(Binary) Linear Classifiers:
Representation and Optimization

Vibhav Gogate

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Task: Learning Linear Classifiers

» Given: Dataset D having d examples defined over a set of
features X = {Xp, ..., X,} and desired output variable Y
(also called the class variable). Assume that the class variable
is binary and Xp is a dummy feature which is always 1.

» To do: Find a function h over X such that: (1) h is the best
approximation of f according to a user-defined performance
measure, and (2) h is a linear threshold function given by

h(x) = { 1 if Y ilgwixi >0

0 otherwise

where w; € R is a parameter associated with feature X;.

> At test time: Use h to find the class Y given x.

Performance Measure:
Minimize the Mis-classification Error

» Until now, our classifiers (LR and NB) were probability driven.
Let us be error driven.

» Mis-classification error

d

Error = 3 (¥ — (¥

k=1
(the term inside the summation will be 1 iff the predicted
value h(x(K)) is not the same as y(k) and 0 otherwise)

» his not differentiable (discontinuous at 0). It creates
problems during optimization.

» Therefore, we need to use a continuous function instead of h,
which in turn also changes the performance measure.

Use the Sigmoid/Logistic Function

» What if we use the Sigmoid function instead of the threshold
function?

~ — -) L e (i wixi)
h(x) =~ o(x) = ¢ <; W,X,) =Tt on (Z?’:o o)

» Mis-classification error

d

Error:Z(h(xk)) f:(k)—o(x)2

k=1 k=1

Unifying Theme: Learning =
Representation + Evaluation Measure + Optimization

Error-driven Classifier Logistic Regression

» Approximate h by » P(Y = 1|x) equals

o(x) = &P (2o wixi) _ o exp (o wixi)
= — o(x) = —
L+exp(D_iowixi) 1+ exp (D_ilq wixi)

» Performance Measure: » Performance Measure:
Minimize Maximize
d 2 ¢ (k) ()
3 <y(k) _ o(x(k))> T[T o(x®)"" (1—o(x*))~
k=1 k=1

Optimize the error: Gradient Descent

Step 3:

Derivative of sigmoid:

do(x)
dx

Weight update rule for LR versus our error-driven classifier

» Error-driven

. OE
Wi = w; O‘aw,-
Absorbing the 2 in «, we get:
wi=wi+ aZ (4% = o(x)) o(x)(1 — o(x¥))x¥

» LR

d
Wi = w; + O‘Z (y(k) _ O(x(k))> Xi(k)
k=1

Other Options: Use tanh
» We can use the tanh function. It lies between —1 and 1

e —e X e — 1
tanh(x) = el

» Minor change: we will use +1 for positive class as —1 for
negative class. We will call the new function s to distinguish
it from h. Formally,

n
s(x) = +1 ifz wix; > 0 and — 1 otherwise
i=0
» Derivative: %tanh(x) =1 — tanh?(x).
» Approximate s by t where t(x) = tanh(>_]_o wjx;)
» Gradient descent rule:

wi = it aZ (49 = e(x)) (1 = [etx)

Other Options: Use a linear approximation

» Approximate s by / where /(x) = > w;x;

» Error is approximated using

E= 3 (1 - s6) = 3 (9 -

k=1 k=1

» Gradient descent rule:

d
w; = w; + az (y(k) _ /(X(k))) X’_(k)
k=1

Stochastic Gradient Descent (SGD)

Batch Algorithm
Repeat Until Convergence

Stochastic Algorithm
Repeat Until Convergence

» For each training example (x, y)

W= w, — (y — o(x))2

8W,'

Stochastic Gradient Descent can approximate batch descent
arbitrarily closely if o is made small enough.

» Mini-Batch: Use randomly chosen t < d examples.

The Perceptron Algorithm

» Turns out that when data is linearly separable, namely there
exists a hyper-plane which can separate positive examples
from negative examples (in two dimensions, a line), there
exists a much simpler algorithm. This algorithm is the classic
Perceptron algorithm.

Algorithm:

> Repeat the following Until Convergence
» For each training example (x,y) in D
» Update each weight w; using the following rule:

w; = w; + ay — s(x))x;

n
Recall: s(x) = +1 ifz w;x; > 0 and — 1 otherwise
i=0

Properties of the Perceptron Algorithm

» Converges if the data is linearly Separable case

separable (Proof is a little bit

involved.) However, it has mediocre - y ++
generalization: often finds a “barely” _ - *
separating solution - _

» Convergence is not assured if data is -
not linearly separable. In fact in many
cases, it will not converge. In such Non-Separable case
cases, weights might thrash. .
Averaging weight vectors over time - + ++
can help (averaged perceptron) - +"

Summary

v

A classifier which uses the following rule is a linear classifier
If Z w;x; > 0 then class is positive else negative
i

Threshold function is not differentiable and therefore we
typically approximate it using a differentiable function

v

v

Recipe: Substitute the (differentiable) approximation in a
suitable evaluation function and then use the gradient descent
(ascent) algorithm to yield a linear classifier.

v

Stochastic vs Batch vs Mini-batch gradient descent

