Midterm Review
CS 7301: Advanced Machine
Learning

Vibhav Gogate

The University of Texas at Dallas

Supervised Learning

Issues in supervised learning
— What makes learning hard

Point Estimation: MLE vs Bayesian estimation

Linear models

— Linear Regression, Logistic Regression, SVMs,
Perceptron, Naive Bayes under certain restrictions

Non-linear models
— Decision trees, Neural networks, Kernels

Non-parametric algorithms
— Nearest neighbor algorithms

Key Perspective on Learning

* Representation
 Evaluation or Loss Function

— Error + regularization
* Learning as Optimization
— Closed form

— Greedy search
— Gradient ascent

What you should know in Decision
Tree Learning?

Representation

— What it can represent and how

— Size/Complexity of the representation

Heuristics for selecting the next attribute

— Information gain, one-step look ahead, gain ratio

— What makes the heuristic good?

— What are its cons?

— Complexity analysis

— Sample exam question: if | tweak the selection heuristic, how will that
change the complexity and quality?

Overfitting and Pruning
Handling missing data
Handling continuous attributes

Overfitting in Decision Tree Learning

0-9 1 1 1 1 1 1 1 1 1

0.85

0.8

0.75

0.7

Accuracy

0.65

0.6 | On training data —— =
On test data -—--

0.55 =

0‘5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

* Noise
 Small number of examples associated with
each leaf
 What if only one example is associated
with a leaf. Can you believe it?
e Coincidental regularities

Probability Theory

* Be able to apply and understand
— Axioms of probability
— Distribution vs density
— Conditional probability
— Sum-rule, chain-rule
— Bayes rule
 Sample question: If you know P(A|B), do you
have enough information to compute P(B|A)?

Maximum Likelihood Estimation

* Data: Observed set D of o, Heads and o Tails
* Hypothesis: Binomial distribution
* Learning: finding O is an optimization problem
— What'’s the objective function?
P(D|6) =0“H(1—0)°T
 MLE: Choose 0 to maximize probability of D

f = arg m@ax P(D | 0)

arg m@ax In P(D | 0)

How to get a closed form solution?

)

= arg m@ax In P(D | 9)

= argm@ax INGH(1 — 0)T

 Set derivative to zero, and solvel

d - d an ar
@mp(me)—de[ln@ (1—6)"]
d
:@[QHInH—I—&Tln(l—H)]
d d
_9H T 0) — *H
B v 1-60 MLE aH+aT

What if | have prior beliefs?

* Billionaire says: Wait, | know that the thumbtack
is “close” to 50-50. What can you do for me now?

* You say: | can learn it the Bayesian way...

* Rather than estimating a single 0, we obtain a
distribution over possible values of 0

In the beginning After observations

15¢

-] Observe flips
2 | e.g.: {tails, tails}
«© 0.8 |)

[}
o gpl

pdf

1t

Beta pdf

t

0.5+
04

0.2

0 1 1 L L
0 ' ' ' ' 0 0.2 04 0.6 0.8 1
0 0.2 04 0.6 0.8 1 parameter value

parameter value

Bayesian Learning

Prior

Use Bayes rule: Data Likelihood :
Lo
P(D|O)P(H) Frae
P : PO | D) =
osterlor/ P(D)
§°; \ Normalization

0.2 04 0.6
parameter value

Or equivalently: P(O|D) «x P(D|0O)P(0)

Also, for uniform priors:
- reduces to MLE objective

Pl) x1 P(O|D)xP(D|0)

MAP: Maximum a Posteriori
Approximation

4
g
@3

P(9 ‘ D) ~ Beta(ﬂﬂ + ag, B + O‘T) L,

1
ELf(0)] = /O £(0)P(0 | D)do

 As more data is observed, Beta is more certain

* MAP: use most likely parameter to approximate the
expectation

f = arg m@ax P(0 | D)

E[f(0)] ~ £(0)

What you should know?

* MLE vs MAP and the relationship between the
two

* MLE learning and Bayesian learning

— Thumbtack example
— Gaussians

The Naive Bayes Classifier

e @Given:

— Prior P(Y) 0

— n conditionally independent
features X given theclass Y

— For each X;, we have likelihood .
orca OlOR0e

 Decision rule:
* __
y" = hyp(x)

arg myax P(y)P(x1,...,2n | y)
arg max P(y) 1] P(zsly)
i

Subtleties of Naive Bayes

* What is the hypothesis space?

e What kind of functions can it learn?

e When does it work and when it does not?

— Correlated features
 MLE vs Bayesian learning of Naive Bayes
* Gaussian Naive Bayes

Generative vs. Discriminative
Classifiers

e Wantto Learn: h:X—Y
— X -—features
— Y —target classes
* Generative classifier, e.g., Naive Bayes: P(Y | X) X P(X | Y) P(Y)
— Assume some functional form for P(X]Y), P(Y)
— Estimate parameters of P(X|Y), P(Y) directly from training data
— Use Bayes rule to calculate P(Y | X= x)
— This is a ‘generative’ model
* Indirect computation of P(Y|X) through Bayes rule
* Asaresult, can also generate a sample of the data, P(X) = 3, P(y) P(X]y)
* Discriminative classifiers, e.g., Logistic Regression:
— Assume some functional form for P(Y| X)
— Estimate parameters of P(Y|X) directly from training data

— This is the ‘discriminative’ model
* Directlylearn P(Y|X)
* But cannot obtain a sample of the data, because P(X) is not available

Linear Regression

\
3
KN
M&é

Argmin,, Loss(h,,)

1000
900
800
700 A
600
500
400
300

0001¢ ur aou1d asnoy

500 1000 1500 2000 2500 3000 3500

House size in square feet

Wo = (25 (y;)—w1(22x)/N

Logistic Regression

Learn P(Y | X) directly!
[0 Assume a particular functional form
#* Not differentiable...

® Py +
"t Piv)=0 .
° +
: o * + t +
':. +: +, +
- + ++
PO=L T

22

Logistic Regression

Learn P(Y | X) directly!
[0 Assume a particular functional form 1

1 Logistic Function 1+ ea:p(—z)
1 Aka Sigmoid

Issues in Linear and Logistic Regression

* Overfitting avoidance: Regularization
— L1 vs L2 regularization

wi(t-i-l) - wi(t) 4+ UZWZ[?J] _ p(yj =1 ijw):
J

wi(t_l_l) - wi(t)-l-’n {_)\wi(t) 4+ ng[yj — Pyl =1 | ijw)]}
J

What you should know about Logistic
Regression (LR)

Gaussian Naive Bayes with class-independent variances
representationally equivalent to LR

— Solution differs because of objective (loss) function

In general, NB and LR make different assumptions

— NB: Features independent given class ! assumption on P(X]Y)
— LR: Functional form of P(Y|X), no assumption on P(X]Y)

LR is a linear classifier
— decision rule is a hyperplane

LR optimized by conditional likelihood

— no closed-form solution

— concave ! global optimum with gradient ascent

— Maximum conditional a posteriori corresponds to regularization
Convergence rates

— GNB (usually) needs less data
— LR (usually) gets to better solutions in the limit

Perceptron

2 143
igwixi 0_{1if2w-x->0

=M
-1 otherwise

1 if wg+wiz1+--+wpz, >0

o(T1.....T,) =
(21, » Zn) —1 otherwise.

Sometimes we’ll use simpler vector notation:

1 fw-2>0

o(Z) = .
—1 otherwise.

From Logistic Regression to the Perceptron:
2 easy steps!

e Logistic Regression: (in vector notation):y is {0,1}
w=w+nY [y —p(yilz;, w)lf(z;)
J

* Perceptron:vy is{0,1}, y(x;w) is prediction given w
w=w+ [y —y(zw)f(r)

Differences?

*Drop the Z; over training examples: online vs. batch learning

*Drop the dist’n: probabilistic vs. error driven learning

Properties of Perceptrons

e Separability: some parameters get the Separable
training set perfectly correct

 Convergence:ifthe trainingis
separable, perceptron will eventually
converge (binary case)

Problems with the Perceptron

Noise: if the dataisn’ t separable,
weights might thrash

— Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
barely separating solution

training
Overtraining: test / validation >
accuracy usually rises, then falls 0
— Overtraining is a kind of overfitting S test
@ held-out

iterations

1id Units

12mol

Multilayer Networks of S

+ wawi))

k
0

wo + > wig(w
k

who’d hood
g (

head hid

4000

F2 (Hz)

1000

1400

1000

500

F1 (Hz)

Backpropagation Algorithm

Initialize all weights to small random numbers
Until convergence, Do

For each training example, Do
1. Input it to network and compute network outputs
2. For each output unit &

6k «— Ok(l — Ok)(tk — Ok)
3. For each hidden unit A
Op «— on(1 — op) Z Wh, 10

k€outputs
4. Update each network weight w; ;
Wi,j — Wi,j + Aw;

where Aw; ; = 1n6;x; ;

Neural networks: What you should
know?

How does it learn non-linear functions?

Can it learn, for example an XOR function?
— Draw a neural network for it with appropriate weights

Backprop
Overfitting
What kind of functions can it learn?

Tradeoff
— number of hidden units
— number of layers

Linear SVM

@ denotes +1

O denotes -1

e Aim: Learn a large margin $ X2
classifier

Margin

e Mathematical Formulation:

.. 2
maximize —
[w]

such that

Fory, =+1, w'x, +b=1

Fory, =—-1, w'x, +b=-1

Common theme in machine learning: X1
LEARNING IS OPTIMIZATION

v

Solving the Optimization Problem

minimize L, (W,b,q;) = %HWHZ —20@ (yl.(wal. + b) —1)

st. a =0

l

Lagrangian Dual '
Problem

maximize 20{ ——22 a]yly]

11]1

st a=0,and Ea,-y,- =0
=1

Non-linear SVMs: Feature Space

= General idea: theoriginal input space can be mappedto
some higher-dimensional feature space where the training set
is separable:

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm _tutorial.ppt

Nonlinear SVMs: The Kernel Trick

= With this mapping, our discriminant function is now:
T T
g =Wgx)+b=) ag(x,) px)+b
=Y

= No need to know this mapping explicitly, because we only use the
of feature vectors in both the training and test.

= A is defined as a function that corresponds to a dot
product of two feature vectors in some expanded feature space:

K(Xi9xj) = ¢(Xi)T¢(Xj)

Nonlinear SVMs: The Kernel Trick

= Examples of commonly-used kernel functions:
. _ T
0 Linear kernel: K(Xi9 Xj) =X, Xj
: : _ r p
0 Polynomial kernel: K(Xl., Xj) = (1 + X, Xj)

0 Gaussian (Radial-Basis Function (RBF)) kernel:

bo-x |
X - |
)

20"

K(Xiaxj) = eXp(_

o Sigmoid:

K(Xi9xj) = tanh(/))oxiTXj T /))1)

= In general, functions that satisfy Mercer’s condition can be kernel
functions: Kernel matrix should be positive semidefinite.

K-nearest Neighbor

Distance measure

— Most common: Euclidean

Choosing k

— Increasing k reduces variance, increases bias

For high-dimensional space, problem that the nearest
neighbor may not be very close at all!

Memory-based technique. Must make a pass through
the data for each classification. This can be prohibitive
for large data sets.

Nearest Neighbor

* Advantages
— variable-sized hypothesis space

— Learning is extremely efficient
* however growing a good kd-tree can be expensive

— Very flexible decision boundaries
* Disadvantages
— distance function must be carefully chosen
— Irrelevant or correlated features must be eliminated
— Typically cannot handle more than 30 features

— Computational costs: Memory and classification-time
computation

Locally Weighted Linear Regression:

LWLR
* |dea:
— k-NN forms local approximation for each query
point Xg

— Why not form an explicit approximation f for
region surrounding Xg
* Fitlinear function to k nearest neighbors
* Fit quadratic, ...
* Thus producing piecewise approximation' to f
— Minimize error over k nearest neighbors of x,

— Minimize error entire set of examples, weighting by distances
— Combine two above

