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Elements of Probability Theory

Events, Sample Space and Random Variables
Axioms of Probability
Independent Events
Conditional Probability
Bayes Theorem
Joint Probability Distribution
Expectations and Variance
Independence and Conditional Independence
Continuous versus Discrete Distributions

Common Continuous and Discrete Distributions
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Events, Sample Space and Random Variables

A sample space is a set of possible outcomes in your
domain.

All possible entries in a truth table.
Can be Infinite. Example: Set of Real numbers

Random Variable is a function defined over the sample
space S

A Boolean random variable X : S → {True,False}
Stock price of Google G: S → Set of Reals

An Event is a subset of S
A subset of S for which X = True.
Stock price of Google is between 575 and 580.
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Events, Sample Space and Random Variables:
Picture

Sample Space: The Rectangle. Random variable: A. Event:
A is True
Probability: A real function defined over the events in the
sample space.
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Axioms of Probability

Four Axioms of Probability:
0 ≤ P(A) ≤ 1
P(True) = 1 (i.e., an event in which all outcomes occur)
P(False) = 0 (i.e., an event in no outcomes occur)
P(A ∨ B) = P(A) + P(B)− P(A ∧ B)
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Probability Densities

Probability Density:

p(x ∈ (a,b)) =
∫ b

a
p(x)dx

Cumulative Distribution
Function: P(z) =

∫ z
−∞ p(x)dx

Such that:
p(x) ≥ 0∫∞
−∞ p(x)dx = 1
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Probability Mass Functions

A1, . . . ,An is a set of mutually exclusive events such
that

n∑
i=1

P(Ai) = 1

P is called a probability mass function or a probability
distribution.
Each Ai can be regarded as specific value in the
discretization of a continuous quantity.
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Sum Rule

0 ≤ P(A) ≤ 1
P(True) = 1 (i.e., an event in which all outcomes occur)
P(False) = 0 (i.e., an event in no outcomes occur)
P(A ∨ B) = P(A) + P(B)− P(A ∧ B)

To prove that:
1 P(A) = 1− P(¬A)
2 P(A) = P(A ∧ B) + P(A ∧ ¬B)

SUM RULE:

P(A) =
n∑

i=1

P(A ∧ Bi)

where {B1, . . . ,Bn} is a set of of mutually exclusive and
exhaustive events.
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Conditional Probability

P(A|B) =
P(A ∧ B)

P(B)
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Chain Rule

P(A|B) =
P(A ∧ B)

P(B)

P(A ∧ B) = P(A|B)P(B)

P(A ∧ B ∧ C) = P(A|B ∧ C)P(B|C)P(C)

P(A1 ∧ A2 ∧ . . . ∧ An) =
n∏

i=1

P(Ai |A1 ∧ . . . ∧ Ai−1)
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Independence and Conditional Independence

Independence:
Two events are independent if P(A ∧ B) = P(A)P(B)

Implies that: P(A|B) = P(A) and P(B|A) = P(B)

Knowing A tells me nothing about B and vice versa.
A: Getting a 3 on the face of a die.
B: New England Patriots win the Superbowl.

Conditional Independence:
A and C are conditionally independent given B iff
P(A|B ∧ C) = P(A|B)

Knowing C tells us nothing about A given B.
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Bayes Rule

P(A|B) =
P(B|A)P(A)

P(B)

Proof.

P(A|B) = P(A∧B)
P(B) – (1)

P(B|A) = P(A∧B)
P(A) – (2)

Therefore,
P(A ∧ B) = P(B|A)P(A) – (3)
Substituting P(A ∧ B) in Equation (1), we get Bayes Rule.
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Other Forms of Bayes Rule

Form 1:

P(A|B) =
P(B|A)P(A)

P(A ∧ B) + P(¬A ∧ B)
(1)

=
P(B|A)P(A)

P(B|A)P(A) + P(B|¬A)P(¬A)
(2)

Form 2:

P(A|B ∧ C) =
P(B|A ∧ C)P(A ∧ C)

P(B ∧ C)
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Applying Bayes Rule: Example

The probability that a person fails a lie detector test given
that he/she is cheating on his/her partner is 0.98. The
probability that a person fails the test given that he/she is not
cheating on his/her partner is 0.05.

You are a CS graduate student and the probability that a CS
graduate student will cheat on his/her partner is 1 in 10000
(CS grads are boring!).

A person will break up with his/her partner if the probability
that the partner is cheating is greater than 0.005 (i.e.,
> 0.5%).

Today, you come home and you find out that you have failed the
lie detector test. Convince him/her that he/she should not break
up with you.
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Another Interpretation of the Bayes Rule

posterior =
likelihood × prior

Probability of evidence

P(Cheating = yes|Test = Fail) =
P(Test = Fail|Cheating = yes)× P(Cheating = yes)

P(Test = Fail)

Prior probability of cheating
Likelihood of failing the test given that a person is
cheating
Test=Fail is the evidence

Vibhav Gogate University of Texas, Dallas Machine Learning, CS 6375



Machine
Learning, CS

6375

Vibhav
Gogate

University of
Texas, Dallas

Expectation and Variance

Expectation:
E[f ] =

∑
x

p(x)f (x)

E[f ] =
∫

p(x)f (x)dx

Conditional Expectation:

E[f |y ] =
∑

x

p(x |y)f (x)

Variance:
var[f ] = E[f (x)2]− E[f (x)]2
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Joint Distribution

Assign a probability value
to joint assignments to
random variables.
If all variables are
discrete, we consider
Cartesian product of their
sets of values For
Boolean variables, we
attach a value to each
row of a truth table
The sum of probabilities
should sum to 1.

Outlook Humidity Tennis? Value
Sunny High Yes 0.05
Sunny High No 0.2
Sunny Normal Yes 0.2
Sunny Normal No 0.1
Windy High Yes 0.2
Windy High No 0.05
Windy Normal Yes 0.05
Windy Normal No 0.15
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The Joint Distribution

Represents complete knowledge about the domain
Can be used to answer any question that you might have
about the domain

P(Event) = Sum of Probabilities where the Event is True

P(Outlook = Sunny) =

P(Humidity = High ∧ Tennis? = No) =

P(Humidity = High|Tennis? = No) =

Outlook Humidity Tennis? Value
Sunny High Yes 0.05
Sunny High No 0.2
Sunny Normal Yes 0.2
Sunny Normal No 0.1
Windy High Yes 0.2
Windy High No 0.05
Windy Normal Yes 0.05
Windy Normal No 0.15
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