
Midterm	Review
CS	7301:	Advanced	Machine	

Learning

Vibhav Gogate
The	University	of	Texas	at	Dallas

Supervised	Learning
• Issues	in	supervised	learning

– What	makes	learning	hard
• Point	Estimation:	MLE	vs	Bayesian	estimation
• Linear	models

– Linear	Regression,	Logistic	Regression,	SVMs,	
Perceptron,	Naïve	Bayes	under	certain	restrictions

• Non-linear	models
– Decision	trees,	Neural	networks,	Kernels

• Non-parametric	algorithms
– Nearest	neighbor	algorithms

Key	Perspective	on	Learning

• Representation
• Evaluation	or	Loss	Function

– Error	+	regularization
• Learning	as	Optimization

– Closed	form
– Greedy	search
– Gradient	ascent

6

What	you	should	know	in	Decision	
Tree	Learning?

• Representation
– What	it	can	represent	 and	how
– Size/Complexity	of	the	representation

• Heuristics	 for	selecting	 the	next	attribute
– Information	gain,	one-step	 look	ahead,	gain	ratio
– What	makes	 the	heuristic	good?
– What	are	its	cons?
– Complexity	analysis
– Sample	exam	question:	 if	I	tweak	the	selection	heuristic,	 how	will	that	

change	the	complexity	and	quality?
• Overfitting and	Pruning
• Handling	missing	data
• Handling	 continuous	attributes

• Noise
• Small	number	of	examples	 associated	with	

each	 leaf
• What	if	only	one	example	 is	associated	

with	a	leaf.	Can	you	believe	 it?
• Coincidental	 regularities

Probability	Theory

• Be	able	to	apply	and	understand
– Axioms	of	probability
– Distribution	vs density
– Conditional	probability
– Sum-rule,	chain-rule
– Bayes	rule

• Sample	question:	If	you	know	P(A|B),	do	you	
have	enough	information	to	compute	P(B|A)?

Maximum	Likelihood	Estimation
• Data:	Observed	set	D of	αH Heads	and	αT Tails		
• Hypothesis: Binomial	distribution	
• Learning:	finding	θ is	an	optimization	problem

– What’s	the	objective	function?

• MLE:	Choose	θ to	maximize	probability	of	D

How	to	get	a	closed	form	solution?

• Set	derivative	to	zero,	and	solve!

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

Brief Article

The Author

January 11, 2012

ˆ� = argmax

✓
lnP (D | �)

ln �↵H

d

d�
lnP (D | �) =

d

d�
ln �↵H

(1� �)↵T

1

Brief Article

The Author

January 11, 2012

ˆ⇥ = argmax

⇥
lnP (D | ⇥)

ln ⇥�H

d

d⇥
lnP (D | ⇥) =

d

d⇥
[

ln ⇥�H
(1� ⇥)�T

]

=

d

d⇥
[

�H ln ⇥ + �T ln(1� ⇥)
]

= �H
d

d⇥
ln ⇥ + �T

d

d⇥
ln(1� ⇥) =

�H

⇥
� �T

1� ⇥
= 0

1

What	if	I	have	prior	beliefs?	
• Billionaire	says:	Wait,	I	know	that	the	thumbtack	
is	“close”	to	50-50.	What	can	you	do	for	me	now?

• You	say:	I	can	learn	it	the	Bayesian	way…
• Rather	than	estimating	a	single	θ,	we	obtain	a	
distribution	over	possible	values	of	θ

In	the	beginning After	observations
Observe	flips

e.g.:	{tails,	 tails}

Bayesian	Learning
Use	Bayes	rule:

Or	equivalently:
Also,	for	uniform	priors:

Prior

Normalization

Data	Likelihood

Posterior

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⇤
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇥2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

1

Brief Article

The Author

January 11, 2012

ˆ⌅ = argmax

⇤
lnP (D | ⌅)

ln ⌅�H

d

d⌅
lnP (D | ⌅) =

d

d⌅
[

ln ⌅�H
(1� ⌅)�T

]

=

d

d⌅
[

�H ln ⌅ + �T ln(1� ⌅)
]

= �H
d

d⌅
ln ⌅ + �T

d

d⌅
ln(1� ⌅) =

�H

⌅
� �T

1� ⌅
= 0

⇥ ⇤ 2e�2N⇥2 ⇤ P (mistake)

ln ⇥ ⇤ ln 2� 2N⇤2

N ⇤ ln(2/⇥)

2⇤2

N ⇤ ln(2/0.05)
2⇥ 0.12 ⌅ 3.8

0.02
= 190

P (⌅) ⇧ 1

P (⌅ | D) ⇧ P (D | ⌅)

1

à reduces	to	MLE	objective

MAP:	Maximum	a	Posteriori	
Approximation

• As	more	data	is	observed,	Beta	is	more	certain
• MAP:	use	most	likely	parameter	to	approximate	the	
expectation

What	you	should	know?

• MLE	vs MAP	and	the	relationship	between	the	
two

• MLE	learning	and	Bayesian	learning
– Thumbtack	example
– Gaussians

The	Naïve	Bayes	Classifier
• Given:

– Prior	P(Y)
– n conditionally	independent	
features	X given	the	class	Y

– For	each	Xi,	we	have	likelihood	
P(Xi|Y)

• Decision	rule:

Y

X1 XnX2

Subtleties	of	Naïve	Bayes

• What	is	the	hypothesis	space?
• What	kind	of	functions	can	it	learn?
• When	does	it	work	and	when	it	does	not?

– Correlated	features
• MLE	vs Bayesian	learning	of	Naïve	Bayes
• Gaussian	Naïve	Bayes

Generative vs. Discriminative
Classifiers

• Want	to	Learn:	h:X	! Y
– X – features
– Y	– target	classes

• Generative	classifier,	 e.g.,	Naïve	Bayes:
– Assume	some	 functional	form	for	P(X|Y),	P(Y)
– Estimate	parameters	of	P(X|Y),	 P(Y)	directly	 from	training	data
– Use	Bayes	rule	to	calculate	P(Y|X=	x)
– This	is	a	‘generative’	model

• Indirect	computation	of	P(Y|X)	through	Bayes	rule
• As	a	result,	can	also	generate	a	sample	of	the	data,	P(X)	=	∑y P(y)	P(X|y)

• Discriminative	classifiers,	e.g.,	Logistic	Regression:
– Assume	some	 functional	form	for	P(Y|X)
– Estimate	parameters	of	P(Y|X)	 directly	from	training	data
– This	is	the	‘discriminative’	 model

• Directly	learn	P(Y|X)
• But	cannot	obtain	a	sample	of	the	data,	because	P(X)	is	not	available

20

P(Y	|	X)	∝ P(X |	Y)	P(Y)

Linear	Regression

hw(x)	=	w1x	+	w0

w1 =

Argminw Loss(hw)	

w0 =	(Σ(yj)–w1(Σxj)/N

NΣ(xjyj)–(Σxj)(Σyj)	

NΣ(xj2)–(Σxj)2

Logistic	Regression

n Learn	P(Y|X)	directly!
¨ Assume	a	particular	functional	form
✬ Not	differentiable…

22

P(Y)=1

P(Y)=0

Logistic	Regression

n Learn	P(Y|X)	directly!
¨ Assume	a	particular	functional	form
¨ Logistic	Function

¨ Aka	Sigmoid

23

Issues	in	Linear	and	Logistic	Regression

• Overfitting avoidance:	Regularization
– L1	vs L2	regularization

What	you	should	know	about	Logistic	
Regression	(LR)

• Gaussian	Naïve	Bayes	with	class-independent	variances	
representationally	equivalent	to	LR
– Solution	differs	because	 of	objective	 (loss)	 function

• In	general,	NB	and	LR	make	different	assumptions
– NB:	Features	 independent	 given	class	! assumption	on	P(X|Y)
– LR:	Functional	form	of	P(Y|X),	no	assumption	on	P(X|Y)

• LR	is	a	linear	classifier
– decision	 rule	is	a	hyperplane

• LR	optimized	by	conditional	likelihood
– no	closed-form	 solution
– concave	! global	optimum	with	gradient	ascent
– Maximum	conditional	a	posteriori	 corresponds	 to	regularization

• Convergence	rates
– GNB	(usually)	needs	 less	data
– LR	(usually)	gets	to	better	 solutions	in	the	limit

From	Logistic	Regression	to	the	Perceptron:	
2	easy	steps!

• Logistic	Regression:	(in	vector	notation):	y	is	{0,1}

• Perceptron:	y	is	{0,1},	y(x;w)	is	prediction	given	w	

Differences?

•Drop	the	Σj over	training	examples:	online	vs.	batch	learning

•Drop	the	dist’n:	probabilistic	vs.	error	driven	learning

= ln

�

⇧⇧⇤

1
⇥i
⇤
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇤
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

= �(xi � µi0)2

2⇤2i
+
(xi � µi1)2

2⇤2i

=
µi0 + µi1

⇤2i
xi +

µ2i0 + µ2i1
2⇤2i

w0 = ln
1� ⇥

⇥
+

µ2i0 + µ2i1
2⇤2i

wi =
µi0 + µi1

⇤2i

w = w + �
⌥

j

[y⇥j � p(y⇥j |xj , w)]f(xj)

w = w + [y⇥ � y(x;w)]f(x)

4

= ln

�

⇧⇧⇤

1
⇥i
⇤
2�

e
� (xi�µi0)

2

2�2i

1
⇥i
⇤
2�

e
� (xi�µi1)

2

2�2i

⇥

⌃⌃⌅

= �(xi � µi0)2

2⇤2i
+
(xi � µi1)2

2⇤2i

=
µi0 + µi1

⇤2i
xi +

µ2i0 + µ2i1
2⇤2i

w0 = ln
1� ⇥

⇥
+

µ2i0 + µ2i1
2⇤2i

wi =
µi0 + µi1

⇤2i

w = w + �
⌥

j

[y⇥j � p(y⇥j |xj , w)]f(xj)

w = w + [y⇥ � y(x;w)]f(x)

4

Properties	of	Perceptrons
• Separability:	some	parameters	get	the	

training	set	perfectly	correct

• Convergence:	if	the	training	is	
separable,	perceptron	will	eventually	
converge	(binary	case)

Separable

Non-Separable

Problems	with	the	Perceptron
• Noise:	if	the	data	isn’t	separable,	

weights	might	thrash
– Averaging	weight	vectors	over	 time	

can	help	(averaged	 perceptron)

• Mediocre	generalization:	finds	a	
“barely” separating	solution

• Overtraining:	test	/	validation	
accuracy	usually	rises,	then	falls

– Overtraining	 is	a	kind	of	overfitting

Neural	networks:	What	you	should	
know?

• How	does	it	learn	non-linear	functions?
• Can	it	learn,	for	example	an	XOR	function?

– Draw	a	neural	network	for	it	with	appropriate	weights
• Backprop
• Overfitting
• What	kind	of	functions	can	it	learn?
• Tradeoff	

– number	of	hidden	units	
– number	of	layers

Linear	SVM
• Aim:	Learn	a	large	margin	

classifier
• Mathematical	 Formulation:	

x1

x2

denotes +1

denotes -1
Margin

x+

x+

x-
such that

2maximize
w

For 1, 1

For 1, 1

T
i i

T
i i

y b
y b
= + + ≥

= − + ≤ −

w x
w x

Common theme in machine learning:
LEARNING IS OPTIMIZATION

Solving	the	Optimization	Problem	

()2

1

1minimize (, ,) () 1
2

n
T

p i i i i
i

L b y bα α
=

= − + −∑w w w x

s.t. 0iα ≥

1 1 1

1maximize
2

n n n
T

i i j i j i j
i i j

y yα αα
= = =

−∑ ∑∑ x x

s.t. 0iα ≥
1

0
n

i i
i

yα
=

=∑, and

Lagrangian Dual
Problem

Non-linear SVMs: Feature Space
n General	idea:		the	original	input	space	can	be	mapped	to	

some	higher-dimensional	feature	space	where	the	training	set	
is	separable:

Φ: x→ φ(x)

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Nonlinear SVMs: The Kernel Trick
n With	this	mapping,	our	discriminant	 function	is	now:

SV
() () () ()T T

i i
i

g b bφ αφ φ
∈

= + = +∑x w x x x

n No	need	to	know	this	mapping	explicitly,	 because	we	only	use	the	
dot	product of	feature	 vectors	in	both	the	training	and	test.

n A	kernel	function is	defined	as	a	function	that	corresponds	 to	a	dot	
product	of	two	feature	vectors	in	some	expanded	 feature	 space:

(,) () ()T
i j i jK φ φ≡x x x x

Nonlinear SVMs: The Kernel Trick

q Linear	kernel:

2

2(,) exp()
2
i j

i jK
σ

−
= −

x x
x x

(,) T
i j i jK =x x x x

(,) (1)T p
i j i jK = +x x x x

0 1(,) tanh()T
i j i jK β β= +x x x x

n Examples	of	commonly-used	 kernel	 functions:

q Polynomial	kernel:

q Gaussian	 (Radial-Basis	 Function	(RBF))	kernel:

q Sigmoid:

n In	general,	functions	that	satisfy	Mercer’s	condition can	be	kernel	
functions:	 Kernel	matrix	should	be	positive	 semidefinite.

K-nearest	Neighbor

• Distance	measure
– Most	common:	Euclidean

• Choosing	k
– Increasing	k	reduces	variance,	increases	bias

• For	high-dimensional	space,	problem	that	the	nearest	
neighbor	may	not	be	very	close	at	all!

• Memory-based	technique.		Must	make	a	pass	through	
the	data	for	each	classification.		This	can	be	prohibitive	
for	large	data	sets.

Nearest	Neighbor
• Advantages

– variable-sized	hypothesis	space
– Learning	is	extremely	efficient	

• however	growing	a	good	kd-tree	can	be	expensive
– Very	flexible	decision	boundaries

• Disadvantages
– distance	function	must	be	carefully	chosen
– Irrelevant	or	correlated	features	must	be	eliminated
– Typically	cannot	handle	more	than	30	features
– Computational	costs:	Memory	and	classification-time	
computation

Locally	Weighted	Linear	Regression:	
LWLR

• Idea:
– k-NN	forms	local	approximation	for	each	query	
point	xq

– Why	not	form	an	explicit	approximation	𝑓" for	
region	surrounding	xq
• Fit	linear	function	to	k	nearest	neighbors	
• Fit	quadratic,	...
• Thus	producing	̀ `piecewise	approximation''		to		𝑓"

– Minimize	error	over	k	nearest	neighbors	of xq
– Minimize	error	entire	set	of	examples,	weighting	by	distances
– Combine	 two	above

