Machine Learning, CS 6375

Vibhav Gogate
University of Texas, Dallas

Review of Probability and Statistics 101

Elements of Probability Theory

■ Events, Sample Space and Random Variables

- Axioms of Probability

■ Independent Events

- Conditional Probability
- Bayes Theorem

■ Joint Probability Distribution

- Expectations and Variance

■ Independence and Conditional Independence
■ Continuous versus Discrete Distributions
■ Common Continuous and Discrete Distributions

Events, Sample Space and Random Variables

■ A sample space is a set of possible outcomes in your domain.

- All possible entries in a truth table.

■ Can be Infinite. Example: Set of Real numbers

- Random Variable is a function defined over the sample space S

■ A Boolean random variable $X: S \rightarrow\{$ True, False $\}$
■ Stock price of Google $G: S \rightarrow$ Set of Reals
■ An Event is a subset of S
■ A subset of S for which $X=$ True.
■ Stock price of Google is between 575 and 580.

Events, Sample Space and Random Variables: Picture

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

$P(A)$ is the area of the oval

Sample Space: The Rectangle. Random variable: A. Event: A is True
Probability: A real function defined over the events in the sample space.

Axioms of Probability

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

Four Axioms of Probability:
$\square 0 \leq P(A) \leq 1$
■ $P($ True $)=1$ (i.e., an event in which all outcomes occur)
$\square P($ False $)=0$ (i.e., an event in no outcomes occur)
■ $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Probability Densities

Vibhav
Gogate
University of
Texas, Dallas

■ Probability Density:

$$
p(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

- Cumulative Distribution Function: $P(z)=\int_{-\infty}^{z} p(x) d x$ Such that:
- $p(x) \geq 0$
- $\int_{-\infty}^{\infty} p(x) d x=1$

Probability Mass Functions

$\square A_{1}, \ldots, A_{n}$ is a set of mutually exclusive events such that

$$
\sum_{i=1}^{n} P\left(A_{i}\right)=1
$$

■ P is called a probability mass function or a probability distribution.

- Each A_{i} can be regarded as specific value in the discretization of a continuous quantity.

Sum Rule

■ $0 \leq P(A) \leq 1$
■ $P($ True $)=1$ (i.e., an event in which all outcomes occur)
■ $P($ False $)=0$ (i.e., an event in no outcomes occur)
■ $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
To prove that:
$1 P(A)=1-P(\neg A)$
$2 P(A)=P(A \wedge B)+P(A \wedge \neg B)$
SUM RULE:

$$
P(A)=\sum_{i=1}^{n} P\left(A \wedge B_{i}\right)
$$

where $\left\{B_{1}, \ldots, B_{n}\right\}$ is a set of of mutually exclusive and exhaustive events.

Conditional Probability

Machine Learning, CS 6375

Vibhav Gogate University of Texas, Dallas

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Chain Rule

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

$$
P(A \wedge B)=P(A \mid B) P(B)
$$

$$
P(A \wedge B \wedge C)=P(A \mid B \wedge C) P(B \mid C) P(C)
$$

$$
P\left(A_{1} \wedge A_{2} \wedge \ldots \wedge A_{n}\right)=\prod_{i=1}^{n} P\left(A_{i} \mid A_{1} \wedge \ldots \wedge A_{i-1}\right)
$$

Independence and Conditional Independence

Independence:

- Two events are independent if $P(A \wedge B)=P(A) P(B)$

■ Implies that: $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$
\square Knowing A tells me nothing about B and vice versa.

- A: Getting a 3 on the face of a die.

■ B: New England Patriots win the Superbowl.
Conditional Independence:
$\square A$ and C are conditionally independent given B iff $P(A \mid B \wedge C)=P(A \mid B)$
\square Knowing C tells us nothing about A given B.

Bayes Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Proof.

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \wedge B)}{P(B)}-(1) \\
& P(B \mid A)=\frac{P(A \wedge B)}{P(A)}-(2)
\end{aligned}
$$

Therefore,
$P(A \wedge B)=P(B \mid A) P(A)-(3)$
Substituting $P(A \wedge B)$ in Equation (1), we get Bayes Rule.

Other Forms of Bayes Rule

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

Form 1:

$$
\begin{align*}
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(A \wedge B)+P(\neg A \wedge B)} \tag{1}\\
& =\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A)} \tag{2}
\end{align*}
$$

Form 2:

$$
P(A \mid B \wedge C)=\frac{P(B \mid A \wedge C) P(A \wedge C)}{P(B \wedge C)}
$$

Applying Bayes Rule: Example

- The probability that a person fails a lie detector test given that he/she is cheating on his/her partner is 0.98 . The probability that a person fails the test given that he/she is not cheating on his/her partner is 0.05 .
■ You are a CS graduate student and the probability that a CS graduate student will cheat on his/her partner is 1 in 10000 (CS grads are boring!).
- A person will break up with his/her partner if the probability that the partner is cheating is greater than 0.005 (i.e., $>0.5 \%)$.

Today, you come home and you find out that you have failed the lie detector test. Convince him/her that he/she should not break up with you.

Another Interpretation of the Bayes Rule

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

$$
\begin{gathered}
\text { posterior }=\frac{\text { likelihood } \times \text { prior }}{\text { Probability of evidence }} \\
P(\text { Cheating }=\text { yes } \mid \text { Test }=\text { Fail })=\frac{P(\text { Test }=\text { Fail } \mid \text { Cheating }=\text { yes }) \times P(\text { Cheating }=\text { yes })}{P(\text { Test }=\text { Fail })}
\end{gathered}
$$

- Prior probability of cheating

■ Likelihood of failing the test given that a person is cheating
■ Test=Fail is the evidence

Expectation and Variance

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

Expectation:

$$
\begin{aligned}
\mathbb{E}[f] & =\sum_{x} p(x) f(x) \\
\mathbb{E}[f] & =\int p(x) f(x) d x
\end{aligned}
$$

Conditional Expectation:

$$
\mathbb{E}[f \mid y]=\sum_{x} p(x \mid y) f(x)
$$

Variance:

$$
\operatorname{var}[f]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}
$$

Joint Distribution

- Assign a probability value to joint assignments to random variables.
- If all variables are discrete, we consider Cartesian product of their sets of values For Boolean variables, we

Outlook	Humidity	Tennis?	Value
Sunny	High	Yes	0.05
Sunny	Hogh	No	0.2
Sunny	Normal	Yes	0.2
Sunny	Normal	No	0.1
Windy	High	Yes	0.2
Windy	High	No	0.05
Windy	Normal	Yes	0.05
Windy	Normal	No	0.15

- The sum of probabilities should sum to 1.

The Joint Distribution

Machine Learning, CS 6375

Vibhav
Gogate University of Texas, Dallas

Represents complete knowledge about the domain Can be used to answer any question that you might have about the domain

- $P($ Event $)=$ Sum of Probabilities where the Event is True
- $P($ Outlook $=$ Sunny $)=$
- $P($ Humidity $=$ High \wedge Tennis $?=$ No $)=$
- $P($ Humidity $=$ High \mid Tennis? $=$ No $)=$

Outlook	Humidity	Tennis?	Value
Sunny	High	Yes	0.05
Sunny	High	No	0.2
Sunny	Normal	Yes	0.2
Sunny	Normal	No	0.1
Windy	High	Yes	0.2
Windy	High	No	0.05
Windy	Normal	Yes	0.05
Windy	Normal	No	0.15

