Induction: A process of reasoning (arguing) which
infers a general conclusion based on individual cases
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Supervised Learning

e Given: Training examples (x, f(x)) for some unknown function f.

e Find: A good approximation to f.

Example Applications

e Credit risk assessment
x: Properties of customer and proposed purchase.

f(x): Approve purchase or not.

e Disease diagnosis
x: Properties of patient (symptoms, lab tests)

f(x): Disease (or maybe, recommended therapy)

e Face recognition
x: Bitmap picture of person’s face

f(x): Name of the person.

e Automatic Steering
x: Bitmap picture of road surface in front of car.

f(x): Degrees to turn the steering wheel.



A learning problem!
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If you prefer the training data in
this form!

* Xx:a9-dimensional vector

* f(x): a function or a program that takes the vector as input and
outputs either a 0 or a 1

* Task: given the training examples, find a good approximation to f
so that 1n future 1f you see an unseen vector “x” you will be able to
figure out the value of {(x)
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Classification problem

Given data or examples, find the function {?



How to find a good approximation to 1?
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Hypothesis Spaces

o Complete Ignorance. There are 2'® = 65536 possible boolean functions over four
input features. We can’t figure out which one is correct until we’ve seen every possible
input-output pair. After 7 examples, we still have 2° possibilities.
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Hypothesis Spaces (2)

e Simple Rules. There are only 16 simple conjunctive rules.

Rule Counterexample
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No simple rule explains the data. The same is true for simple clauses.



Hypothesis Space (3)

e m-of-n rules. There are 32 possible rules (includes simple conjunctions and clauses).

At least m of the n
variables must be true

You are assuming
that the unknown
function f could
be any one of the
32 m-of-n rules!

Only one of them, the
one marked by “***”
works!
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Two Views of Learning

e Learning is the removal of our remaining uncertainty. Suppose we knew that
the unknown function was an m-of-n boolean function, then we could use the training

examples to infer which function it is.

¢ Learning requires guessing a good, small hypothesis class. We can start with

a very small class and enlarge it until it contains an hypothesis that fits the data.

We could be wrong!

e Our prior knowledge might be wrong
e Our guess of the hypothesis class could be wrong
The smaller the hypothesis class, the more likely we are wrong.
Example: 4 A Oneof{z1, 23} = vy is also consistent with the training data.
Example: x4 A —z9 = y is also consistent with the training data.

If either of these is the unknown function, then we will make errors when we are given new x

values.



Two Strategies for Machine Learning

e Develop Languages for Expressing Prior Knowledge: Rule grammars and

stochastic models.

e Develop Flexible Hypothesis Spaces: Nested collections of hypotheses.

Decision trees, rules, neural networks, cases.

In either case:

e Develop Algorithms for Finding an Hypothesis that Fits the Data



Terminology

e Training example. An example of the form (x, f(x)).
e Target function (target concept). The true function f.
e Hypothesis. A proposed function A believed to be similar to f.

e Concept. A boolean function. Examples for which f(x) = 1 are called positive ex-
amples or positive instances of the concept. Examples for which f(x) = 0 are called

negative examples or negative instances.

e Classifier. A discrete-valued function. The possible values f(x) € {1,..., K} are called

the classes or class labels.

e Hypothesis Space. The space of all hypotheses that can, in principle, be output by a

learning algorithm.

e Version Space. The space of all hypotheses in the hypothesis space that have not yet
been ruled out by a training example.



Key Issues in Machine Learning

e What are good hypothesis spaces?

Which spaces have been useful in practical applications and why?

e What algorithms can work with these spaces?

Are there general design principles for machine learning algorithms?

e How can we optimize accuracy on future data points?

This is sometimes called the “problem of overfitting”.

e How can we have confidence in the results?

How much training data is required to find accurate hypotheses? (the statistical question)

e Are some learning problems computationally intractable?

(the computational question)

e How can we formulate application problems as machine learning prob-

lems? (the engineering question)



Steps 1n Supervised Learning

. Determine the representation for “x,f(x)” and

66,9

determine what “x’’ to use

Feature Engineering

. Gather a training set (not all data 1s kosher)
Data Cleaning

. Select a suitable evaluation method

. Find a suitable learning algorithm among a
plethora of available choices

— Issues discussed on the previous slide



Feature Engineering 1s the Key

* Most effort in ML projects is constructing
features

« Black art: Intuition, creativity required

— Understand properties of the task at hand
— How the features interact with or limit the
algorithm you are using.
ML 1s an 1iterative process

— Try different types of features, experiment with
cach and then decide which feature set/algorithm
combination to use



A sample machine learning
Algorithm

2-way classification problem
— +ve and —ve classes

Representation: Lines (Ax+By+C=0)
— Specifically

 1f Ax+By+C >0 then classify “+ve”

 Else classify as “-ve”
Evaluation: Number of mis-classified
examples

Optimization: An algorithm that searches for
the three parameters: A, B and C.



Income

Toy Example
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Learning = Representation +
Evaluation + Optimization

* Combinations of just three elements

Representation Optimization

Instances Accuracy Greedy search
Hyperplanes Precision/Recall  Branch & bound
Decision trees Squared error Gradient descent
Sets of rules Likelihood Quasi-Newton
Neural networks Posterior prob. Linear progr.
Graphical models Margin Quadratic progr.

Etc. Etc. Etc.



