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Supervised Learning: Revisited

» Given: Dataset D defined over features X and desired output
variable Y (also called the class variable).

» Assumption: There is an unknown function f such that
f(x) = y where x denotes an assignment of values to all
features X and y denotes an assignment of value to the class
variable Y.

» To do: Find h using D such that h is the best approximation
of f according to some performance measure.

> Later on: Use h to find y given x.



A Fully Bayesian Approach

> (Recall: Bayes rule.) Given x, for each Y = ¢; compute

P(x|Y = c)P(Y = ¢i)

P(Y = ci|x) = P(x)

» Assign to x, the class with the highest probability, namely

Class of x = argmax P(Y = ¢j[x)

» We do not need to compute the normalization constant P(x),
namely

Class of x = argmax P(y = ci|x) = argmax P(x|Y = ¢;)P(Y = )



Fully Bayesian Approach as presented is impractical

» Need to estimate (and store) the unconditional distribution
P(y) and the conditional joint distribution P(x|y = y;) from
data D

» Compare:

» Number of parameters for P(Y') assuming m classes.

Linear in m.

» Number of parameters for P(X = x|Y = ¢;) assuming m
classes and n Boolean features. (Namely x is a 0/1 vector of
size n ).

Exponential in n.



Naive Bayes (Representation)

» Make the following conditional independence assumption:
All features are conditionally independent of each other given
the class variable.

P(x|Y =c) =[] P0lY =)
j=1

where x = (xi, ..., xn) denotes the assignment of values to all
features X; € X such that feature Xj is assigned the value x;.

» Number of parameters is now linear in m and n. Why?

» Naive Bayes Model Description

» Class Priors: P(Y).
» n Conditional Distributions, one associated with each feature
Xi: P(X|Y = ci)



Maximum Likelihood Estimate (Learning Algorithm)

» Estimate the (conditional) probability tables P(Y) and
P(X[Y).

» Let D = {(xM),yM), ... (x(9), y())} denote the dataset
having d examples. Then the log-likelihood of the data is

d n
log [T P(Y =y™ ) [T Py = y®)
k=1 j=1

» Taking derivatives with respect to each parameter and setting
them to zero, we get:

Estimate of P(Y =¢;) =

#(Y: Ci7)<j :XJ)
#(Y = ¢i)

Estimate of P(X; = x;|Y =¢;) =



How to classify a test example?
Given a test example x, the class of x

= argmax P(y = ¢j|x) = arg max P(Y =c)P(x|Y =¢j)
Ci i

= argmaxP( HP(X =x|Y =¢)
Jj=1

= argmaxlog P(Y HP i =xi|Y =¢)

n
= argmax log P(Y = ¢;) + Z log P(X; = xj|Y = ¢;i)
Ci J:1
After estimating, store parameters in log-space: Why?

We are multiplying lots of small numbers. Danger of underflow!
(e.g., on your computer, 0.53% = 4.91 x 107°1, 0.530%0 = ()



Subtleties of Naive Bayes

» Often the conditional independence assumption is violated in
practice. Still works surprisingly well!

» One possible reason: Only need the probability of the correct
class to be the largest. For example, in two-way classification,
we just need to figure out the correct side of 0.5 and not the
actual probability (0.51 is the same as 0.99).

» What if you never see a training instance (Xj = a, Y = ¢;) in
discrete Naive Bayes?
Estimate of P(X; = a|Y = ¢;) = 0/(positive number) = 0.
Solution

» Use Beta priors or their generalization called Dirichlet priors.
Replace the MLE by MAP. Also called Laplace smoothing in
literature (see the next slide)



Laplace Smoothing: Fixing the zero estimate problem

> Pretend you saw every outcome k;; extra times
MAP Estimate of P(X; = xj|Y = ¢;) o« #(Y = ¢;, Xj = xj)+kij

> ki is the strength of the prior (our prior knowledge)

» Whats Laplace with kj; = 07 (Same as MLE!)

» Usually use the same k for all conditionals, namely it does not
depend on i and j. We call this k-laplace smoothing.
Very Popular: 1-Laplace smoothing where you pretend that
you saw every outcome once.



Naive Bayes: Example

Day Outlook Temperature Humidity Wind PlayTenms
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Jeak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal  Strong No
D7 Overcast Cool Normal  Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal =~ Weak Yes

D11 Sunny Mild Normal  Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No

Class Priors: P(PlayTennis)

Conditionals: P(Outlook|PlayTennis), P(Humidity|PlayTennis),
P(Temperature|PlayTennis) and P(Wind|PlayTennis).



Gaussian Naive Bayes
What if the features X; € X are continuous?
Model description:
» Class Priors: P(Y), conditional probability table as before
> P(X; = x|Y = ) is given by N'(uij,07;), a normal
distribution with mean y; ; and variance 02

N
Maximum Likelihood estimates:

Estimate of P(Y =¢;) =

(k
| Yy = 6
Estimate of p;; = f1;; =
Y10 = ¢)

S (00— ) o = q)
(Zi 000 = c)) -1

o
Estimate of a =0 =




Gaussian Naive Bayes: Special Cases

Sometimes Assume Variance
» is independent of the class (indexed by i in our notation)

» independent of the features (indexed by j in our notation)
> Both

Why do this? More data implies better estimates and Prior
knowledge.

How will the MLE/MAP estimates change?

Example: When variance is independent of the class. Namely,

2 _ 2 _ 2
when 0, =0p; =0; for all values of a, b.

Zi 1 (X'(k) - @)2
_ 5 2kt
Estimate of a =0; = g1

where [1j =



Fully Bayesian Approach Revisited

Description of the approach:

» Given x, for each Y = ¢; compute the conditional probability
P(Y = ci|x) < P(x]Y = ¢;)P(Y = ¢)

» Assign to x, the class with the highest conditional probability.
A possible view of Naive Bayes:

» Naive Bayes is just one of the many available options for
solving the problem of estimating and storing P(x|Y = ¢;).
However, it makes strong assumptions.

In general, we can solve the problem as follows:
» Use a compact representation for P(x|Y = ¢;).

> Develop a fast algorithm that accurately learns the parameters
of the chosen representation.



Naive Bayes for Text Classification

» Given labeled documents (by a class value), induce a function
f that maps a document to a class value such that a selected
performance measure is optimized.

» Feature Engineering: What features to use so that we can
convert documents to our assumed data representation
(matrix of [examples] x [features,class]).

» Some options:

» (Word, location) are our features. (Sequence matters)

» Whether a word appears in a document or not. Position in
document does not matter.

» The number of times a word appears in a document. Again,

position in document does not matter. This is called Bag of
Words.



Feature Engineering: Case 1

Case 1: (Word, location) are our features.

» Too many features! Let us say that our documents have
maximum length / and our vocabulary size® is v, then we will
have | x v features.

» Realistic value for /: 10 thousand words
> Realistic value for v: 3 thousand
» We have 30 million features!

» Most likely value for each feature will be “False” (namely
P(feature=True) =~ 0) and thus we will end up using a large
number of uninformative features.

» We typically need large amount of data to estimate
probabilities which are close to 0 or 1.

Lall unique words in our training set or words in oxford dictionary plus
non-standard words like “lol” and “omg”



Feature Engineering: Case 2

Case 2: Whether a word appears in a document or not. Position
in document does not matter.

» Number of features is manageable. Equal to v, the size of the
vocabulary.
» Problem: Consider two documents.
» Document 1 has just one sentence. “I love fishing.”
» Document 2 has the above sentence repeated 1000 times.
» Both documents will have the same feature values.
» Will work for tasks in which presence of a word is as
informative as the number of times a word appears in a
document.

» Another Good news: Our Naive Bayes model which uses
Bernoulli random variables will work without any
modifications.



Feature Engineering: Case 3

Case 3: The number of times a word appears in a document.
Again, position in document does not matter. This is called Bag
of Words.
» Number of features is manageable. Equal to v, the size of the
vocabulary.
» Compare with Case 2. In Case 2, each feature can take only
two values. Here each feature can take / values where [ is the
maximum length of the document.

We have to be careful when using the conventional Naive Bayes
model we have studied so far. Same issue as case 1.

» We need to estimate O(vim) parameters.
» P(X; =ily) = 0 for large i where i € {0,...,/}.



Multinomial Naive Bayes Model: Bag of Words

A better option is the multinomial Naive Bayes model:
P(Y = ¢;)P(DklY = ¢;) x P(Y = Cf)H (pij)o*
j=1

where Dy is the document, {X;,..., X, } is the set of words in our
vocabulary, p;; is a parameter we want to estimate from data for
each word X; and class ¢;, xj x is the number of times the word X;
appears in Dy and ZJ‘-’ZI pij=1

Multinomial distribution. General form

P(x) o< [T (p)”
j=1

where x; is the number of times feature X; appears,
x = (x1,...,x,) and p; is the parameter associated with X; such
that Vj pj > 0and > 37, pj = 1.



Multinomial Naive Bayes Model: MAP Estimates

Estimate of P(Y =¢;) = ";;f

where d., denotes the number of documents having class ¢; and d
is the number of documents in the training set.

#()97 Y = Ci) +1
v+ Z¥:1 #(Xe, Y = ci)
where #(X;, Y = ¢;) denotes the number of times the word X;

appears in all documents of class ¢;. We are using 1-Laplace
smoothing.

Estimate of p;; =




Multinomial Naive Bayes: Test Document

Given a test document Dy

» Convert the document Dy to a bag of words representation,
namely compute the counts x; , for each word Xj in the
vocabulary.

» Compute the following weight for each class ¢;

v

weight of ¢; = P(Y = ¢) H (pij)*
j=1

> Return the class having the largest weight.



Multinomial Naive Bayes: Example (Credit: Dan Jurafsky)

» Table 13.1 Data for parameter estimation examples.

docID  words in document in ¢ = China?
training set 1 Chinese Beijing Chinese yes
2 Chinese Chinese Shanghai yes
3 Chinese Macao yes
4 Tokyo Japan Chinese no
test set 5 Chinese Chinese Chinese Tokyo Japan ?
P(Chinese|c) = (5+1)/(8+6)=6/14=3/7
P(Tokyo|c) = P(Japan|c) (0+1)/(8+6)=1/14
(Chlnese|c) (1+1)/(3+6)=2/9
P(Tokyo|c) = P(Japan|c) = (1+1)/(3+6)=2/9

P(clds) o 3/4-(3/7)%-1/14-1/14 ~ 0.0003.
P(clds) o 1/4-(2/9)*-2/9-2/9 ~ 0.0001.



Generative versus Discriminative Learning

» Naive Bayes is a generative model because you can generate

“new data” from it.
We can use the following algorithm:

» y < Sample a value from P(Y)
» For j = 1to ndo

> x; < Sample a value from P(X;|Y = y)
» Return (xq,...,%,,¥)
> It solves the classification problem, namely computes
P(Y = y|x) using the Bayes rule.
Why not directly learn P(Y|x) from data?

» Classifiers that directly learn P(Y = y|x) from data are called
discriminative learners.

» They cannot generate new data because they do not have
access to P(x).

» Next up: Discriminative Classifiers.



