
Naive Bayes

Vibhav Gogate
The University of Texas at Dallas



Supervised Learning: Revisited

I Given: Dataset D defined over features X and desired output
variable Y (also called the class variable).

I Assumption: There is an unknown function f such that
f (x) = y where x denotes an assignment of values to all
features X and y denotes an assignment of value to the class
variable Y .

I To do: Find h using D such that h is the best approximation
of f according to some performance measure.

I Later on: Use h to find y given x.



A Fully Bayesian Approach

I (Recall: Bayes rule.) Given x, for each Y = ci compute

P(Y = ci |x) =
P(x|Y = ci )P(Y = ci )

P(x)

I Assign to x, the class with the highest probability, namely

Class of x = arg max
ci

P(Y = ci |x)

I We do not need to compute the normalization constant P(x),
namely

Class of x = arg max
ci

P(y = ci |x) = arg max
ci

P(x|Y = ci )P(Y = ci )



Fully Bayesian Approach as presented is impractical

I Need to estimate (and store) the unconditional distribution
P(y) and the conditional joint distribution P(x|y = yi ) from
data D

I Compare:
I Number of parameters for P(Y ) assuming m classes.

Linear in m.
I Number of parameters for P(X = x|Y = ci ) assuming m

classes and n Boolean features. (Namely x is a 0/1 vector of
size n ).
Exponential in n.



Naive Bayes (Representation)

I Make the following conditional independence assumption:
All features are conditionally independent of each other given
the class variable.

P(x|Y = ci ) =
n∏

j=1

P(xj |Y = ci )

where x = (x1, . . . , xn) denotes the assignment of values to all
features Xj ∈ X such that feature Xj is assigned the value xj .

I Number of parameters is now linear in m and n. Why?
I Naive Bayes Model Description

I Class Priors: P(Y ).
I n Conditional Distributions, one associated with each feature

Xj : P(Xj |Y = ci )



Maximum Likelihood Estimate (Learning Algorithm)

I Estimate the (conditional) probability tables P(Y ) and
P(Xj |Y ).

I Let D = {(x(1), y (1)), . . . , (x(d), y (d))} denote the dataset
having d examples. Then the log-likelihood of the data is

log
d∏

k=1

P(Y = y (k))
n∏

j=1

P(x
(k)
j |Y = y (k))

I Taking derivatives with respect to each parameter and setting
them to zero, we get:

Estimate of P(Y = ci ) =
#(Y = ci )

d

Estimate of P(Xj = xj |Y = ci ) =
#(Y = ci ,Xj = xj)

#(Y = ci )



How to classify a test example?

Given a test example x, the class of x

= arg max
ci

P(y = ci |x) = arg max
ci

P(Y = ci )P(x|Y = ci )

= arg max
ci

P(Y = ci )
n∏

j=1

P(Xj = xj |Y = ci )

= arg max
ci

log

P(Y = ci )
n∏

j=1

P(Xj = xj |Y = ci )


= arg max

ci

logP(Y = ci ) +
n∑

j=1

logP(Xj = xj |Y = ci )


After estimating, store parameters in log-space: Why?
We are multiplying lots of small numbers. Danger of underflow!
(e.g., on your computer, 0.5300 = 4.91× 10−91, 0.53000 = 0)



Subtleties of Naive Bayes

I Often the conditional independence assumption is violated in
practice. Still works surprisingly well!

I One possible reason: Only need the probability of the correct
class to be the largest. For example, in two-way classification,
we just need to figure out the correct side of 0.5 and not the
actual probability (0.51 is the same as 0.99).

I What if you never see a training instance (Xj = a,Y = ci ) in
discrete Naive Bayes?
Estimate of P(Xj = a|Y = ci ) = 0/(positive number) = 0.
Solution

I Use Beta priors or their generalization called Dirichlet priors.
Replace the MLE by MAP. Also called Laplace smoothing in
literature (see the next slide)



Laplace Smoothing: Fixing the zero estimate problem

I Pretend you saw every outcome ki ,j extra times

MAP Estimate of P(Xj = xj |Y = ci ) ∝ #(Y = ci ,Xj = xj)+ki ,j

I ki ,j is the strength of the prior (our prior knowledge)

I Whats Laplace with ki ,j = 0? (Same as MLE!)

I Usually use the same k for all conditionals, namely it does not
depend on i and j . We call this k-laplace smoothing.
Very Popular: 1-Laplace smoothing where you pretend that
you saw every outcome once.



Naive Bayes: Example

Class Priors: P(PlayTennis)

Conditionals: P(Outlook|PlayTennis), P(Humidity|PlayTennis),
P(Temperature|PlayTennis) and P(Wind|PlayTennis).



Gaussian Naive Bayes

What if the features Xi ∈ X are continuous?
Model description:

I Class Priors: P(Y ), conditional probability table as before

I P(Xj = xj |Y = ci ) is given by N (µi ,j , σ
2
i ,j), a normal

distribution with mean µi ,j and variance σ2i ,j .

Maximum Likelihood estimates:

Estimate of P(Y = ci ) =
#(Y = ci )

d

Estimate of µi ,j = µ̂i ,j =

∑d
k=1 x

(k)
j δ(y (k) = ci )∑d

k=1 δ(y (k) = ci )

Estimate of σ2i ,j = σ̂2i ,j =

∑d
k=1

(
x
(k)
j − µ̂i ,j

)2
δ(y (k) = ci )(∑d

k=1 δ(y (k) = ci )
)
− 1



Gaussian Naive Bayes: Special Cases

Sometimes Assume Variance

I is independent of the class (indexed by i in our notation)

I independent of the features (indexed by j in our notation)

I Both

Why do this? More data implies better estimates and Prior
knowledge.
How will the MLE/MAP estimates change?
Example: When variance is independent of the class. Namely,
when σ2a,j = σ2b,j = σ2j for all values of a, b.

Estimate of σ2j = σ̂2j =

∑d
k=1

(
x
(k)
j − µ̂j

)2
d − 1

where µ̂j =

∑d
k=1 x

(k)
j

d



Fully Bayesian Approach Revisited

Description of the approach:

I Given x, for each Y = ci compute the conditional probability

P(Y = ci |x) ∝ P(x|Y = ci )P(Y = ci )

I Assign to x, the class with the highest conditional probability.

A possible view of Naive Bayes:

I Naive Bayes is just one of the many available options for
solving the problem of estimating and storing P(x|Y = ci ).
However, it makes strong assumptions.

In general, we can solve the problem as follows:

I Use a compact representation for P(x|Y = ci ).

I Develop a fast algorithm that accurately learns the parameters
of the chosen representation.



Naive Bayes for Text Classification

I Given labeled documents (by a class value), induce a function
f that maps a document to a class value such that a selected
performance measure is optimized.

I Feature Engineering: What features to use so that we can
convert documents to our assumed data representation
(matrix of [examples] × [features,class]).

I Some options:
I (Word , location) are our features. (Sequence matters)
I Whether a word appears in a document or not. Position in

document does not matter.
I The number of times a word appears in a document. Again,

position in document does not matter. This is called Bag of
Words.



Feature Engineering: Case 1

Case 1: (Word , location) are our features.
I Too many features! Let us say that our documents have

maximum length l and our vocabulary size1 is v , then we will
have l × v features.

I Realistic value for l : 10 thousand words
I Realistic value for v : 3 thousand
I We have 30 million features!

I Most likely value for each feature will be “False” (namely
P(feature=True) ≈ 0) and thus we will end up using a large
number of uninformative features.

I We typically need large amount of data to estimate
probabilities which are close to 0 or 1.

1all unique words in our training set or words in oxford dictionary plus
non-standard words like “lol” and “omg”



Feature Engineering: Case 2

Case 2: Whether a word appears in a document or not. Position
in document does not matter.

I Number of features is manageable. Equal to v , the size of the
vocabulary.

I Problem: Consider two documents.
I Document 1 has just one sentence. “I love fishing.”
I Document 2 has the above sentence repeated 1000 times.
I Both documents will have the same feature values.

I Will work for tasks in which presence of a word is as
informative as the number of times a word appears in a
document.

I Another Good news: Our Naive Bayes model which uses
Bernoulli random variables will work without any
modifications.



Feature Engineering: Case 3

Case 3: The number of times a word appears in a document.
Again, position in document does not matter. This is called Bag
of Words.

I Number of features is manageable. Equal to v , the size of the
vocabulary.

I Compare with Case 2. In Case 2, each feature can take only
two values. Here each feature can take l values where l is the
maximum length of the document.

We have to be careful when using the conventional Naive Bayes
model we have studied so far. Same issue as case 1.

I We need to estimate O(vlm) parameters.

I P(Xj = i |y) ≈ 0 for large i where i ∈ {0, . . . , l}.



Multinomial Naive Bayes Model: Bag of Words

A better option is the multinomial Naive Bayes model:

P(Y = ci )P(Dk |Y = ci ) ∝ P(Y = ci )
v∏

j=1

(pi ,j)
xj,k

where Dk is the document, {Xi , . . . ,Xv} is the set of words in our
vocabulary, pi ,j is a parameter we want to estimate from data for
each word Xj and class ci , xj ,k is the number of times the word Xj

appears in Dk and
∑v

j=1 pi ,j = 1
Multinomial distribution. General form

P(x) ∝
v∏

j=1

(pj)
xj

where xj is the number of times feature Xj appears,
x = (x1, . . . , xv ) and pj is the parameter associated with Xj such
that ∀j pj > 0 and

∑v
j=1 pj = 1.



Multinomial Naive Bayes Model: MAP Estimates

Estimate of P(Y = ci ) =
dci
d

where dci denotes the number of documents having class ci and d
is the number of documents in the training set.

Estimate of pi ,j =
#(Xj ,Y = ci ) + 1

v +
∑v

t=1 #(Xt ,Y = ci )

where #(Xj ,Y = ci ) denotes the number of times the word Xj

appears in all documents of class ci . We are using 1-Laplace
smoothing.



Multinomial Naive Bayes: Test Document

Given a test document Dk

I Convert the document Dk to a bag of words representation,
namely compute the counts xj ,k for each word Xj in the
vocabulary.

I Compute the following weight for each class ci

weight of ci = P(Y = ci )
v∏

j=1

(pi ,j)
xj,k

I Return the class having the largest weight.



Multinomial Naive Bayes: Example (Credit: Dan Jurafsky)



Generative versus Discriminative Learning

I Naive Bayes is a generative model because you can generate
“new data” from it.
We can use the following algorithm:

I y ← Sample a value from P(Y )
I For j = 1 to n do

I xj ← Sample a value from P(Xj |Y = y)

I Return (x1, . . . , xn, y)

I It solves the classification problem, namely computes
P(Y = y |x) using the Bayes rule.

Why not directly learn P(Y |x) from data?

I Classifiers that directly learn P(Y = y |x) from data are called
discriminative learners.

I They cannot generate new data because they do not have
access to P(x).

I Next up: Discriminative Classifiers.


