Induction: A process of reasoning (arguing) which infers a general conclusion based on individual cases

Supervised (Inductive) Learning

Vibhav Gogate The University of Texas at Dallas

Supervised Learning

- Given: Training examples $\langle \mathbf{x}, f(\mathbf{x}) \rangle$ for some unknown function f.
- Find: A good approximation to f.

Example Applications

• Credit risk assessment

 \mathbf{x} : Properties of customer and proposed purchase.

 $f(\mathbf{x})$: Approve purchase or not.

• Disease diagnosis

x: Properties of patient (symptoms, lab tests)

 $f(\mathbf{x})$: Disease (or maybe, recommended therapy)

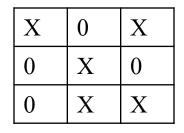
• Face recognition

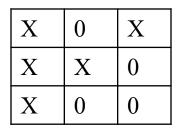
x: Bitmap picture of person's face $f(\mathbf{x})$: Name of the person.

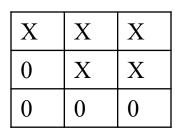
• Automatic Steering

x: Bitmap picture of road surface in front of car. $f(\mathbf{x})$: Degrees to turn the steering wheel.

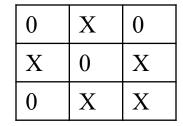
A learning problem!

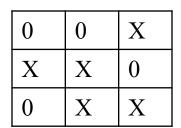


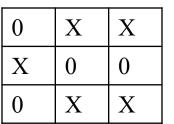




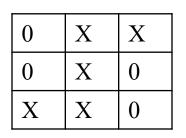
$$f(x)=1$$







f(x)=0

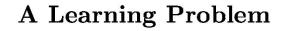


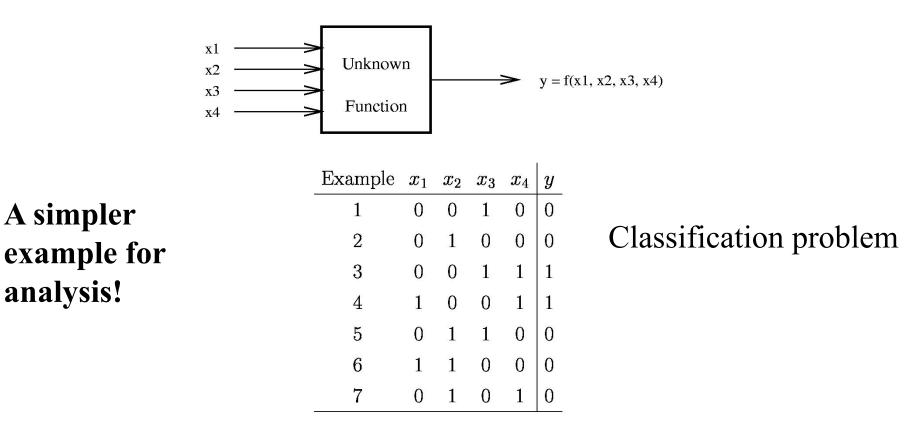
f(x)=?

If you prefer the training data in this form!

X1	X2	X3	X4	X5	X6	X7	X8	X9	f(x)
Χ	0	Х	0	Х	0	0	Х	Х	1
Χ	0	Х	Х	Х	0	Х	0	0	1
Х	Х	Х	0	Х	Х	0	0	0	1
0	Х	0	Х	0	Х	0	Х	Х	0
0	0	Х	Х	Х	0	0	Х	Х	0
0	Х	Х	Х	0	0	0	Х	Х	0
0	Х	Х	0	Х	0	Х	Х	0	?

- x: a 9-dimensional vector
- f(x): a function or a program that takes the vector as input and outputs either a 0 or a 1
- **Task**: given the training examples, find a good approximation to f so that in future if you see an unseen vector "x" you will be able to figure out the value of f(x)

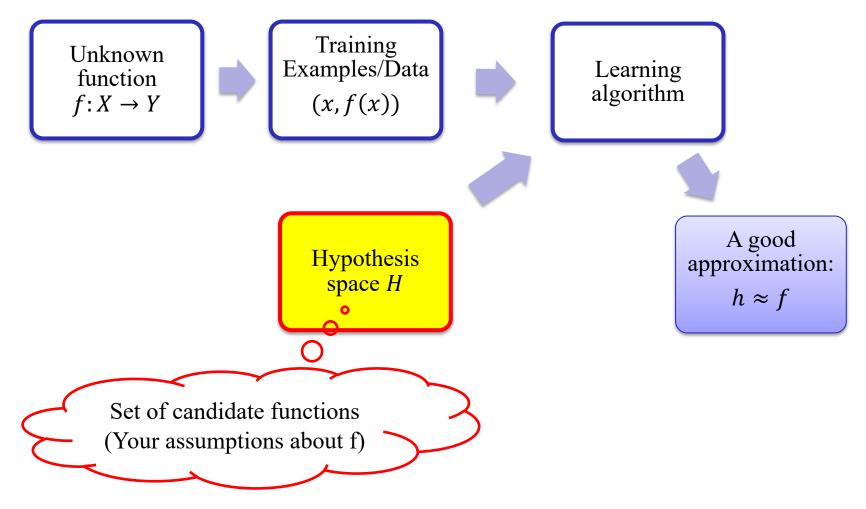




Given data or examples, find the function f?

How to find a good approximation to f?

• A possible/plausible technique



Hypothesis Spaces

• Complete Ignorance. There are $2^{16} = 65536$ possible boolean functions over four input features. We can't figure out which one is correct until we've seen every possible input-output pair. After 7 examples, we still have 2^9 possibilities.

You are assuming that the unknown function f could be any one of the 2¹⁶ functions!

x_1	x_2	x_3	x_4	y
0	0	0	0	?
0	0	0	1	?
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0 ?
0	1	1	1	?
1	0	0	0	?
1	0	0	1	1
1	0	1	0	?
1	0	1	1	?
1	1	0	0	0 ?
1	1	0	1	
1	1	1	0	? ?
1	1	1	1	?

It turns out that out of the 2¹⁶ possible functions, 2⁹ classify all points in the training data correctly!

Hypothesis Spaces (2)

• Simple Rules. There are only 16 simple conjunctive rules.

	Rule	Counterexample						
Vou are accuming	$\Rightarrow y$	1	Example	x_1	x_2	x_3	x_4	y
You are assuming	$x_1 \Rightarrow y$	3	1	0	0	1	0	0
that the unknown	$x_2 \Rightarrow y$	2	2	0	1	0	0	0
function f could	$x_3 \Rightarrow y$	1	3	0	0	1	1	1
	$x_4 \Rightarrow y$	7	4	1	0	0	1	1
be any one of the	$x_1 \ \land \ x_2 \Rightarrow y$	3	4	1	0	0	1	1
•	$x_1 \ \land \ x_3 \Rightarrow y$	3	5	0	1	1	0	0
16 conjunctive	$x_1 ~\wedge~ x_4 {\Rightarrow} y$	3	6	1	1	0	0	0
rules!	$x_2 \ \land \ x_3 \Rightarrow y$	3	7	0	1	0	1	0
	$x_2 \ \land \ x_4 \Rightarrow y$	3						
	$x_3 \ \land \ x_4 \Rightarrow y$	4						
	$x_1 \ \land \ x_2 \ \land \ x_3 \Rightarrow y$	3						
Unfortunately, none	$x_1 \ \land \ x_2 \ \land \ x_4 \Rightarrow y$	3						
• •	$x_1 \wedge x_3 \wedge x_4 {\Rightarrow} y$	3						
of them work	$x_2 \ \land \ x_3 \ \land \ x_4 \Rightarrow y$	3						
	$x_1 \wedge x_2 \wedge x_3 \wedge x_4 \Rightarrow y$	3						

No simple rule explains the data. The same is true for simple clauses.

Hypothesis Space (3)

• *m*-of-*n* rules. There are 32 possible rules (includes simple conjunctions and clauses).

		Co	ounter	exam	ple						
	variables	1-of	2-of	3-of	4-of	Example	x_1	x_2	x_3	x_4	y
At least <i>m</i> of the <i>n</i>	$\{x_1\}$	3			_	1	0	0	1	0	0
variables must be true	$\{x_2\}$	2	_	_	-	2	0	1	0	0	0
	$\{x_3\}$	1	_		-	3	0	0	1	1	1
You are assuming	$\{x_4\}$	7	_	-	—	4	1	0	0	1	1
e	$\{x_1,x_2\}$	3	3	-	_		_	0			
that the unknown	$\{x_1,x_3\}$	4	3	—	—	5	0	1	1	0	0
function f could	$\{x_1,x_4\}$	6	3			6	1	1	0	0	0
	$\{x_2,x_3\}$	2	3	1		7	0	1	0	1	0
be any one of the	$\{x_2,x_4\}$	2	3	—	_						
32 m-of-n rules!	$\{x_3,x_4\}$	4	4		—						
	$\{x_1,x_2,x_3\}$	1	3	3	—						
	$\{x_1,x_2,x_4\}$	2	3	3	_						
Only one of them, the	$\{x_1,x_3,x_4\}$	1	***	3	—						
one marked by "***"	$\{x_2,x_3,x_4\}$	1	5	3	—						
one marked by	$\{x_1, x_2, x_3, x_4\}$	1	5	3	3						
works!											

Two Views of Learning

- Learning is the removal of our remaining uncertainty. Suppose we knew that the unknown function was an m-of-n boolean function, then we could use the training examples to infer which function it is.
- Learning requires guessing a good, small hypothesis class. We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!

- Our prior knowledge might be wrong
- Our guess of the hypothesis class could be wrong The smaller the hypothesis class, the more likely we are wrong.

Example: $x_4 \wedge Oneof\{x_1, x_3\} \Rightarrow y$ is also consistent with the training data.

Example: $x_4 \land \neg x_2 \Rightarrow y$ is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x values.

Two Strategies for Machine Learning

- Develop Languages for Expressing Prior Knowledge: Rule grammars and stochastic models.
- **Develop Flexible Hypothesis Spaces:** Nested collections of hypotheses. Decision trees, rules, neural networks, cases.

In either case:

• Develop Algorithms for Finding an Hypothesis that Fits the Data

Terminology

- Training example. An example of the form $\langle \mathbf{x}, f(\mathbf{x}) \rangle$.
- Target function (target concept). The true function f.
- **Hypothesis**. A proposed function h believed to be similar to f.
- Concept. A boolean function. Examples for which f(x) = 1 are called positive examples or positive instances of the concept. Examples for which f(x) = 0 are called negative examples or negative instances.
- Classifier. A discrete-valued function. The possible values $f(\mathbf{x}) \in \{1, \ldots, K\}$ are called the classes or class labels.
- **Hypothesis Space**. The space of all hypotheses that can, in principle, be output by a learning algorithm.
- Version Space. The space of all hypotheses in the hypothesis space that have not yet been ruled out by a training example.

Key Issues in Machine Learning

• What are good hypothesis spaces?

Which spaces have been useful in practical applications and why?

- What algorithms can work with these spaces? Are there general design principles for machine learning algorithms?
- How can we optimize accuracy on future data points? This is sometimes called the "problem of overfitting".
- How can we have confidence in the results? How much training data is required to find accurate hypotheses? (the *statistical question*)
- Are some learning problems computationally intractable? (the *computational question*)
- How can we formulate application problems as machine learning problems? (the *engineering question*)

Steps in Supervised Learning

 Determine the representation for "x,f(x)" and determine what "x" to use

Feature Engineering

- 2. Gather a training set (not all data is kosher)Data Cleaning
- 3. Select a suitable evaluation method
- 4. Find a suitable learning algorithm among a plethora of available choices
 - Issues discussed on the previous slide

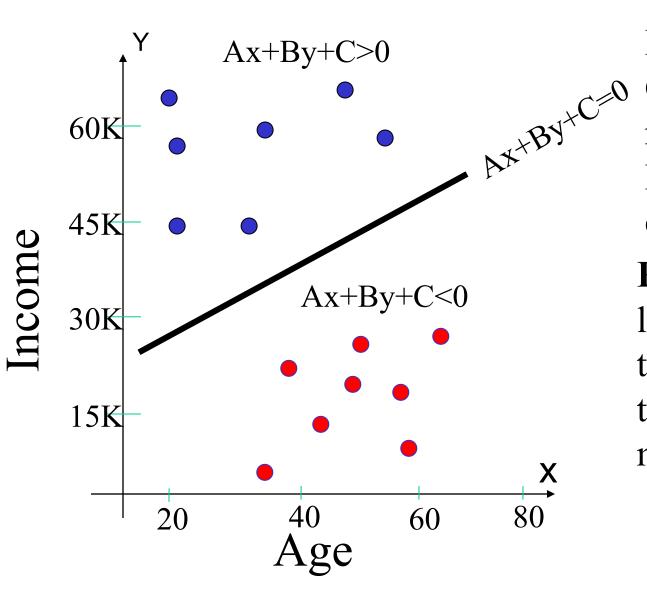
Feature Engineering is the Key

- Most effort in ML projects is constructing features
- Black art: Intuition, creativity required
 - Understand properties of the task at hand
 - How the features interact with or limit the algorithm you are using.
- ML is an iterative process
 - Try different types of features, experiment with each and then decide which feature set/algorithm combination to use

A sample machine learning Algorithm

- 2-way classification problem -+ve and -ve classes
- Representation: Lines (Ax+By+C=0)
 - Specifically
 - if Ax+By+C >0 then classify "+ve"
 - Else classify as "-ve"
- Evaluation: Number of mis-classified examples
- Optimization: An algorithm that searches for the three parameters: A, B and C.

Toy Example



Blue circles: Good credit (low risk) **Red circles**: Bad credit (high risk) **Problem:** Fit a line that separates the two such that the error is minimized.

Learning = Representation + Evaluation + Optimization

• Combinations of just three elements

Representation	Evaluation	Optimization				
Instances	Accuracy	Greedy search				
Hyperplanes	Precision/Recall	Branch & bound				
Decision trees	Squared error	Gradient descent				
Sets of rules	Likelihood	Quasi-Newton				
Neural networks	Posterior prob.	Linear progr.				
Graphical models	Margin	Quadratic progr.				
Etc.	Etc.	Etc.				