
(Binary) Linear Classifiers:
Representation and Optimization

Vibhav Gogate



Task: Learning Linear Classifiers

I Given: Dataset D having d examples defined over a set of
features X = {X0, . . . ,Xn} and desired output variable Y
(also called the class variable). Assume that the class variable
is binary and X0 is a dummy feature which is always 1.

I To do: Find a function h over X such that: (1) h is the best
approximation of f according to a user-defined performance
measure, and (2) h is a linear threshold function given by

h(x) =

{
1 if

∑n
i=0 wixi > 0

0 otherwise

where wi ∈ R is a parameter associated with feature Xi .

I At test time: Use h to find the class Y given x.



Performance Measure:
Minimize the Mis-classification Error

I Until now, our classifiers (LR and NB) were probability driven.
Let us be error driven.

I Mis-classification error

Error =
d∑

k=1

(
y (k) − h(x(k))

)2
(the term inside the summation will be 1 iff the predicted
value h(x(k)) is not the same as y (k) and 0 otherwise)

I h is not differentiable (discontinuous at 0). It creates
problems during optimization.

I Therefore, we need to use a continuous function instead of h,
which in turn also changes the performance measure.



Use the Sigmoid/Logistic Function

I What if we use the Sigmoid function instead of the threshold
function?

h(x) ≈ o(x) = σ

(
n∑

i=0

wixi

)
=

exp (
∑n

i=0 wixi )

1 + exp (
∑n

i=0 wixi )

I Mis-classification error

Error =
d∑

k=1

(
y (k) − h(x(k))

)2
≈

d∑
k=1

(
y (k) − o(x(k))

)2



Unifying Theme: Learning =
Representation + Evaluation Measure + Optimization

Error-driven Classifier

I Approximate h by

o(x) =
exp (

∑n
i=0 wixi )

1 + exp (
∑n

i=0 wixi )

I Performance Measure:
Minimize

d∑
k=1

(
y (k) − o(x(k))

)2

Logistic Regression

I P(Y = 1|x) equals

o(x) =
exp (

∑n
i=0 wixi )

1 + exp (
∑n

i=0 wixi )

I Performance Measure:
Maximize

d∏
k=1

o(x(k))y
(k)

(1−o(x(k)))1−y (k)



Optimize the error: Gradient Descent

E =
d∑

k=1

(
y (k) − o(x(k))

)2
∂E

∂wi
= 2

d∑
k=1

(
y (k) − o(x(k))

) −∂o(x(k))

∂wi

∂E

∂wi
= 2

d∑
k=1

(
y (k) − o(x(k))

)
o(x(k))(1− o(x(k)))

−∂
∑n

i=0 wix
(k)
i

∂wi

∂E

∂wi
= −2

d∑
k=1

(
y (k) − o(x(k))

)
o(x(k))(1− o(x(k)))x

(k)
i

Step 3: Derivative of sigmoid: dσ(x)
dx = σ(x)(1− σ(x))



Weight update rule for LR versus our error-driven classifier

I Error-driven

wi = wi − α
∂E

∂wi

Absorbing the 2 in α, we get:

wi = wi + α

d∑
k=1

(
y (k) − o(x(k))

)
o(x(k))(1− o(x(k)))x

(k)
i

I LR

wi = wi + α

d∑
k=1

(
y (k) − o(x(k))

)
x
(k)
i

Recall:
∂E

∂wi
= −2

d∑
k=1

(
y (k) − o(x(k))

)
o(x(k))(1− o(x(k)))x

(k)
i



Other Options: Use tanh

I We can use the tanh function. It lies between −1 and 1

tanh(x) =
ex − e−x

ex + e−x
=

e2x − 1

e2x + 1

I Minor change: we will use +1 for positive class as −1 for
negative class. We will call the new function s to distinguish
it from h. Formally,

s(x) = +1 if
n∑

i=0

wixi > 0 and − 1 otherwise

I Derivative: d
dx tanh(x) = 1− tanh2(x).

I Approximate s by t where t(x) = tanh(
∑n

i=0 wixi )

I Gradient descent rule:

wi = wi + α

d∑
k=1

(
y (k) − t(x(k))

)
(1− [t(x(k))]2)x

(k)
i



Other Options: Use a linear approximation

I Approximate s by l where l(x) =
∑n

i=0 wixi
I Error is approximated using

E =
d∑

k=1

(
y (k) − s(x(k))

)2
≈

d∑
k=1

(
y (k) − l(x(k))

)2
I Gradient descent rule:

wi = wi + α

d∑
k=1

(
y (k) − l(x(k))

)
x
(k)
i



Stochastic Gradient Descent (SGD)

Batch Algorithm
Repeat Until Convergence

wi = wi − α
∂

∂wi

d∑
k=1

(
y (k) − o(x(k))

)2
Stochastic Algorithm
Repeat Until Convergence

I For each training example (x, y)

wi = wi − α
∂

∂wi
(y − o(x))2

Stochastic Gradient Descent can approximate batch descent
arbitrarily closely if α is made small enough.

I Mini-Batch: Use randomly chosen t < d examples.



The Perceptron Algorithm

I Turns out that when data is linearly separable, namely there
exists a hyper-plane which can separate positive examples
from negative examples (in two dimensions, a line), there
exists a much simpler algorithm. This algorithm is the classic
Perceptron algorithm.

Algorithm:

I Repeat the following Until Convergence
I For each training example (x, y) in D

I Update each weight wi using the following rule:

wi = wi + α(y − s(x))xi

Recall: s(x) = +1 if
n∑

i=0

wixi > 0 and − 1 otherwise



Properties of the Perceptron Algorithm

I Converges if the data is linearly
separable (Proof is a little bit
involved.) However, it has mediocre
generalization: often finds a “barely”
separating solution

I Convergence is not assured if data is
not linearly separable. In fact in many
cases, it will not converge. In such
cases, weights might thrash.
Averaging weight vectors over time
can help (averaged perceptron)

Separable case

Non-Separable case



Summary

I A classifier which uses the following rule is a linear classifier

If
∑
i

wixi > 0 then class is positive else negative

I Threshold function is not differentiable and therefore we
typically approximate it using a differentiable function

I Recipe: Substitute the (differentiable) approximation in a
suitable evaluation function and then use the gradient descent
(ascent) algorithm to yield a linear classifier.

I Stochastic vs Batch vs Mini-batch gradient descent


