add slice
2, then sum out slice 1, and so on. In this way, we can achieve constant space and time per
filtering update. (The same performance can be achieved by making suitable modifications to
the join tree algorithm.) Exercise 15.10 asks you to verify this fact for the umbrella network.

So much for the good news; now for the bad news. It turns out that the “constant” for
the per-update time and space complexity is, in almost all cases, exponential in the number
of state variables. What happens is that as the variable elimination proceeds, the factors grow
to include all the state variables (or, more precisely, all those state variables that have parents
in the previous time slice). The maximum factor size isO(dn+1) and the update cost isO(dn+2).
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This is much less than the cost of HMM updating, which isO(d2n), but it is still infeasi-
ble for large numbers of variables. This grim fact is somewhat hard to accept. What it means
is thateven though we can use DBNs torepresentvery complex temporal processes with many
sparsely connected variables, we cannotreasonefficiently and exactly about those processes.
The DBN model itself, which represents the prior joint distribution over all the variables, is
factorable into its constituent CPTs, but the posterior joint distribution conditioned on an ob-
servation sequence—that is, the forward message—is generally not factorable. So far, no-one
has found a way around this problem, despite the fact that many important areas of science
and engineering would benefit enormously from its solution.Thus, we must fall back on
approximate methods.

Approximate inference in DBNs

Chapter 14 described two approximation algorithms: likelihood weighting (Figure 14.14)
and Markov chain Monte Carlo (MCMC, Figure 14.15). Of the two, the former is most easily
adapted to the DBN context. We will see, however, that several improvements are required
over the standard likelihood weighting algorithm before a practical method emerges.

Recall that likelihood weighting works by sampling the nonevidence nodes of the net-
work in topological order, weighting each sample by the likelihood it accords to the observed
evidence variables. As with the exact algorithms, we could apply likelihood weighting di-
rectly to an unrolled DBN, but this would suffer from the sameproblems in terms of increas-
ing time and space requirements per update as the observation sequence grows. The problem
is that the standard algorithm runs each sample in turn all the way through the network. In-
stead, we can simply run allN samples together through the DBN one slice at a time. The
modified algorithm fits the general pattern of filtering algorithms, with the set ofN samples
as the forward message. The first key innovation, then, is touse the samples themselves as
an approximate representation of the current state distribution. This meets the requirement
of a “constant” time per update, although the constant depends on the number of samples
required to maintain a reasonable approximation to the trueposterior distribution. There is
also no need to unroll the DBN, because we need only the current slice and the next slice in
memory.

In our discussion of likelihood weighting in Chapter 14, we pointed out that the algo-
rithm’s accuracy suffers if the evidence variables are “downstream” of the variables being
sampled, because in that case the samples are generated without any influence from the evi-
dence. Looking at the typical structure of a DBN—say, the umbrella DBN in Figure 15.14—
we see that indeed the early state variables will be sampled without the benefit of the later
evidence. In fact, looking more carefully, we see thatnoneof the state variables hasany
evidence variables among its ancestors! Hence, although the weight of each sample will de-
pend on the evidence, the actual set of samples generated will be completely independentof
the evidence. For example, even if the boss brings in the umbrella every day, the sampling
process may still hallucinate endless days of sunshine. What this means in practice is that the
fraction of samples that remain reasonably close to the actual series of events drops exponen-
tially with t, the length of the observation sequence; in other words, to maintain a given level
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of accuracy, we need to increase the number of samples exponentially with t. Figure 15.15(a)
shows some experimental results for likelihood weighting applied to the umbrella network.
Clearly we need a better solution.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

R
M

S
 e

rr
or

Time step

LW(10)
LW(100)

LW(1000)
LW(10000)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

R
M

S
 e

rr
or

Time step

PF(10)
PF(100)

PF(1000)
PF(10000)

(a) (b)

Figure 15.15 (a) Performance of likelihood weighting on the umbrella DBN, showing
the root-mean-squared error in the probability of rain as a function of time step, averaged
over 100 observation sequences generated from the model itself. (b) Performance of particle
filtering on the same observation sequences.[[real data to be provided]]

The second key innovation is tofocus the set of samples on the high-probability regions
of the state space.This can be done by throwing away samples that have very low weight,
according to the observations, while multiplying those that have high weight. In this way,
the population of samples will stay reasonably close to reality. If we think of samples as a
resource for modelling the posterior distribution, then itmakes sense to use more samples in
regions of the state space where the posterior is higher.

A family of algorithms calledparticle filtering is designed to do just this. ParticlePARTICLE FILTERING

filtering works as follows. First, a population ofN samples is created by sampling from the
prior distribution at time 0,P(X0). Then the update cycle is repeated for each time step:� Each sample is propagated forward by sampling the next statevalue xt+1 given the

current valuext for the sample, using the transition modelP(Xt+1jxt).� Each sample is weighted by the likelihood it assigns to the new evidence,P (et+1jxt+1).� The population isresampledto generate a new population ofN samples. Each new
sample is selected from the current population; the probability that a particular sample
is selected is proportional to its weight. The new samples are unweighted.

The algorithm is shown in detail in Figure 15.16, and its operation for the umbrella DBN is
illustrated in Figure 15.17.

We can show that this algorithm is consistent—gives the correct probabilities asN
tends to infinity—by considering what happens during one update cycle. We will assume the
sample population starts with a correct representation of the forward messagef1:t at timet:
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function PARTICLEFILTERING(e,N,dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N, the number of samples to be maintained
dbn, a DBN with slice 0 variablesX0 and slice 1 variablesX1 andE1

static: S, a vector of samples of sizeN
local variables: W, a vector of weights of sizeN

if e is emptythen /* initialization phase */
for i = 1 toN do

S[i] sample fromP(X0)
else do /* update cycle */

for i = 1 toN do
S[i] sample fromP(X1jX0= S[i℄)
W[i] P(ejX1= S[i℄)

S WEIGHTEDSAMPLEWITHREPLACEMENT(N,S,W)
return S

Figure 15.16 The particle filtering algorithm implemented as a recursiveupdate op-
eration with state (the set of samples). Each of the samplingsteps involves sam-
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The
WEIGHTED-SAMPLE-WITH-REPLACEMENToperation can be implemented to run inO(N)
expected time.

true

false

(a) Propagate (b) Weight (c) Resample

Raint Raint +1Raint +1Raint +1

Figure 15.17 The particle filtering update cycle for the umbrella DBN withN =10, show-
ing the sample populations of each state. (a) At timet, 8 samples indicateRain and 2 indicate:Rain. Each is propagated forward by sampling the next state usingthe transition model.
At time t+1, 7 samples indicateRain and 3 indicate:Rain. (b):Umbrella is observed att+ 1. Each sample is weighted by its likelihood for the observation, as indicated by the size
of the circles. (c) A new set of 10 samples is generated by weighted random selection from
the current set, resulting in 4 samples that indicateRain and 6 that indicate:Rain.

writing N(xtje1:t) for the number of samples occupying statext after observationse1:t have
been processed, we therefore haveN(xtje1:t)=N = P (xtje1:t) (15.22)

for largeN . Now we propagate each sample forward by sampling the state variables att+ 1
given the values for the sample att. The number of samples reaching statext+1 from each
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xt is the transition probability times the population ofxt; hence the total number of samples
reachingxt+1 isN(xt+1je1:t) =X

xt P (xt+1jxt)N(xtje1:t)
Now we weight each sample by its likelihood for the evidence at t + 1. A sample in state
xt+1 receives weightP (et+1jxt+1). The total weight of the samples inxt+1 after seeinget+1
is thereforeW (xt+1je1:t+1) = P (et+1jxt+1)N(xt+1je1:t)
Now for the resampling step. Since each sample is replicatedwith probability proportional
to its weight, the number of samples in statext+1 after resampling is proportional to the total
weight inxt+1 before resampling:N(xt+1je1:t+1)=N = �W (xt+1je1:t+1)= �P (et+1jxt+1)N(xt+1je1:t)= �P (et+1jxt+1)X

xt P (xt+1jxt)N(xtje1:t)= �NP (et+1jxt+1)X
xt P (xt+1jxt)P (xtje1:t) by Equation (15.22)= �0P (et+1jxt+1)X

xt P (xt+1jxt)P (xtje1:t)= P (xt+1je1:t+1) by Equation (15.4)

Therefore the sample population after one update cycle correctly represents the forward mes-
sage at timet+ 1.

Particle filtering isconsistent, therefore, but is itefficient? In practice, it seems the
answer is yes—particle filtering seems to maintain a good approximation to the true posterior
using a constant number of samples. There are, as yet, no theoretical guarantees; particle
filtering is currently an area of intensive study. Many variants and improvements have been
proposed and the et of applications is growing rapidly. Because it is a sampling algorithm,
particle filtering can be used easily with hybrid and continuous DBNs, allowing it to be
applied to areas such as tracking complex motion patterns invideo (Isard and Blake, 1996)
and predicting the stock market (de Freitaset al., 1999).

15.6 SPEECH RECOGNITION

In this section, we look at one of the most important applications of temporal probability
models—speech recognition. The task is to identify the sequence of words uttered by aSPEECH

RECOGNITION

speaker, given the acoustic signal. Speech is the dominant modality for communication be-
tween humans, and reliable speech recognition by machines would be immensely useful.
Still more useful would bespeech understanding—the identification of themeaningof the
utterance. For this, we must wait until Chapter 22.
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574 Chapter 15. Probabilistic Reasoning over Time

Speech provides our first contact with the raw, unwashed world of real sensor data.
These data arenoisy, quite literally; there can be background noise as well as artifacts intro-
duced by the digitization process; there is variation in theway that words are pronounced,
even by the same speaker; different words can sound the same;and so on. For these reasons,
speech recognition has come to be viewed as a problem of probabilistic inference.

At the most general level, we can define the probabilistic inference problem as follows.
Let Words be a random variable ranging over all possible sequences of words that might
be uttered, and letsignal be the observed acoustic signal sequence. Then the most likely
interpretation of the utterance is the value ofWords that maximizesP (wordsjsignal). As
is often the case, applying Bayes’ rule is helpful:P (wordsjsignal) = �P (signaljwords)P (words)P (signaljwords) is theacoustic model. It describes the sounds of words—for example, thatACOUSTIC MODEL

“ceiling” begins with a soft “c” and sounds very similar to “sealing”. (Words that sound the
same are calledhomophones.) P (words) is known as thelanguage model. It specifies theHOMOPHONES

LANGUAGE MODEL prior probability of each utterance—for example, that “high ceiling” is a much more likely
word sequence than “high sealing.”

The language models used in speech recognition systems are usually very simple. The
bigram model that we describe later in this section gives the probabilityof each word follow-BIGRAM MODEL

ing each other word. The acoustic model is much more complex.At its heart is an important
discovery made in the field ofphonology(the study of how language sounds), namely, that allPHONOLOGY

human languages use a limited repertoire of about 40 or 50 sounds, calledphones. RoughlyPHONES

speaking, a phone is the sound that corresponds to a single vowel or consonant, but there are
some complications: combinations of letters such as “th” and “ng” produce single phones,
and some letters produce different phones in different contexts (for example, the “a” inrat
andrate. Figure 15.18 lists all the phones in English with an exampleof each.

The existence of phones makes it possible to divide the acoustic model into two parts.
The first part deals withpronunciation and specifies, for each word, a probability distribu-PRONUNCIATION

tion over possible phone sequences. For example, “ceiling”is pronounced [s iy l ih ng], or
sometimes [s iy l ix ng], or sometimes even [s iy l en]. The phones are not directly observable,
so, roughly speaking, speech is represented as a hidden Markov model whose state variableXt specifies which phone is being uttered at timet.

The second part of the acoustic model deals with the way that phones are realized as
acoustic signals—that is, the evidence variableEt for the hidden Markov model gives the
observed features of the acoustic signal at timet, and the acoustic model specifiesP (EtjXt),
whereXt is the current phone. This model must allow for variations inpitch, speed, and
volume, and relies on techniques fromsignal processingto provide signal descriptions thatSIGNAL PROCESSING

are reasonably robust against these kinds of variations.
The remainder of the section describes the models and algorithms from the bottom

up, beginning with acoustic signals and phones, then individual words, and finally entire
sentences. We conclude with a description of how all these models are trained and how well
the resulting systems work.
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Vowels Consonants B-N Consonants P-Z

Phone Example Phone Example Phone Example

[iy] beat [b] bet [p] pet
[ih] bit [ch] Chet [r] rat
[eh] bet [d] debt [s] set
[æ] bat [f] fat [sh] shoe
[ah] but [g] get [t] ten
[ao] bought [hh] hat [th] thick
[ow] boat [hv] high [dh] that
[uh] book [jh] jet [dx] butter
[ey] bait [k] kick [v] vet
[er] Bert [l] let [w] wet
[ay] buy [el] bottle [wh] which
[oy] boy [m] met [y] yet
[axr] diner [em] bottom [z] zoo
[aw] down [n] net [zh] measure
[ax] about [en] button
[ix] roses [ng] sing
[aa] cot [eng] Washington [-] (silence)

Figure 15.18 The DARPA phonetic alphabet, orARPAbet, listing all the phones used in
American English. There are several alternative notations, including an International Pho-
netic Alphabet (IPA), which contains the phones in all knownlanguages.

Speech sounds

Sound waves are periodic changes in pressure that propagatethrough the air. Sound can
be measured by a microphone whose diaphragm is displaced by the pressure changes and
generates a continuously varying current. An analog-to-digital converter measures the size
of the current—which corresponds to the amplitude of the sound wave—at discrete intervals
determined by thesampling rate. For speech, a sampling rate between 8 and 16 kHz (i.e., 8 toSAMPLING RATE

16,000 times per second) is typical. The precision of each measurement is determined by the
quantization factor; speech recognizers typically keep 8 to 12 bits. That means that a low-QUANTIZATION

FACTOR

end system, sampling at 8 kHz with 8-bit quantization, wouldrequire nearly half a megabyte
per minute of speech. It would be impractical to construct and manipulateP (signaljphone)
distributions with so much signal information; therefore,we need to develop more concise
descriptions of the signal.

First, we observe that although the sound frequencies in speech may be several kHz,
thechangesin the content of the signal occur much less often, perhaps atno more than 100
Hz. Therefore, speech systems summarize the properties of the signal over extended intervals
calledframes. A frame length of about 10 msecs (i.e., 80 samples at 8 kHz) isshort enoughFRAMES

to ensure that few short-duration phenomena will be smudgedout by the summarization pro-
cess. Within each frame, we represent what is happening witha vector offeatures. ForFEATURES
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576 Chapter 15. Probabilistic Reasoning over Time

example, we might want to characterize the amount of energy at each of several frequency
ranges. Other important features include overall energy ina frame, and the difference from
the previous frame. Picking out features from a speech signal is like listening to an orches-
tra and saying “here the French horns are playing loudly and the violins are playing softly.”
Figure 15.19 shows the sequence of transformations from theraw sound to a sequence of
frames. Note that the frames overlap; this prevents us from losing information if an important
acoustic event just happens to fall on a frame boundary.

Analog acoustic signal:

Sampled, quantized 
digital signal:

Frames with features:
10  15  38

52  47  82

22  63  24

89  94  11

10  12  73

Figure 15.19 Translating the acoustic signal into a sequence of frames; each frame is
described by the values of three acoustic features.

In our example, we have shown frames with just three features. Real systems may have
tens or even hundreds of features. If there aren features and each has, say, 256 possible val-
ues, then a frame is described by a point inn-dimensional space and there are256n possible
frames. Forn > 2 it would be impractical to represent the distributionP (featuresjphone)
as an explicit table, so we need further compression. There are two possible approaches:� The method ofvector quantization or VQ divides then-dimensional space into, say,VECTOR

QUANTIZATION

256 regions labelled C1 through C256. Each frame can then be represented with
a single label rather than a vector ofn numbers. Thus, the tabulated distributionP (V Q labeljphone) has 256 probabilities specified for each phone. Vector quanti-
zation is no longer popular in large-scale systems.� Instead of discretizing the feature space, we can use a parameterized continuous distri-
bution to describeP (featuresjphone). For example, we could use a Gaussian distri-
bution with a different mean and covariance matrix for each phone. This works well
if the acoustic realizations of each phone are clustered in asingle region of feature
space. In practice, the sounds can be spread over several regions, and amixture of
Gaussiansmust be used. A mixture is a weighted sum ofk individual distributions, soMIXTURE OF

GAUSSIANS P (featuresjphone) hask weights,k mean vectors of sizen, andk covariance matrices
of sizen2—that is,O(kn2) parameters for each phone.

Of course, some information is lost in going from the full speech signal to a VQ label or a
set of mixture parameters. The art of signal processing liesin choosing features and regions
(or Gaussians) so that the loss ofuseful information is minimized. A given speech sound

c 2002 by Russell and Norvig. DRAFT---DO NOT DISTRIBUTE



Section 15.6. Speech recognition 577

can be pronounced so many ways: loud or soft, fast or slow, high-pitched or low, against
a background of silence or noise, and by any of millions of different speakers each with
different accents and vocal tracts. Signal processing hopes to eliminate the variations while
keeping the commonalities that define the sound.

There are two more refinements we need to make to the simple model we have de-
scribed so far. The first deals with the temporal structure ofphones. In normal speech,
most phones have a duration of 50-100 milliseconds, or 5-10 frames. The probability modelP (featuresjphone) is the same for all these frames, whereas most phones have a good deal
of internal structure. For example, [t] is one of severalstop consonantsin which the flow ofSTOP CONSONANTS

air is cut off for a short period before a sharp release. Examining the acoustic signal, we find
that [t] has a silent beginning, a small explosion in the middle, and (usually) a hissing at the
end. This internal structure of phones can be captured by thethree-state phonemodel; eachTHREESTATE PHONE

phone has Onset, Mid, and End states, and each state has its own distribution over features.
The second refinement deals with the context in which the phone is uttered. The sound

of a given phone can change depending on the surrounding phones.5 For example, the [t] in
“tar” has a short hiss at the end, prior to the voiced [aa r], whereas the [t] in “star” does not.
Both of these [t] sounds are produced by closing the tongue against the roof of the mouth just
behind the teeth, whereas the [t] in “eighth” is often produced with the tongue pressed against
the front teeth because it is followed immediately by a [th] sound. These contextual effects
are partially captured by thetriphone model, in which the acoustic model for each phone isTRIPHONE

allowed to depend on the preceding and succeeding phones. Thus, the [t] in “star” is written
[t(s,aa)], i.e., [t] with left-context [s] and right-context [aa].

The combined effect of the three-state and triphone models is to increase the number of
possible states of the temporal process fromn phones in the original phone alphabet (n � 50
for the ARPAbet) to3n3. Experience shows that the improved accuracy more than offsets the
extra expense in terms of inference and learning.

Words

We can think of each word as specifying a distinct probability distribution P(X1:tjword),
whereXi specifies the phone state in theith frame. Typically, we separate this distribution
into two parts. Thepronunciation modelgives a distribution over phone sequences (ignoring
metric time and frames), while thephone modeldescribes how a phone maps into a sequence
of frames.

Consider the word “tomato.” It is well-known that you say [t ow m ey t ow] and I say [t
ow m aa t ow], so the pronunciation model has to account for dialects. The top of Figure 15.20
shows a transition model that provides for this variation. There are only two possible paths
through the model, one corresponding to the phone sequence [t ow m ey t ow] and the other
to [t ow m aa t ow]. The probability of a path is the product of the probabilities on the arcs
that make up the path:P ([towmeytow℄j“tomato”) = P ([towmaatow℄j“tomato”) = 0:55 In this sense, the “phone model” of speech should be thought of as a useful approximation rather than an
immutable law.
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0.5

0.5

[t] [ow] [m]

[ey]

[ow]

[aa]

[t]

0.5

0.5

0.2

0.8

[m]

[ey]

[ow][t]

[aa]

[t]

[ah]

[ow]

(a) Word model with dialect variation:

(b) Word model with coarticulation and dialect variations:

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.01.0

Figure 15.20 Two pronunciation models of the word “tomato.” Each model isshown as
a transition diagram with states as circles and arrows showing allowed transitions with their
associated probabilities. (a) A model allowing for dialectdifferences. The 0.5 numbers are
estimates based on the two authors’ preferred pronunciations. (b) A model with a coarticula-
tion effect on the first vowel, allowing either the [ow] or the[ah] phone.

The second source of phonetic variation iscoarticulation. Remember that speech sounds areCOARTICULATION

produced by moving the tongue and jaw and forcing air throughthe vocal tract. When the
speaker is talking slowly and deliberately, there is time toplace the tongue in just the right
spot before producing a phone. But when the speaker is talking quickly (or sometimes even
at a normal pace), the movements slur together. For example,the [t] phone is produced with
the tongue at the top of the mouth, whereas the [ow] has the tongue near the bottom. When
spoken quickly, the tongue often goes to an intermediate position, and we get [t ah] rather
than [t ow]. The bottom half of Figure 15.20 gives a more complicated pronunciation model
for “tomato” that takes this coarticulation effect into account. In this model there are four
distinct paths and we haveP ([towmeytow℄j“tomato”) = P ([towmaatow℄j“tomato”) = 0:1P ([tahmeytow℄j“tomato”) = P ([tahmaatow℄j“tomato”) = 0:4
Similar models can be constructed for every word we want to beable to recognize.

The model for a three-state phone is shown as a state transition diagram in Figure 15.21.
The model is for a particular phone, [m], but all phones will have models with similar topol-
ogy. For each phone state, we show the associated acoustic model assuming that the signal is
represented by a VQ label. For example, the model asserts that P (Et =C1jXt = [m]Onset) =0:5. Notice the self-loops in the figure; for example, the [m]Mid state persists with probability
0.9. This means that the [m]Mid state has an expected duration of 10 frames. In this way,
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Phone HMM for [m]:

0.1

0.90.3

0.6

0.4

C1: 0.5

C2: 0.2

C3: 0.3

C3: 0.2

C4: 0.7

C5: 0.1

C4: 0.1

C6: 0.5

C7: 0.4

Output probabilities for the phone HMM:

Onset: Mid: End:

FINAL
0.7

Mid EndOnset

Figure 15.21 An HMM for the three-state phone [m]. Each state has several possible
outputs, each with its own probability. The VQ labelsC1 throughC7 are arbitrary.

we can specify the relative durations of phones; of course, the probabilistic model allows for
variations, such as arise with fast and slow speech.

We can construct similar models for each phone, possibly depending on the triphone
context. Each word model, when combined with the phone models, gives a complete spec-
ification of an HMM. The model specifies the transition probabilities between phone states
from frame to frame, as well as the acoustic feature probabilities for each phone state.

If we want to recognizedisolated words—that is, words spoken without any surround-ISOLATED WORDS

ing context and with clear boundaries—then we need to find theword that maximizesP (wordje1:t) = �P (e1:tjword)P (word)
The prior probabilityP (word) can be obtained from actual text data, as described later. The
quantityP (e1:tjword) is the likelihood of the sequence of acoustic features according to
the word model. Section 15.2 covered the computation of suchlikelihoods; in particular,
Equation (15.6) gives a simple recursive computation whosecost is linear int and in the
number of states of the Markov chain. To find the most likely word, we can perform this
calculation for each possible word model, multiply by the prior, and select the best word
accordingly.

Sentences

To have a conversation with a human, a machine needs to be ableto recognizecontinuous
speechrather than just isolated words. One might think that continuous speech is nothingCONTINUOUS

SPEECH

more than a sequence of words, to each of which we can apply thealgorithm from the previous
section. This approach fails for two reasons. First, we havealready seen (page 552) that the
sequence of most likely words is not the most likely sequenceof words. For example, in the
movieTake the Money and Run, a bank teller interprets Woody Allen’s sloppily written hold-
up note as saying “I have a gub.” A good language model would suggest “I have a gun” as a
much more likely sequence, even though the last word looks more like “gub” than “gun”. The
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Word Unigram Previous words

count of in is on to from model agent

the 33508 3833 2479 832 944 1365 597 28 24
on 2573 1 0 33 2 1 0 0 6
of 15474 0 0 29 1 0 0 88 7
to 11527 0 4 450 21 4 16 9 82
is 10566 3 6 1 4 2 1 47 127

model 752 8 1 0 1 14 0 6 4
agent 2100 10 3 3 2 3 0 0 36
idea 241 0 0 0 0 0 0 0 0

Figure 15.22 A partial table of unigram and bigram counts for the words in this book.
There are 513,893 total words; “the” is the most common at 33,508. The bigram “of the” is
the most common at 15,474. That is, one out of every 15 words is“the” and one out of every
33 word pairs is “of the.” Some counts are higher than expected (e.g. 4 for “on is”) because
the bigram counts ignore punctuation—one sentence might end with “on” and the next begin
with “is.”

second issue we must face with continuous speech issegmentation, the problem of decidingSEGMENTATION

where one word ends and the next begins. Anyone who has tried to learn a foreign language
will appreciate this problem: at first all the words seem to run together. Gradually, one learns
to pick out words from the jumble of sounds. In this case, firstimpressions are correct; a
spectrographic analysis shows that in fluent speech, the words reallydo run together with no
silence between them. We learn to identify word boundaries despite the lack of silence.

Let us begin with the language model, whose job in speech recognition is to specify
the probability of each possible sequence of words. Using the notationw1 � � �wn to denote a
string ofn words andwi to denote theith word of the string, we can write an expression for
the probability of a string using the chain rule as follows:6P (w1 � � �wn) = P (w1)P (w2jw1)P (w3jw1w2) � � � P (wnjw1 � � �wn�1)= Qni=1 P (wijw1 � � �wi�1)
Most of these terms are quite complex and difficult to estimate or compute. Fortunately, we
can approximate this formula with something simpler and still capture a large part of the
language model. One simple, popular, and effective approach is thebigram model. ThisBIGRAM

model approximatesP (wijw1 � � �wi�1) with P (wijwi�1). In other words, it makes a first-
order Markov assumption for word sequences.

A big advantage of the bigram model is that it is easy to train the model by counting
the number of times each word pair occurs in a representativecorpus of strings and using the
counts to estimate the probabilities. For example, if “a” appears 10,000 times in the training6 Strictly speaking, the probability of a word sequence depends strongly on thecontextof the utterance; for
example, “I have a gun” is much more common on notes passed to abank teller than it is in, say, the Wall Street
Journal. Few speech recognizers handle context, other thanby training a special-purpose language model for a
particular task.
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corpus and it is followed by “gun” 37 times, then̂P (gunijai�1) = 37=10; 000, where byP̂ we mean the estimated probability. After such training one would expect “I have” and “a
gun” to have relatively high estimated probabilities, while “I has” and “an gun” would have
low probabilities. Figure 15.22 shows some bigram counts derived from the words in this
chapter.

It is possible to go to atrigram model that provides values forP (wijwi�1wi�2). ThisTRIGRAM

is a more powerful language model, capable of determining that “ate a banana” is more likely
than “ate a bandana.” For trigram models, and to a lesser extent for bigram and unigram
models, thre is a problem with counts of zero. We wouldn’t want to say that a combination
of words that didn’t happen to appear in the training corpus is improbable. The process
of smoothing gives a small non-zero probability to such combinations. Itis discussed on
page 817.

Bigram or trigram models are not as sophisticated as some of the grammar models we
will see in Chapters 22 and 23, but they account for local context-sensitive effects better, and
manage to capture some local syntax. For example, the fact that the word pairs “I has” and
“man have” get low scores is reflective of subject-verb agreement. The problem is that these
relationships can only be detected locally: “the man have” gets a low score, but “the man
over there have” is not penalized.

Now we consider how to combine the language model with the word models, so that we
can handle word sequences properly. We’ll assume a bigram language model for simplicity.
With such a model, we can combine all the word models (which are comprised in turn of
pronunciation models and phone models) into one large HMM model. A state in a single-
word HMM is a frame labelled by the current phone and phone state (for example, [m]Onset);
a state in a continuous-speech HMM is also labelled with a word, as in [m]tomatoOnset . If each
word has an average ofp three-state phones in its pronunciation model, and there are W
words, then the continuous-speech HMM has3Wp states. Transitions can occur between
phone states within a given phone; between phones in a given word, and between the final
state of one word and the initial state of another. The transitions between words occur with
probabilities specified by the bigram model.

Once we have constructed the combined HMM, we can use it to analyze the continuous
speech signal. In particular, the Viterbi algorithm embodied in Equation (15.10) can be used
to find the most likely state sequence. From this state sequence, we can extract a word
sequence simply by reading the word labels from the states. Thus, the Viterbi algorithm
solves the word segmentation problem by using dynamic programming to consider (in effect)
all possible word sequences and word boundaries simultaneously.

Notice that we didn’t say “we can extractthe most likelyword sequence.” The most
likely word sequence is not necessarily the one that contains the most likely state sequence.
This is because the probability of a word sequence is the sum of probabilities over all possible
state sequences consistent with that word sequence. Comparing two word sequences, say “a
back” and “aback,” it might be that case that there are ten alternative state sequences for “a
back,” each with probability 0.03, but just one state sequence for “aback,” with probability
0.20. Viterbi chooses “aback,” but “a back” is actually morelikely.

In practice, this difficulty is not life-threatening, but itis serious enough that other
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approaches have been tried. The most common is theA� decoder, which makes ingeniousA* DECODER

use of A� search (see Chapter 4) to find the most likely word sequence. The idea is to view
each word sequence as a path through a graph whose nodes are labelled with words. The
successors of a node are all the words that can come next; thus, the graph for all sentences of
lengthn or less hasn layers, each of width at mostW , whereW is the number of possible
words. With a bigram model, the costg(w1; w2) of an arc between nodes labelw1 to w2 is
given by� logP (w2jw1); in this way, the total path cost of a sequencew1 � � �wn isnXi=1� logP (wijwi�1) = � log nYi=1P (wijwi�1) :
With this definition of path cost, finding the shortest path isexactly equivalent to finding the
most likely word sequence. For the process to be efficient, wealso need a good heuristich(wi) to estimate the cost of completing the word sequence. Obviously, this has something
to do with how much of the speech signal is not yet covered by the words on the current path.
As yet, no especially interesting heuristics have been devised for this problem.

Building a speech recognizer

The quality of a speech recognition system depends on the quality of all its components—the
language model, the word pronunciation models, the phone models, and the signal processing
algorithms used to extract spectral features from the acoustic signal. We have discussed
how the language model may be constructed, and we leave the details of signal processing
to other textbooks. That leaves the pronunciation and phonemodels. Thestructureof the
pronunciation models—such as the tomato models in Figure 15.20—is usually developed by
hand. Large pronunciation dictionaries are now available for English and other languages,
although their accuracy varies greatly. The structure of the three-state phone models is the
same for all phones, as shown in Figure 15.21. That leaves theprobabilities themselves. How
are these to be obtained, given that the models may require hundreds of thousands or millions
of parameters?

The only plausible method is to learn the models from actual speech data, of which there
is certainly no shortage. The next question is how to do the learning. We give the answer in
full in Chapter 19, but we can give the main ideas here. Consider the bigram language model;
we explained how to learn it by looking at frequencies of wordpairs in actual text. Can
we do the same for, say, phone transition probabilities in the pronunciation model? The
answer is yes, but only if someone goes to the trouble of annotating every occurrence of each
word with the right phone sequence. This is a difficult and error-prone task, but has been
carried out for some standard data sets containing several hours of speech. If we know the
phone sequences, we can estimate transition probabilitiesfor the pronunciation models from
frequencies of phone pairs. Similarly, if we are given the phone state for each frame—an
even more excruciating manual labelling task—then we can estimate transition probabilities
for the phone models. Given the phone state and the acoustic features in each frame, we can
also estimate the acoustic model, either directly from frequencies (for VQ models) or using
statistical fitting methods (for mixture-of-Gaussian models; see Chapter 19).

The cost and rarity of hand-labelled data, and the fact that the available hand-labelled
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data sets may not represent the kinds of speakers and acoustic conditions found in a new
recognition context, could doom this approach to failure.Fortunately, theexpectation–
maximizationor EM algorithm learns HMM transition and sensor models without the need
for labelled data. Estimates derived from hand-labelled data can be used to initialize the
models; after that, EM takes over and trains the models for the task at hand. The idea is sim-
ple: given an HMM and an observation sequence, we can use the smoothing algorithms from
Sections 15.2 and 15.3 to compute the probability of each state at each time step, and, by
a simple extension, the probability of each state–state pair at consecutive time steps. These
probabilities can be viewed asuncertain labelsin place of the definite labels provided by
hand. From the uncertain labels, we can estimate new transition and sensor probabilities, and
the EM procedure repeats. The method is guaranteed to increase the fit between model and
data on each iteration, and generally converges to a much better set of parameter values than
those provided by the initial, hand-labelled estimates.

State-of-the-art speech systems use enormous data sets andmassive computational re-
sources to train their models. For isolated word recognition under good acoustic conditions
(no background noise or reverberation) with a vocabulary ofa few thousand words and a
single speaker, accuracy can be over 99%. For unrestricted continuous speech with a va-
riety of speakers, 60–80% accuracy is common, even with goodacoustic conditions. With
background noise and telephone transmission, accuracy degrades further. Although fielded
systems have improved continuously for decades, there is still room for many new ideas.

15.7 SUMMARY

This chapter has addressed the general problem of representing and reasoning about proba-
bilistic temporal processes. The main points are as follows:� The changing state of the world is handled using a set of random variables to represent

the state at each point in time.� Representations can be designed to satisfy theMarkov property , so that the future is
independent of the past given the present. Combined with theassumption that the pro-
cess isstationary—i..e, the dynamics do not change over time—this greatly simplifies
the representation.� A temporal probability model can be thought of as containinga transition model de-
scribing the evolution and asensor modeldescribing the observation process.� The principal inference tasks in temporal models arefiltering , prediction, smooth-
ing, and computing themost likely explanation. Each of these can be achieved using
simple, recursive algorithms whose runtime is linear in thelength of the sequence.� Three families of temporal models were studied in more depth: hidden Markov mod-
els, Kalman filters , anddynamic Bayesian networks(which include the other two as
special cases).� Speech recognitionand tracking are two important applications for temporal proba-
bility models.
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584 Chapter 15. Probabilistic Reasoning over Time� Unless special assumptions are made, as in Kalman filters, exact inference with many
state variables appears to be intractable. In practice, theparticle filtering algorithm
seems to be an effective approximation algorithm.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Many of the basic ideas for estimating the state of dynamicalsystems came from the mathe-
matician C. F. Gauss (1809). Gauss developed a deterministic least-squares algorithm for the
problem of estimating orbits from astronomical observations. The Russian mathematician
A. A. Markov (1913) developed what was later called theMarkov assumption in his anal-
ysis of stochastic processes; he estimated a first-order Markov chain on letters from the text
of Eugene Onegin. Significant classified work on filtering was done during World War II by
Wiener (1942) for continuous-time processes and by Kolmogorov (1941) for discrete-time
processes. Although this work led to important technological developments over the next
twenty years, its use of a frequency-domain representationmade many calculations quite
cumbersome. Direct state-space modelling of the stochastic process turned out to be simpler,
as shown by Swerling (1959) and Kalman (Kalman, 1960). The latter paper introduced what
is now known as the Kalman filter for forward inference in linear systems with Gaussian
noise. Important results on smoothing were derived by Rauchet al. (1965), and the impres-
sively namedRauch-Tung-Striebel smootheris still a standard technique today. Many early
results are gathered in Gelb (1974). Bar-Shalom and Fortmann (1988) give a more modern
treatment with a Bayesian flavor, as well as many references to the vast literature on the
subject.

In many applications of Kalman filtering, one must deal not only with uncertain sens-
ing and dynamics but also with uncertainidentity—that is, if there are multiple objects being
monitored, the system must determine which observations were generated by which objects
before it can update each of the state estimates. This is the problem ofdata association(Bar-DATA ASSOCIATION

Shalom and Fortmann, 1988; Bar-Shalom, 1992). Withn observations andn tracks (a fairly
benign case), there aren! possible assignments of observations to tracks; a proper probabilis-
tic treatment must take all of them into account, and this canbe shown to be NP-hard (Cox,
1993; Cox and Hingorani, 1994). Polynomial-time approximation methods based on MCMC
appear to work well in practice (Pasulaet al., 1999). It is interesting to note that the data
association problem is an instance of probabilistic inference in afirst-order language—unlike
most probabilistic inference problems, which are purely propositional, data association in-
volvesobjectsas well as theidentity relation. It is therefore intimately connected to the first-
order probabilistic languages that were mentioned in Chapter 14. Recent work has shown
that reasoning about identity in general, and data association in particular, can be carried out
within the first-order probabilistic framework (Pasula andRussell, 2001).

The hidden Markov model and associated algorithms for inference and learning, includ-
ing the forward–backward algorithm, were developed by Baumand Petrie (1966). Similar
ideas also appeared independently in the Kalman filtering community (Rauchet al., 1965).
The forward–backward algorithm was one of the main precursors of the general formulation
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Section 15.7. Summary 585

of the EM algorithm (; see also Chapter 19 Dempsteret al., 1977). Constant-space smooth-
ing appears in Binderet al. (1997), as does the divide-and-conquer algorithm developed in
Exercise 15.3.

Dynamic belief networks (DBNs) can be viewed as a sparse encoding of a Markov
process, and were first used in AI by Dean and Kanazawa (1989b), Nicholson (1992), and
Kjaerulff (1992). The last work includes a generic extension to the HUGIN belief net system
to provide the necessary facilities for dynamic belief network generation and compilation.
Dynamic Bayesian networks have become popular for modelling a variety of complex mo-
tion processes in computer vision (Huanget al., 1994; Intille and Bobick, 1999). The link
between HMMs and DBNs, and between the forward–backward algorithm and Bayesian net-
work propagation, was made explicitly by Smythet al. (1997). A further unification with
Kalman filters (as well as several other statistical models)appears in Roweis and Ghahra-
mani (1999).

The particle filtering algorithm described in Section 15.5 has a particularly interesting
history. The first sampling algorithms for filtering were developed in the control theory com-
munity by Handschin and Mayne (1969), and the resampling idea that is the core of particle
filtering appeared in a Russian control journal (Zaritskiiet al., 1975). It was later reinvented
in statistics assequential importance-sampling resamplingor SIR (Rubin, 1988; Liu and
Chen, 1998), in control theory as particle filtering (Gordonet al., 1993; Gordon, 1994), in
AI as survival of the fittest (Kanazawaet al., 1995), and in computer vision ascondensa-
tion (Isard and Blake, 1996). The paper by Kanazawaet al. (1995) includes an improvement
calledevidence reversalwhereby the state at timet + 1 is sampled conditional on both the
state at timet and the evidence at timet + 1. This allows the evidence to influence sample
generation directly, and was proved (independently) by Doucet (1997) to reduce the approxi-
mation error.

Alternative methods for approximate filtering include thedecayed MCMCalgorithm (Marthi
et al., 2002) and the factored approximation method of Boyenet al. (1999). Both of these
methods have the important property that the approximationerror does not diverge over
time. Variational techniques (see Chapter 14) have also been developed for temporal models.
Ghahramani and Jordan (1997) discuss an approximation algorithm for thefactorial HMM ,
a DBN in which two or more independently evolving Markov chains are linked by a shared
observation stream. Jordanet al. (1998) cover a number of other applications.

The prehistory of speech recognition began in the 1920s withRadio Rex, a voice-
activated toy dog. Rex jumped in response to sound frequencies near 500 Hz, which cor-
responds to the [eh] vowel in “Rex!” Somewhat more serious work began after World War II.
At AT&T Bell Labs, a system was build for recognizing isolated digits (Daviset al., 1952) us-
ing simple pattern matching of acoustic features. Phone transition probabilities were first used
in a system built at University College, London by Fry (1959)and Denes (1959). Starting in
1971, the Defense Advanced Research Projects Agency (DARPA) of the United States De-
partment of Defense funded four competing five-year projects to develop high-performance
speech recognition systems. The winner, and the only systemto meet the goal of 90% accu-
racy with a 1000-word vocabulary, was the HARPY system at CMU (Lowerre, 1976; Lowerre
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586 Chapter 15. Probabilistic Reasoning over Time

and Reddy, 1980).7 The final version of HARPY was derived from a system called DRAGON

built by CMU graduate student James Baker (1975), which was the first to use HMMs for
speech. Almost simultaneously, Jelinek (1976) at IBM had developed another HMM-based
system. From that point onwards, probabilistic methods in general, and HMMs in particu-
lar, came to dominate speech recognition research and development. Recent years have been
characterized by incremental progress, larger data sets and models, and more rigorous com-
petitions on more realistic speech tasks. Some researchershave explored the possibility of
using DBNs instead of HMMs for speech, with the aim of using the greater expressive power
of DBNs to capture more of the complex hidden state of the speech apparatus (Zweig and
Russell, 1998; Richardsonet al., 2000).

Several good textbooks on speech recognition are available(Rabiner and Juang, 1993;
Jelinek, 1997; Gold and Morgan, 2000; Huanget al., 2001). Waibel and Lee (1990) collect
important papers in the area, including some tutorial ones.The presentation in this chapter
drew on the survey by Kay, Gawron, and Norvig (1994), and on the textbook by Jurafsky and
Martin (2000). Speech recognition research is published inComputer Speech and Language,
Speech Communications, and the IEEETransactions on Acoustics, Speech, and Signal Pro-
cessing, and at the DARPA Workshops on Speech and Natural Language Processing and the
Eurospeech, ICSLP, and ASRU conferences.

EXERCISES

15.1 Show that any second-order Markov process can be rewritten as a first-order Markov
process with an augmented set of state variables. Can this always be doneparsimoniously—
that is, without increasing the number of parameters neededto specify the transition model?

15.2 In this exercise we examine what happens to the probabilities in the umbrella world in
the limit of long time sequences.

a. Suppose we observe an unending sequence of days on which theumbrella appears.
Show that, as the days go by, the probability of rain on the current day increases mono-
tonically towards a fixed point. Calculate this fixed point.

b. Now considerforecastingfurther and further into the future, given just the first two
umbrella observations. First, compute the probabilityP (R2+kjU1; U2) for k=1 : : : 20
and plot the results. You should see that the probability converges towards a fixed point.
Calculate the exact value of this fixed point.

15.3 This exercise develops a space-efficient variant of the forward–backward algorithm7 The second-ranked system in the competition, HEARSAY-II (Ermanet al., 1980), had a great deal of influence
on other branches of AI research because of its use of theblackboard architecture. It was a rule-based expert
system with a number of more or less independent, modularknowledge sourceswhich communicated via a
commonblackboard from which they could write and read. Blackboard systems arethe foundation of modern
user interface architectures.
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described in Figure 15.4. We wish to computeP(Xkje1:t) for k=1; : : : ; t. This will be done
with a divide-and-conquer approach.

a. Suppose, for simplicity, thatt is odd, and let the halfway point beh= (t+ 1)=2. Show
thatP(Xkje1:t) can be computed fork=1; : : : ; h given just the initial forward message
f1:0, the backward messagebh+1:t, and the evidencee1:h.

b. Show a similar result for the second half of the sequence.
c. Given the results of (a) and (b), a recursive, divide-and-conquer algorithm can be con-

structed by first running forward along the sequence and thenbackwards from the end,
storing just the required messages at the middle and the ends. Then the algorithm is
called on each half. Write out the algorithm in detail.

d. Compute the time and space complexity of the algorithm as a function oft, the length
of the sequence. How does this change if we divide into more than two pieces?

15.4 On page 552, we outlined a flawed procedure for finding the mostlikely state sequence,
given an observation sequence. The procedure involves finding the most likely state at each
time step, using smoothing, and returning the sequence composed of these states. Show that,
for some temporal probability models and observation sequences, this procedure returns an
impossible state sequence (i.e., the posterior probability of the sequence is zero).

tZ t+1Z

tX t+1X

tS t+1S

Figure 15.23 A Bayesian network representation of a switching Kalman filter. The
switching variableSt is a discrete state variable whose value determines the transition
model for the continuous state variablesXt. For any discrete statei, the transition model
P(Xt+1jXt; St= i) is a linear Gaussian model, just as in a regular Kalman filter.The transi-
tion model for the discrete state,P(St+1jSt), can be thought of as a matrix just as in a hidden
Markov model.

15.5 Often we wish to monitor a continuous-state system whose behavior switches unpre-
dictably among a set ofk distinct “modes.” For example, an aircraft trying to evade amissile
may execute a series of distinct maneuvers that the missile may attempt to track. A Bayesian
network representation of such aswitching Kalman filter model is shown in Figure 15.23.

a. Suppose that the discrete stateSt hask possible values and that the prior continuous
state estimateP(X0) is a multivariate Gaussian distribution. Show that the prediction
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588 Chapter 15. Probabilistic Reasoning over Time

P(X1) is amixture of Gaussians—that is, a weighted sum of Gaussians such that the
weights sum to 1.

b. Show that if the current continuous state estimateP(Xtje1:t) is a mixture ofm Gaus-
sians, then the updated state estimateP(Xt+1je1:t+1) will be a mixture ofkmGaussians
in the general case.

c. What aspect of the temporal process do the weights in the Gaussian mixture represent?

Together, the results in (a) and (b) show that the representation of the posterior grows without
limit even for switching Kalman filters, which are the simplest hybrid dynamic models.

15.6 Complete the missing step in the derivation of Equation (15.18), the first update step
for the one-dimensional Kalman filter.

15.7 Let us examine the behavior of the variance update in Equation (15.19).

a. Plot the value of�2t as a function oft, given various values for�2x and�2z .

b. Show that the update has a fixed point�2 such that�2t ! �2 ast ! 1, and calculate
it.

c. Give a qualitative explanation for what happens as�2x ! 0 and as�2z ! 0.

15.8 Show how to represent an HMM as a recursive relational probabilistic model, as sug-
gested in Section 14.6.

15.9 In this exercise, we analyze in more detail the persistent failure model for the battery
sensor in Figure 15.13(a).

a. Figure 15.13(b) stops att=32. Describe qualitatively what should happen ast ! 1
if the sensor continues to read 0.

b. Suppose that the external temperature affects the batterysensor, in such a way that
transient failures become more likely as temperature increases. Show how to augment
the DBN structure in Figure 15.13(a) and explain any required changes to the CPTs.

c. Given the new network structure, can battery readings be used by the robot to infer the
current temperature?

15.10 Consider applying the variable elimination algorithm to the umbrella DBN unrolled
for three slices, where the query isP(R3jU1; U2; U3). Show that the complexity of the
algorithm—the size of the largest factor—is the same whether the rain variables are elim-
inated in forward or backward order.

15.11 The model of “tomato” in Figure 15.20 allows for a coarticulation on the first vowel
by giving two possible phones. An alternative approach is touse a triphone model in which
the [ow(t,m)] phone automatically includes the change in vowel sound. Draw a complete
triphone model for “tomato,” including the dialect variation.
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