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Supervised	Learning
• Issues	in	supervised	learning

– What	makes	learning	hard
• Point	Estimation:	MLE	vs	Bayesian	estimation
• Linear	models

– Linear	Regression,	Logistic	Regression,	SVMs,	
Perceptron,	Naïve	Bayes	under	certain	restrictions

• Non-linear	models
– Decision	trees,	Neural	networks,	Kernels

• Non-parametric	algorithms
– Nearest	neighbor	algorithms



Key	Perspective	on	Learning

• Representation
• Evaluation	or	Loss	Function

– Error	+	regularization
• Learning	as	Optimization

– Closed	form
– Greedy	search
– Gradient	ascent
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What	you	should	know	in	Decision	
Tree	Learning?

• Representation
– What	it	can	represent	 and	how
– Size/Complexity	of	the	representation

• Heuristics	 for	selecting	 the	next	attribute
– Information	gain,	one-step	 look	ahead,	gain	ratio
– What	makes	 the	heuristic	good?
– What	are	its	cons?
– Complexity	analysis
– Sample	exam	question:	 if	I	tweak	the	selection	heuristic,	 how	will	that	

change	the	complexity	and	quality?
• Overfitting and	Pruning
• Handling	missing	data
• Handling	 continuous	attributes



• Noise
• Small	number	of	examples	 associated	with	

each	 leaf
• What	if	only	one	example	 is	associated	

with	a	leaf.	Can	you	believe	 it?
• Coincidental	 regularities



Probability	Theory

• Be	able	to	apply	and	understand
– Axioms	of	probability
– Distribution	vs density
– Conditional	probability
– Sum-rule,	chain-rule
– Bayes	rule

• Sample	question:	If	you	know	P(A|B),	do	you	
have	enough	information	to	compute	P(B|A)?



Maximum	Likelihood	Estimation
• Data:	Observed	set	D of	αH Heads	and	αT Tails		
• Hypothesis: Binomial	distribution	
• Learning:	finding	θ is	an	optimization	problem

– What’s	the	objective	function?

• MLE:	Choose	θ to	maximize	probability	of	D



How	to	get	a	closed	form	solution?

• Set	derivative	to	zero,	and	solve!
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What	if	I	have	prior	beliefs?	
• Billionaire	says:	Wait,	I	know	that	the	thumbtack	
is	“close”	to	50-50.	What	can	you	do	for	me	now?

• You	say:	I	can	learn	it	the	Bayesian	way…
• Rather	than	estimating	a	single	θ,	we	obtain	a	
distribution	over	possible	values	of	θ

In	the	beginning After	observations
Observe	flips

e.g.:	{tails,	 tails}



Bayesian	Learning
Use	Bayes	rule:

Or	equivalently:
Also,	for	uniform	priors:

Prior

Normalization

Data	Likelihood

Posterior
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MAP:	Maximum	a	Posteriori	
Approximation

• As	more	data	is	observed,	Beta	is	more	certain
• MAP:	use	most	likely	parameter	to	approximate	the	
expectation



What	you	should	know?

• MLE	vs MAP	and	the	relationship	between	the	
two

• MLE	learning	and	Bayesian	learning
– Thumbtack	example
– Gaussians



The	Naïve	Bayes	Classifier
• Given:

– Prior	P(Y)
– n conditionally	independent	
features	X given	the	class	Y

– For	each	Xi,	we	have	likelihood	
P(Xi|Y)

• Decision	rule:

Y

X1 XnX2



Subtleties	of	Naïve	Bayes

• What	is	the	hypothesis	space?
• What	kind	of	functions	can	it	learn?
• When	does	it	work	and	when	it	does	not?

– Correlated	features
• MLE	vs Bayesian	learning	of	Naïve	Bayes
• Gaussian	Naïve	Bayes



Generative vs. Discriminative
Classifiers

• Want	to	Learn:	h:X	! Y
– X – features
– Y	– target	classes

• Generative	classifier,	 e.g.,	Naïve	Bayes:
– Assume	some	 functional	form	for	P(X|Y),	P(Y)
– Estimate	parameters	of	P(X|Y),	 P(Y)	directly	 from	training	data
– Use	Bayes	rule	to	calculate	P(Y|X=	x)
– This	is	a	‘generative’	model

• Indirect	computation	of	P(Y|X)	through	Bayes	rule
• As	a	result,	can	also	generate	a	sample	of	the	data,	P(X)	=	∑y P(y)	P(X|y)

• Discriminative	classifiers,	e.g.,	Logistic	Regression:
– Assume	some	 functional	form	for	P(Y|X)
– Estimate	parameters	of	P(Y|X)	 directly	from	training	data
– This	is	the	‘discriminative’	 model

• Directly	learn	P(Y|X)
• But	cannot	obtain	a	sample	of	the	data,	because	P(X)	is	not	available
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Linear	Regression

hw(x)	=	w1x	+	w0

w1 =

Argminw Loss(hw)	

w0 =	(Σ(yj)–w1(Σxj)/N

NΣ(xjyj)–(Σxj)(Σyj)	

NΣ(xj2)–(Σxj)2



Logistic	Regression

n Learn	P(Y|X)	directly!
¨ Assume	a	particular	functional	form
✬ Not	differentiable…
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Logistic	Regression

n Learn	P(Y|X)	directly!
¨ Assume	a	particular	functional	form
¨ Logistic	Function

¨ Aka	Sigmoid
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Issues	in	Linear	and	Logistic	Regression

• Overfitting avoidance:	Regularization
– L1	vs L2	regularization



What	you	should	know	about	Logistic	
Regression	(LR)

• Gaussian	Naïve	Bayes	with	class-independent	variances	
representationally	equivalent	to	LR
– Solution	differs	because	 of	objective	 (loss)	 function

• In	general,	NB	and	LR	make	different	assumptions
– NB:	Features	 independent	 given	class	! assumption	on	P(X|Y)
– LR:	Functional	form	of	P(Y|X),	no	assumption	on	P(X|Y)

• LR	is	a	linear	classifier
– decision	 rule	is	a	hyperplane

• LR	optimized	by	conditional	likelihood
– no	closed-form	 solution
– concave	! global	optimum	with	gradient	ascent
– Maximum	conditional	a	posteriori	 corresponds	 to	regularization

• Convergence	rates
– GNB	(usually)	needs	 less	data
– LR	(usually)	gets	to	better	 solutions	in	the	limit





From	Logistic	Regression	to	the	Perceptron:	
2	easy	steps!

• Logistic	Regression:	(in	vector	notation):	y	is	{0,1}

• Perceptron:	y	is	{0,1},	y(x;w)	is	prediction	given	w	

Differences?

•Drop	the	Σj over	training	examples:	online	vs.	batch	learning

•Drop	the	dist’n:	probabilistic	vs.	error	driven	learning
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Properties	of	Perceptrons
• Separability:	some	parameters	get	the	

training	set	perfectly	correct

• Convergence:	if	the	training	is	
separable,	perceptron	will	eventually	
converge	(binary	case)

Separable

Non-Separable



Problems	with	the	Perceptron
• Noise:	if	the	data	isn’t	separable,	

weights	might	thrash
– Averaging	weight	vectors	over	 time	

can	help	(averaged	 perceptron)

• Mediocre	generalization:	finds	a	
“barely” separating	solution

• Overtraining:	test	/	validation	
accuracy	usually	rises,	then	falls

– Overtraining	 is	a	kind	of	overfitting







Neural	networks:	What	you	should	
know?

• How	does	it	learn	non-linear	functions?
• Can	it	learn,	for	example	an	XOR	function?

– Draw	a	neural	network	for	it	with	appropriate	weights
• Backprop
• Overfitting
• What	kind	of	functions	can	it	learn?
• Tradeoff	

– number	of	hidden	units	
– number	of	layers



Linear	SVM
• Aim:	Learn	a	large	margin	

classifier
• Mathematical	 Formulation:	
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LEARNING IS OPTIMIZATION



Solving	the	Optimization	Problem	
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Non-linear SVMs:  Feature Space
n General	idea:		the	original	input	space	can	be	mapped	to	

some	higher-dimensional	feature	space	where	the	training	set	
is	separable:

Φ:  x→ φ(x)

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt



Nonlinear SVMs: The Kernel Trick
n With	this	mapping,	our	discriminant	 function	is	now:

SV
( ) ( ) ( ) ( )T T

i i
i

g b bφ αφ φ
∈

= + = +∑x w x x x

n No	need	to	know	this	mapping	explicitly,	 because	we	only	use	the	
dot	product of	feature	 vectors	in	both	the	training	and	test.

n A	kernel	function is	defined	as	a	function	that	corresponds	 to	a	dot	
product	of	two	feature	vectors	in	some	expanded	 feature	 space:
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Nonlinear SVMs: The Kernel Trick

q Linear	kernel:
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n Examples	of	commonly-used	 kernel	 functions:

q Polynomial	kernel:

q Gaussian	 (Radial-Basis	 Function	(RBF)	 )	kernel:

q Sigmoid:

n In	general,	functions	that	satisfy	Mercer’s	condition can	be	kernel	
functions:	 Kernel	matrix	should	be	positive	 semidefinite.



K-nearest	Neighbor

• Distance	measure
– Most	common:	Euclidean

• Choosing	k
– Increasing	k	reduces	variance,	increases	bias

• For	high-dimensional	space,	problem	that	the	nearest	
neighbor	may	not	be	very	close	at	all!

• Memory-based	technique.		Must	make	a	pass	through	
the	data	for	each	classification.		This	can	be	prohibitive	
for	large	data	sets.



Nearest	Neighbor
• Advantages

– variable-sized	hypothesis	space
– Learning	is	extremely	efficient	

• however	growing	a	good	kd-tree	can	be	expensive
– Very	flexible	decision	boundaries

• Disadvantages
– distance	function	must	be	carefully	chosen
– Irrelevant	or	correlated	features	must	be	eliminated
– Typically	cannot	handle	more	than	30	features
– Computational	costs:	Memory	and	classification-time	
computation



Locally	Weighted	Linear	Regression:	
LWLR

• Idea:
– k-NN	forms	local	approximation	for	each	query	
point	xq

– Why	not	form	an	explicit	approximation	𝑓" for	
region	surrounding	xq
• Fit	linear	function	to	k	nearest	neighbors	
• Fit	quadratic,	...
• Thus	producing	̀ `piecewise	approximation''		to		𝑓"

– Minimize	error	over	k	nearest	neighbors	of xq
– Minimize	error	entire	set	of	examples,	weighting	by	distances
– Combine	 two	above


