Neural Networks and Backpropagation

Vibhav Gogate

TiD

Recap: Gradient Descent Rules for Linear Classifiers

Error driven: Sigmoid Approximation $o=\sigma\left(\sum_{i} w_{i} x_{i}\right), y \in\{0,1\}$

$$
w_{i}=w_{i}+\alpha \sum_{k=1}^{d}\left(y^{(k)}-o\left(\mathbf{x}^{(k)}\right)\right) o\left(\mathbf{x}^{(k)}\right)\left(1-o\left(\mathbf{x}^{(k)}\right)\right) x_{i}^{(k)}
$$

Error driven: Tanh Approximation $t=\tanh \left(\sum_{i} w_{i} x_{i}\right), y \in\{-1,1\}$

$$
w_{i}=w_{i}+\alpha \sum_{k=1}^{d}\left(y^{(k)}-t\left(\mathbf{x}^{(k)}\right)\right)\left(1-\left[t\left(\mathbf{x}^{(k)}\right)\right]^{2}\right) x_{i}^{(k)}
$$

Error driven: Linear Approximation $I=\sum_{i} w_{i} x_{i}, y \in\{-1,1\}$

$$
w_{i}=w_{i}+\alpha \sum_{k=1}^{d}\left(y^{(k)}-l\left(\mathbf{x}^{(k)}\right)\right) x_{i}^{(k)}
$$

Probability driven: LR $o=\sigma\left(\sum_{i} w_{i} x_{i}\right), Y$ is binary.

$$
w_{i}=w_{i}+\alpha \sum_{k=1}^{d}\left(y^{(k)}-o\left(\mathbf{x}^{(k)}\right)\right) x_{i}^{(k)}
$$

Linear Classifiers: Properties

- Good: Fast Optimization and optimality guarantee. In many cases, we in fact find the best possible "linear classifier" with respect to standard error measures.
- Good: When the number of features (dimensions) is larger than (or roughly the same as) the number of examples, they work amazingly well. Later on, we will see a formal proof for this using VC-dimensions.
- Bad: Limited expressive power. In practice, most datasets will need non-linear classifiers.

Linearly Separable

Not Linearly Separable

Neural Networks

Idea: Build a network of Linear Classifiers

- We will get a non-linear classifier if we construct a feed-forward network of linear classifiers.
- Input layer: features in the data
- Hidden layers: linear classifiers with output of nodes in the previous layer (including the input layer) as input
- Output layer: Desired output node output of nodes in the hidden layer a level below as input
- Have to be careful because network of linear functions is a linear function.

What function does a Neural Network Represent?

Some terminology: Linear unit outputs $\sum_{i} w_{i} a_{i}$, sigmoid unit outputs $\sigma\left(\sum_{i} w_{i} a_{i}\right)$, tanh unit outputs $\tanh \left(\sum_{i} w_{i} a_{i}\right)$ and threshold unit outputs $\operatorname{sign}\left(\sum_{i} w_{i} a_{i}\right)$

- Assume that each hidden node and output node is a sigmoid unit
- Then the given neural network represents

$$
o=\sigma\left(\sum_{i=1}^{n} w_{o, i} h_{i}\right)
$$

$$
\text { where } h_{i}=\sigma\left(\sum_{j=1}^{3} w_{i, j} x_{j}\right)
$$

- Fun fact: Each edge is associated with a parameter.

Non-Linearity

Multi-layer perceptrons or neural networks having sigmoid hidden units represent a non-linear function.

Learning $=$ Rep.+ Eval. measure + Optimization

Let us be error driven
$E=\sum_{k=1}^{d}\left(y^{(k)}-\sigma\left(\sum_{i=0}^{n} w_{o, i} h_{i}^{(k)}\right)\right)^{2}$ where $h_{i}^{(k)}=\sigma\left(\sum_{j=1}^{3} w_{i, j} x_{j}^{(k)}\right)$

- Optimization task: Find parameters $w_{o, 1}, w_{o, 2}, w_{o, 3}, w_{1,1}, w_{1,2}, w_{1,3}$, $w_{2,1}, w_{2,2}, w_{2,3}, w_{3,1} w_{3,2}$ and $w_{3,3}$ such that E is optimized.
- Algorithm: Take the gradient of E with respect to each parameter and run gradient descent.

Output

Gradients for Stochastic Gradient Descent

Given data point $\left(x_{1}, x_{2}, x_{3}, y\right)$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{o, i}} & =\frac{\partial}{\partial w_{o, i}}(y-o)^{2} \\
& =2(y-o)\left(-\frac{\partial}{\partial w_{o, i}} o\right) \\
& =-2(y-o) o(1-o)\left(\frac{\partial}{\partial w_{o, i}} \sum_{j=1}^{3} w_{o, j} h_{j}\right) \\
& =-2(y-o) o(1-o) h_{i}
\end{aligned}
$$

Gradients for Stochastic Gradient Descent

Given data point $\left(x_{1}, x_{2}, x_{3}, y\right)$

$$
\begin{aligned}
\frac{\partial E}{\partial w_{i, j}} & =\frac{\partial}{\partial w_{i, j}}(y-o)^{2} \\
& =2(y-o)\left(-\frac{\partial}{\partial w_{i, j}} o\right) \\
& =-2(y-o) o(1-o)\left(\frac{\partial}{\partial w_{i, j}} \sum_{a=1}^{3} w_{o, a} h_{a}\right) \\
& =-2(y-o) o(1-o) w_{o, i} \frac{\partial}{\partial w_{i, j}} h_{i} \\
& =-2(y-o) o(1-o) w_{o, i} h_{i}\left(1-h_{i}\right)\left(\frac{\partial}{\partial w_{i, j}} \sum_{a=1}^{3} w_{i, a} x_{a}\right) \\
& =-2(y-o) o(1-o) w_{o, i} h_{i}\left(1-h_{i}\right) x_{j}
\end{aligned}
$$

Dynamic Programming

Idea: Store intermediate results.

$$
\begin{gathered}
\frac{\partial E}{\partial w_{o, i}}=-(y-o) o(1-o) h_{i} \\
\frac{\partial E}{\partial w_{i, j}}=-(y-o) o(1-o) w_{o, i} h_{i}\left(1-h_{i}\right) x_{j}
\end{gathered}
$$

- For $w_{o, 1}, w_{o, 2}$ and $w_{o, 3}$, the term $(y-o) o(1-o)$ is the same. Let us call it δ_{0}. Then the gradient $\frac{\partial E}{\partial w_{o, i}}$ is $-\delta_{o} h_{i}$
- For $w_{1,1}, w_{1,2}$ and $w_{1,3}$ the term
$(y-o) o(1-o) w_{o, 1} h_{1}\left(1-h_{1}\right)$ is the same. Let $\delta_{1}=\delta_{o} w_{o, 1} h_{1}\left(1-h_{1}\right)$. Then the gradient equals $-\delta_{1} x_{j}$
- In general, $\frac{\partial E}{\partial w_{i, j}}=-\delta_{i} x_{j}$.

Dynamic Programming: Backpropagation

$$
\begin{aligned}
\frac{\partial E}{\partial w_{o, i}} & =-\delta_{o} h_{i} \text { where } \delta_{o}=(y-o) o(1-o) \\
\frac{\partial E}{\partial w_{i, j}} & =-\delta_{i} x_{j} \text { where } \delta_{i}=\delta_{o} w_{o, i} h_{i}\left(1-h_{i}\right)
\end{aligned}
$$

Repeat Until Convergence For each example (\mathbf{x}, y) do

- Send (\mathbf{x}, y) through the network and compute o and h_{i} 's for all i
- For the output unit o, compute $\delta_{o}=(y-o) o(1-o)$
- For each hidden unit h_{i}, compute $\delta_{i}=\delta_{o} h_{i}\left(1-h_{i}\right) w_{o, i}$
- Update all weights $w_{o, i}$ using $w_{o, i}=w_{o, i}+\alpha \delta_{o} h_{i}$
- Update all weights $w_{i, j}$ using $w_{i, j}=w_{i, j}+\alpha \delta_{i} x_{j}$

Understanding Backpropagation as Message Passing

- Forward pass: Send example to the hidden nodes and compute h_{1}, h_{2} and h_{2}
- Forward pass: Send h_{1}, h_{2} and h_{3} to o and compute o
- Backward pass: Node o sends the message, δ_{o} to h_{1}, h_{2} and h_{3}. Each h_{i} updates the weights using δ_{0} and the following equation $w_{o, i}=w_{o, i}+\alpha \delta_{o} h_{i}$.
- Backward pass: Each node h_{i} sends the message, δ_{i} to each x_{j}. Each x_{j} updates the weights using δ_{i} and the following equation $w_{i, j}=w_{i, j}+\alpha \delta_{i} x_{j}$.

Fun Exercise as Homework

Derive the backpropagation algorithm for the following network. The only change: we have multiple output nodes.

Output1 Output2 Output3

More on Backpropagation

- Gradient descent over entire network weight vector
- Easily generalized to arbitrary directed graphs
- Will find a local, not necessarily global error minimum
- In practice, often works well (can run multiple times)
- Often include weight momentum α

$$
\Delta w_{i, j}(n)=\alpha \delta_{j} x_{i, j}+\eta \Delta w_{i, j}(n-1)
$$

where $\Delta w_{i, j}(n)$ is the gradient of E w.r.t. $w_{i, j}$ at iteration n.

- Minimizes error over training examples
- Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using network after training is very fast

Overfitting in Neural Networks: \#1

Overfitting in Neural Networks: \#2

Overfitting Avoidance

- Penalize large weights:

$$
\text { Error+ L2 Regularizer : } E+\lambda \sum_{i, j} w_{i, j}^{2}
$$

- Early Stopping
- Tie together weights (Parameter sharing):
- e.g., in phoneme recognition network

Representation Revisited

Expressive power of Neural networks
Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer [Cybenko 1989; Hornik et al. 1989]
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers [Cybenko 1988].

Representing Boolean Functions: AND

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be the binary input attributes taking values from the set $\{0,1\}$.
Question: Can you represent the following AND function using a Threshold unit.
$f\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}+1 & X_{1} \wedge \ldots \wedge X_{k} \wedge \neg X_{k+1} \wedge \ldots \wedge \neg X_{n} \text { is true } \\ -1 & \text { Otherwise }\end{cases}$
Answer: Yes. $w_{0}=-k+0.5 ; w_{1}=\ldots=w_{k}=1$ and $w_{k+1}=$ $\ldots=w_{n}=-1$. The output of this perceptron will be +1 if f is true and -1 otherwise.
If X_{i} 's take values from the set $\{+1,-1\}$ instead of $\{0,1\}$ then we can represent the AND function using a perceptron (with sign unit) having the following weights: $w_{0}=-n+0.5$;
$w_{1}=\ldots=w_{k}=1$ and $w_{k+1}=\ldots=w_{n}=-1$.

Representing Boolean Functions: OR

Let $\left\{X_{1}, \ldots, X_{n}\right\}$ be the binary input attributes taking values from the set $\{0,1\}$.
Question: Can you represent the following OR function using a Threshold unit.

$$
g\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}+1 & X_{1} \vee \ldots \vee X_{k} \vee \neg X_{k+1} \vee \ldots \vee \neg X_{n} \text { is true } \\ -1 & \text { Otherwise }\end{cases}
$$

Answer: Yes. We can represent this using a perceptron (with sign unit) having the following weights: $w_{0}=n-k-0.5 ; w_{1}=\ldots=$ $w_{k}=1$ and $w_{k+1}=\ldots=w_{n}=-1$. The output of this perceptron will be +1 if g is true and -1 otherwise.
If X_{i} 's take values from the set $\{+1,-1\}$ instead of $\{0,1\}$ then we can represent the OR function using a perceptron (with sign unit) having the following weights: $w_{0}=n-0.5 ; w_{1}=\ldots=w_{k}=1$ and $w_{k+1}=\ldots=w_{n}=-1$.

Representing Arbitrary Boolean Functions

- Any Boolean function can be written either in DNF or CNF. DNF is ORs of ANDs and CNF is ANDs of ORs.
- Since we can represent ORs and ANDs using a Threshold unit, we can represent any Boolean function using the following neural network construction procedure:
- Convert the Boolean function of a CNF. Let m be the number of clauses in the CNF.
- Construct a neural network with one output node and one hidden layer having m hidden nodes (one per clause).
- Connect all hidden nodes to the output node
- Connect each hidden node to all input variables involved in the corresponding clause
- Set the weights according to the prescription given in the previous two slides.
(We can also use a DNF instead of a CNF)

