Neural Networks and Backpropagation

Vibhav Gogate

u D THE UNIVERSITY OF TEXAS AT DALLAS
Erik Jonsson School of Engineering and Computer Science

Recap: Gradient Descent Rules for Linear Classifiers

Error driven: Sigmoid Approximation o = o(>; wjx;), y € {0,1}

d
wi=wi+ 0 (¥~ o(x)) o(xM)(1 — o(x))x"
k=1

Error driven: Tanh Approximation t = tanh(}; w;x;), y € {-1,1}

W,fw,mz(0 — 1)) (1 = (1O

Error driven: Linear Approximation / =) . wix;, y € {—1,1}

d
w; = w; + ozZ (y(k) - I(x(k))> x,.(k)
k=1

Probability driven: LR 0 = o (3", wix;), Y is binary.

/—W,+a2() (k)

Linear Classifiers: Properties

» Good: Fast Optimization and
optimality guarantee. In many cases,
we in fact find the best possible
“linear classifier” with respect to
standard error measures.

» Good: When the number of features
(dimensions) is larger than (or roughly
the same as) the number of examples,
they work amazingly well. Later on,
we will see a formal proof for this
using VC-dimensions.

» Bad: Limited expressive power. In
practice, most datasets will need
non-linear classifiers.

Linearly Separable

Not Linearly
Separable

Neural Networks

Idea: Build a network of Linear Classifiers

» We will get a non-linear classifier if we
construct a feed-forward network of linear
classifiers.

> Input layer: features in the data

» Hidden layers: linear classifiers with
output of nodes in the previous layer
(including the input layer) as input

» Qutput layer: Desired output node
output of nodes in the hidden layer a
level below as input

» Have to be careful because network of
linear functions is a linear function.

Output
0
/ \
hi hy hs
==
X1 X2 X3

What function does a Neural Network Represent?

Some terminology: Linear unit outputs) . w;a;, sigmoid unit
outputs o (), wja;), tanh unit outputs tanh(>_; w;a;) and
threshold unit outputs sign(}_; w;a;)

» Assume that each hidden node and Output
output node is a sigmoid unit

» Then the given neural network represents

n
0O=0 (Z Wo’,'h;>
i=1
3 hy ho hs
where h; = o Z W jXj
» Fun fact: Each edge is associated with a X1 xo X3

parameter.

Non-Linearity

Multi-layer perceptrons or neural networks having sigmoid hidden
units represent a non-linear function.

4000

o0 head
» hid
+ hod
head hid A who'd hood « had
y ¢ hawed
v heard
© heed
< hud
» who'd
~ hood

Learning = Rep. + Eval. measure + Optimization

Let us be error driven

d
E= Z((k) _U<ZW01h()) where h(ZW’JX(k)

k=1

Output

» Optimization task: Find parameters
Wo,1, Wo,2, Wo3, W11, W12, W13, o

Wo 1, Woo, Wa3, W31 W32 and w333
such that E is optimized.
> Algorithm: Take the gradient of E
. h1 hy hs
with respect to each parameter and

run gradient descent. W

X1 X2 X3

Gradients for Stochastic Gradient Descent

Given data point (x1, x2, X3,)

OE 0

_ o 2
aWo,i B 8Wo,i(y O)

= 29~ o °)

9 3
= 2y~ 0)o(1-0) (EadD wo,fhf>

1j=1

= —2(y—o)o(l—o0)h;

Gradients for Stochastic Gradient Descent

Given data point (x1, x2, X3,)

OE
aW,'J N aW,'J

PR
= —2(y —o0)o(l-0) <8W,',j > Wo aha>
= —2(y—o0)o(l—o)w,,; 0 hi
= y o,laW’_’j 1
9 3
= —2(y —o)o(1—o)w, ihi(1— h;) <3Wi,j ; w; axa)

Dynamic Programming

Idea: Store intermediate results.

OE
oo, —(y —0)o(1 — o)h;
OE
ow; —(y — 0)o(1 — 0)wo ihi(1 — hj)x;

» For w1, Wo2 and w, 3, the term (y — o)o (1 — 0) is the
same. Let us call it d,. Then the gradlent —, is —doh;

» For Wi 1, W12 and w3 the term
(y —0)o(1 — o)wg 1h1(1 — hy) is the same. Let
01 = 0oWo,1h1(1 — hy). Then the gradient equals —d1x;

_O0E

> In general, 7= = —d;x;.
Wi j

Dynamic Programming: Backpropagation

3(?/15,; = —d,h; where 6, = (y — 0)o(1 — 0)
aamij = —0;x; where §; = Jow, ihi(1 — h;)
Repeat Until Convergence
For each example (x, y) do
> Send (x,y) through the network and compute o and h;'s for all
> For the output unit o, compute d, = (y — 0)o(1 — 0)
> For each hidden unit h;, compute §; = dohi(1 — hi)w, ;
> Update all weights w, ; using w, ;i = Wo i + adoh;
> Update all weights w;; using w;; = w;j + ad;x;

Understanding Backpropagation as Message Passing

» Forward pass: Send example to the Output
hidden nodes and compute hy, hy and hy

» Forward pass: Send hy, hy and hs to o
and compute o

o
» Backward pass: Node o sends the
message, 0, to hy, hy and h3. Each h; /\
updates the weights using J§, and the
following equation w, ; = w, ; + adoh;. h1 ho h3

» Backward pass: Each node h; sends the
message, 0; to each x;. Each x; updates W
the weights using 0; and the following X1 X2 X3
equation w;; = w;; + ad;x;.

Fun Exercise as Homework

Derive the backpropagation algorithm for the following network.
The only change: we have multiple output nodes.

Outputl Output2 Output3

|

01 02 03
h ho hs

X1 X2 X3

More on Backpropagation

» Gradient descent over entire network weight vector

» Easily generalized to arbitrary directed graphs
» Will find a local, not necessarily global error minimum
» In practice, often works well (can run multiple times)

» Often include weight momentum «
AW,"J'(n) = 045J'X,"j + UAW;J(” —]_)

where Aw; j(n) is the gradient of E w.r.t. w; at iteration n.
» Minimizes error over training examples
» Will it generalize well to subsequent examples?

» Training can take thousands of iterations — slow!

» Using network after training is very fast

Overfitting in Neural Networks: #1

Error

0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

Error versus weight updates (example 1)

Training set error
Validation set error

R4

0 5000 10000 15000

Number of weight updates

20000

Overfitting in Neural Networks: #2

Error

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Error versus weight updates (example 2)

Training set error
Validation set error

0

1000

2000 3000 4000
Number of weight updates

5000

6000

Overfitting Avoidance

» Penalize large weights:

Error+ L2 Regularizer : E + \ g W:%j
iJ
» Early Stopping

» Tie together weights (Parameter sharing):
> e.g., in phoneme recognition network

Representation Revisited

Expressive power of Neural networks
Boolean functions:

» Every boolean function can be represented by network with
single hidden layer

» but might require exponential (in number of inputs) hidden
units
Continuous functions:
» Every bounded continuous function can be approximated with

arbitrarily small error, by network with one hidden layer
[Cybenko 1989; Hornik et al. 1989]

» Any function can be approximated to arbitrary accuracy by a
network with two hidden layers [Cybenko 1988].

Representing Boolean Functions: AND

Let {Xi,...,X,} be the binary input attributes taking values from
the set {0,1}.

Question: Can you represent the following AND function using a
Threshold unit.

L XA A AXe A =Xk AL A X, s true
(X1, Xn) = { —1 Otherwise
Answer: Yes. wp = —k+05; wy = ... = wxy =1 and w41 =

. = wp = —1. The output of this perceptron will be 4+1 if f is
true and —1 otherwise.
If X;'s take values from the set {41, —1} instead of {0,1} then we
can represent the AND function using a perceptron (with sign
unit) having the following weights: wg = —n + 0.5;
wi=...=w,y=1land w1 =...=w,=—L

Representing Boolean Functions: OR

Let {Xi,...,X,} be the binary input attributes taking values from
the set {0,1}.

Question: Can you represent the following OR function using a
Threshold unit.

+1 Xy V... VX V—aXgr1 V.. VX, is true
g%, X) = { —1 Otherwise
Answer: Yes. We can represent this using a perceptron (with sign
unit) having the following weights: wo = n—k —0.5; wy = ... =
wr = 1and w1 = ... = w, = —1. The output of this perceptron
will be 41 if g is true and —1 otherwise.
If X;'s take values from the set {+1, —1} instead of {0,1} then we
can represent the OR function using a perceptron (with sign unit)
having the following weights: wo =n—05;, vy = ... =w, =1
and wg11 =...=w, =—1

Representing Arbitrary Boolean Functions

> Any

Boolean function can be written either in DNF or CNF.

DNF is ORs of ANDs and CNF is ANDs of ORs.
» Since we can represent ORs and ANDs using a Threshold

unit,

we can represent any Boolean function using the

following neural network construction procedure:

>

Convert the Boolean function of a CNF. Let m be the number
of clauses in the CNF.

Construct a neural network with one output node and one
hidden layer having m hidden nodes (one per clause).

» Connect all hidden nodes to the output node
» Connect each hidden node to all input variables involved in the

corresponding clause
Set the weights according to the prescription given in the
previous two slides.

can also use a DNF instead of a CNF)

