
Neural Networks and Backpropagation

Vibhav Gogate



Recap: Gradient Descent Rules for Linear Classifiers

Error driven: Sigmoid Approximation o = σ(
∑

i wixi ), y ∈ {0, 1}

wi = wi + α

d∑
k=1

(
y (k) − o(x(k))

)
o(x(k))(1− o(x(k)))x

(k)
i

Error driven: Tanh Approximation t = tanh(
∑

i wixi ), y ∈ {−1, 1}

wi = wi + α

d∑
k=1

(
y (k) − t(x(k))

)
(1− [t(x(k))]2)x

(k)
i

Error driven: Linear Approximation l =
∑

i wixi , y ∈ {−1, 1}

wi = wi + α

d∑
k=1

(
y (k) − l(x(k))

)
x
(k)
i

Probability driven: LR o = σ(
∑

i wixi ), Y is binary.

wi = wi + α

d∑
k=1

(
y (k) − o(x(k))

)
x
(k)
i



Linear Classifiers: Properties

I Good: Fast Optimization and
optimality guarantee. In many cases,
we in fact find the best possible
“linear classifier” with respect to
standard error measures.

I Good: When the number of features
(dimensions) is larger than (or roughly
the same as) the number of examples,
they work amazingly well. Later on,
we will see a formal proof for this
using VC-dimensions.

I Bad: Limited expressive power. In
practice, most datasets will need
non-linear classifiers.

Linearly Separable

Not Linearly
Separable



Neural Networks

Idea: Build a network of Linear Classifiers
I We will get a non-linear classifier if we

construct a feed-forward network of linear
classifiers.

I Input layer: features in the data
I Hidden layers: linear classifiers with

output of nodes in the previous layer
(including the input layer) as input

I Output layer: Desired output node
output of nodes in the hidden layer a
level below as input

I Have to be careful because network of
linear functions is a linear function. x2x1 x3

h2h1 h3

o

Output



What function does a Neural Network Represent?

Some terminology: Linear unit outputs
∑

i wiai , sigmoid unit
outputs σ(

∑
i wiai ), tanh unit outputs tanh(

∑
i wiai ) and

threshold unit outputs sign(
∑

i wiai )

I Assume that each hidden node and
output node is a sigmoid unit

I Then the given neural network represents

o = σ

(
n∑

i=1

wo,ihi

)

where hi = σ

 3∑
j=1

wi ,jxj


I Fun fact: Each edge is associated with a

parameter.
x2x1 x3

h2h1 h3

o

Output



Non-Linearity

Multi-layer perceptrons or neural networks having sigmoid hidden
units represent a non-linear function.

F1 F2

head hid who’d hood
... ...



Learning = Rep. + Eval. measure + Optimization
Let us be error driven

E =
d∑

k=1

(
y (k) − σ

(
n∑

i=0

wo,ih
(k)
i

))2

where h
(k)
i = σ(

3∑
j=1

wi ,jx
(k)
j )

I Optimization task: Find parameters
wo,1, wo,2, wo,3, w1,1, w1,2, w1,3,
w2,1, w2,2, w2,3, w3,1 w3,2 and w3,3

such that E is optimized.

I Algorithm: Take the gradient of E
with respect to each parameter and
run gradient descent.

x2x1 x3

h2h1 h3

o

Output



Gradients for Stochastic Gradient Descent

Given data point (x1, x2, x3, y)

∂E

∂wo,i
=

∂

∂wo,i
(y − o)2

= 2(y − o)

(
− ∂

∂wo,i
o

)

= −2(y − o)o(1− o)

 ∂

∂wo,i

3∑
j=1

wo,jhj


= −2(y − o)o(1− o)hi



Gradients for Stochastic Gradient Descent

Given data point (x1, x2, x3, y)

∂E

∂wi ,j
=

∂

∂wi ,j
(y − o)2

= 2(y − o)

(
− ∂

∂wi ,j
o

)
= −2(y − o)o(1− o)

(
∂

∂wi ,j

3∑
a=1

wo,aha

)

= −2(y − o)o(1− o)wo,i
∂

∂wi ,j
hi

= −2(y − o)o(1− o)wo,ihi (1− hi )

(
∂

∂wi ,j

3∑
a=1

wi ,axa

)
= −2(y − o)o(1− o)wo,ihi (1− hi )xj



Dynamic Programming

Idea: Store intermediate results.

∂E

∂wo,i
= −(y − o)o(1− o)hi

∂E

∂wi ,j
= −(y − o)o(1− o)wo,ihi (1− hi )xj

I For wo,1, wo,2 and wo,3, the term (y − o)o(1− o) is the
same. Let us call it δo . Then the gradient ∂E

∂wo,i
is −δohi

I For w1,1, w1,2 and w1,3 the term
(y − o)o(1− o)wo,1h1(1− h1) is the same. Let
δ1 = δowo,1h1(1− h1). Then the gradient equals −δ1xj

I In general, ∂E
∂wi,j

= −δixj .



Dynamic Programming: Backpropagation

∂E

∂wo,i
= −δohi where δo = (y − o)o(1− o)

∂E

∂wi,j
= −δixj where δi = δowo,ihi (1− hi )

Repeat Until Convergence
For each example (x, y) do

I Send (x, y) through the network and compute o and hi ’s for all i

I For the output unit o, compute δo = (y − o)o(1− o)

I For each hidden unit hi , compute δi = δohi (1− hi )wo,i

I Update all weights wo,i using wo,i = wo,i + αδohi

I Update all weights wi,j using wi,j = wi,j + αδixj



Understanding Backpropagation as Message Passing

I Forward pass: Send example to the
hidden nodes and compute h1, h2 and h2

I Forward pass: Send h1, h2 and h3 to o
and compute o

I Backward pass: Node o sends the
message, δo to h1, h2 and h3. Each hi
updates the weights using δo and the
following equation wo,i = wo,i + αδohi .

I Backward pass: Each node hi sends the
message, δi to each xj . Each xj updates
the weights using δi and the following
equation wi ,j = wi ,j + αδixj .

x2x1 x3

h2h1 h3

o

Output



Fun Exercise as Homework

Derive the backpropagation algorithm for the following network.
The only change: we have multiple output nodes.

x2x1 x3

h2h1 h3

o2o1 o3

Output1 Output2 Output3



More on Backpropagation

I Gradient descent over entire network weight vector

I Easily generalized to arbitrary directed graphs
I Will find a local, not necessarily global error minimum

I In practice, often works well (can run multiple times)

I Often include weight momentum α

∆wi ,j(n) = αδjxi ,j + η∆wi ,j(n − 1)

where ∆wi ,j(n) is the gradient of E w.r.t. wi ,j at iteration n.
I Minimizes error over training examples

I Will it generalize well to subsequent examples?

I Training can take thousands of iterations → slow!

I Using network after training is very fast



Overfitting in Neural Networks: #1

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

E
rr

o
r

Number of weight updates

Error versus weight updates (example 1)

Training set error

Validation set error



Overfitting in Neural Networks: #2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000 5000 6000

E
rr

o
r

Number of weight updates

Error versus weight updates (example 2)

Training set error

Validation set error



Overfitting Avoidance

I Penalize large weights:

Error+ L2 Regularizer : E + λ
∑
i ,j

w2
i ,j

I Early Stopping
I Tie together weights (Parameter sharing):

I e.g., in phoneme recognition network



Representation Revisited

Expressive power of Neural networks
Boolean functions:

I Every boolean function can be represented by network with
single hidden layer

I but might require exponential (in number of inputs) hidden
units

Continuous functions:

I Every bounded continuous function can be approximated with
arbitrarily small error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

I Any function can be approximated to arbitrary accuracy by a
network with two hidden layers [Cybenko 1988].



Representing Boolean Functions: AND

Let {X1, . . . ,Xn} be the binary input attributes taking values from
the set {0, 1}.
Question: Can you represent the following AND function using a
Threshold unit.

f (X1, . . . ,Xn) =

{
+1 X1 ∧ . . . ∧ Xk ∧ ¬Xk+1 ∧ . . . ∧ ¬Xn is true
−1 Otherwise

Answer: Yes. w0 = −k + 0.5; w1 = . . . = wk = 1 and wk+1 =
. . . = wn = −1. The output of this perceptron will be +1 if f is
true and −1 otherwise.

If Xi ’s take values from the set {+1,−1} instead of {0, 1} then we
can represent the AND function using a perceptron (with sign
unit) having the following weights: w0 = −n + 0.5;
w1 = . . . = wk = 1 and wk+1 = . . . = wn = −1.



Representing Boolean Functions: OR

Let {X1, . . . ,Xn} be the binary input attributes taking values from
the set {0, 1}.
Question: Can you represent the following OR function using a
Threshold unit.

g(X1, . . . ,Xn) =

{
+1 X1 ∨ . . . ∨ Xk ∨ ¬Xk+1 ∨ . . . ∨ ¬Xn is true
−1 Otherwise

Answer: Yes. We can represent this using a perceptron (with sign
unit) having the following weights: w0 = n − k − 0.5; w1 = . . . =
wk = 1 and wk+1 = . . . = wn = −1. The output of this perceptron
will be +1 if g is true and −1 otherwise.

If Xi ’s take values from the set {+1,−1} instead of {0, 1} then we
can represent the OR function using a perceptron (with sign unit)
having the following weights: w0 = n − 0.5; w1 = . . . = wk = 1
and wk+1 = . . . = wn = −1.



Representing Arbitrary Boolean Functions

I Any Boolean function can be written either in DNF or CNF.
DNF is ORs of ANDs and CNF is ANDs of ORs.

I Since we can represent ORs and ANDs using a Threshold
unit, we can represent any Boolean function using the
following neural network construction procedure:

I Convert the Boolean function of a CNF. Let m be the number
of clauses in the CNF.

I Construct a neural network with one output node and one
hidden layer having m hidden nodes (one per clause).

I Connect all hidden nodes to the output node
I Connect each hidden node to all input variables involved in the

corresponding clause
I Set the weights according to the prescription given in the

previous two slides.

(We can also use a DNF instead of a CNF)


